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Abstract

We prove that if A C [1, N]is a Sidon set with N'/2— L elements, then any interval I C [1, N] of
length ¢N contains c|A|+ E; elements of A, with |E;| < 52NY4(1+4c/2N1/8)(1 +L}F/2N_1/8),
L, = max{0, L}. In particular, if |A| = N¥/2 + O(N'/4), and g(A) is the maximum gap in A,
we deduce that g(A) < N3/4. Also we prove that, under this condition, the exponent 3/4 is
sharp.

1. Introduction

We say that A is a Sidon set if all the sums a+d’, a < &', are different. Erdés and Turan [5]
proved that if A C [1, N] is a Sidon set then |A| < N'/2 + O(N'/%). On the other hand, Bose
and Chowla [1] proved that if N = p? + p + 1, then there exists a Sidon set A C [1, N] with p

elements; i.e, the upper bound (1.1) is sharp except for the error term.

Sidon sets of large size have notable properties of regularity. In [7], M. Koluntzakis proved
that the elements of a Sidon set of large size, |A| ~ N'/2, are well distribuited in the classes of

residues of small modulo. See [5] for an elementary proof of this result.

Erdés and Freud [4] proved that if |A| ~ N/ then the elements of A are well distributed in
the interval [1, N].

Theorem A (Erddés-Freud). Letc > 0 and A C [1, N] a Sidon set with |A| ~ N'/2 elements.

Then, any interval of length ¢N contains ~ ¢cN/? elements.
S.W. Graham [6] has proved a more precise result.

Theorem B (S. Graham). Let A C [1,N] be a Sidon set with N*/? 4 O(NY*) elements.
Then, any interval of length ¢cN contains cN'/? 4 O(N3/8) elements.
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If we denote by g(A) = max,, , a,ca{ar —ar—1} the maximum gap in A, from the Theorem
B it is easy to deduce that if A is a Sidon set A C [1, N] with N'/24+-O(N'/4), then g(A) < N7/8.

In this paper we shall use an identity (Lemma 2.1), which was introduced in [2] and [3], to

obtain a better result.

Theorem 1.1. Let A C [1,N] a Sidon set with N*/? — L elements. Then, any interval of
length ¢N contains c|A| + Er elements of A, with

Er| < 52NY4(1 + 2NY8) (1 + LY2N-Y8), L. = max{0, L}.
- -

In particular we deduce from this theorem the following corollary for gaps.
Corollary 1.1. If A C [1,N] is a Sidon set and |A| = NY/?2 + O(N'/%), then g(A) < N3/,

It is easy to see that the exponent 3/4 is the best possible if A C [1, N] is a Sidon set with
|A| = N2+ O(N'Y*). Consider N = p?+p+1, and a Sidon set A, A C [, N] withp > v/N —1
elements. If we split the interval [1, N] in intervals of length [N3/4], then, one of them contains
less than 2N'/* elements. If we remove these elements from A we have a Sidon set A’ with
|A’| = N2 4- O(N'/*) elements and g(A’) > N3/4.

We don’t know how to derive a better estimate for g(A) when the error term is less than
N4 Tt is related with the difficulty of improving the error term in the upper bound for finite
Sidon sets. It would be interesting to know a good upper bound for g(A) when A is a Sidon
set of maximal size. Maybe, it is possible an upper bound like g(A) < N1/2+¢,

It should be noted that the classical construction of Erdés and Turan [5] of Sidon sets,
A, = {2kp + (k?), : k = 0,1,...,p — 1}, gives g(A) < N'/2 for these sets. It seems not
to be the case for the Ruzsa’s construction [8] of finite Sidon sets. Numerical and heuristic
arguments suggest that g(A)/N 1/2 _ o0 in this case. In particular, it would imply that the
Erdés’s Conjecture, F(N) < N'/2 4+ 0O(1), is not true.

2. Proofs

The proof of the following lemma can be found in [2] or [3].

Lemma 2.1. Let A C [1, N] be a sequence of integers. Then, for any integer H > 1 we have

2 S dny —ny = AP

1<h<H
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where
H|A| >2

Dp= ), <A(n)—A(n—H)—m

1<n<N+H-1

A(n) is the counting function of A and d(h) = #{h=a—4d'; a,a’ € A}. O

A(n) — A(n — H) is the number of elements of A lying in the interval (n — H,n| and the
H|A
VT
distribution of the elements of A in the interval [1, N + H — 1].

quantity is the expected value of A(n) — A(n — H). Then, Dy is a measure of the

The argument of the proof of the Theorem 1.1 is the following: If |A| is close to N/2, (L
small), then Dy is “small” and consequently, the number of elements of A lying in intervals
of length H is “close”, at least in average, to the expected number. From that we can deduce
a “good” distribution in any interval I = (aN,N]. Upper and lower bounds for the error
Er=|ANnI|— (8 — a)|A| are obtained in two different steps (Lemma 2.3 and Lemma 2.4).

Lemma 2.2. If A C [1, N] is a Sidon set with |A| = N'/2 — L then, for any integer H we have

3H2L, H* .
D, < be HY e
L C R

where Ly = max{0, L}.

Proof. We apply Lemma 2.1 to the sequence A. Since A is a Sidon set, hence d(h) < 1 for any
integer h > 1 and 23, j .y d(h)(H —h) < H?. Also we use the trivial estimate for the size
of a Sidon set, |A| < 2N1/2,

D, < H? H?|A|? H?N + H3 — H?> — H?|AJ]?
N+H-1

. — -
= Nym—1 A

+ H|A|

If L <0, then Dy < 22 4 2H N2,

If L > 0, then Dy < ZX(NV/2 4 |A|)Ly + 22 4 o N2 < 30Le L HY | 9 N1/2. [

Let I = (aN,3N], ¢ = 8 — o and we write |AN I| = ¢|A| + Er. We will choose H = [N3/4]

in all the proofs.
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Lemma 2.3. E; < 10NY4(c1/2NV8 4 1)(LY2N-1/8 4 1).

Proof. We write Iy = (N, BN + H], then ¢N + H — 1 < |Iy| <cN + H + 1. We have

> A(n) H)>H|ANI|,

nelmg

since each a € AN T is counted H times in the sum. Then,

H|A] [In|HA|
> (Am) - A(n - H) - > HIANT| -
= ( (n) = Aln = H) N+H—1>_ SR Rl vorny 7

LH D) o HA]

x| (
—EH+HA|(c——2 ) > g H—mga~——L2T0
e H(c = A NTE-1 N

N+H-1
Then

H|A H|A
Er<H™' Y (A(n)—A(n—H)—N+L,{|_1>+ ]|V’.
nely

Now we apply Cauchy’s inequality, Lemma 2.1 and the trivial estimates |A| < 2N 172,
N3/4/2 < H < N3/* to get
H|A|
N
1/2
V3HL N H3/?
N1/4 N1/2

Er < H 'In|'?Dy* +

H|A
<H! ((CN)1/2+(H+1)1/2> ( +\/§H1/2N1/4> I ]|V |
< oN-3/4 (01/2]\,1/2 n \/§N3/8) (\/gNl/QLi/Q 1 NB/8 4 \/§N5/8> L oNL/4

< 10N1/4 ( /2 \1/8 4 1) <L1/2N*1/8 4 1) . O

Lemma 2.4. —E; < 52NY4(c/2NV8 4 1)(LY*N-1/8 1 1).

Proof.

> A(n) H)< H(ANI|4|AN(aN — H,aN]| +|AN (6N, BN + H]|).

nelyg

We apply Lemma 2.3 to the intervals (aN — H,aN] and (N, BN + H| to obtain an upper

bound for the last two terms.

H H1/2N1/8
[AN(aN — H, aN]|+|AN(BN, AN+ H]| < 25| A]+20N"/* <W“>( LN 1)

<ANYA 4 4ONYVALYPNTYS 4 1) < 44NV 4 40NVELY?
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Then,

HIA| [ |H|A 1 1/2
Aln) — A(n— H) — —A1 Y < glang - AL L g (N4 4 goNEL
;<(n) (n—H) N+H—1>_ AN =N g1t ( +AONLY?)
nely

||

— EH 1+ H|A| (e — L
T "(C N+H-1

> + H (44NY4 4 40NVSLY?)

< ErH + H(44NY* 4 40NV LY?),
because |[Igy| > cN + H — 1.

Finally we apply Cauchy inequality and Lemma 2.2 to obtain

~Br < M4NY 4 40NYSLY? + HOU ST |A(n) — A(n — H)

nely

H|A]
N+H-1
< 44NYA 4 4ONVELY? 4 NI 1y V2 DY

\/§HLL/2 H3/2
N1/4 N1/2

< 44N7 + 40N%L§ +oN T ((cN)1/2 +(H + 1)1/2) ( + \/§H1/2N1/4>

< 44NV 4 JONVSLYE 4 NI ((ANY2 AN/ (VENYRLYE 4 NS 4+ VAND/S)

< BANYA(1 4 ANV (1 + LYPNTYE). O

Lemma 2.3 and Lemma 2.4 imply Theorem 1.1. To prove Corollary 1.1, suppose that A =
N2 — L, with Ly < kNY*, and let I be any interval of length k&' N?3/4. If we apply Lemma
2.4 we have

!

|A] = B2NYA(1 + K21+ 8Y2) > K NYA — Kl — 52NY4A(1+ K1) (1 + KY2).

If we take k' large enough, & > 10000k, then |[ANI| > 0 for any interval of length greater than
k' N3/4,
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