ON A PARTITION PROBLEM OF CANFIELD AND WILF

Željka Ljujić
Departamento de Matemáticas, Universidad de los Andes, Bogotá, Colombia
z.ljujic20@uniandes.edu.co
Melvyn B. Nathanson ${ }^{1}$
Lehman College (CUNY), Bronx, New York and CUNY Graduate Center, New
York, New York
melvyn.nathanson@lehman.cuny.edu

Received: 5/30/11, Revised: 4/18/12, Accepted: 6/30/12, Published: 10/12/12

Abstract

Let A and M be nonempty sets of positive integers. A partition of the positive integer n with parts in A and multiplicities in M is a representation of n in the form $n=\sum_{a \in A} m_{a} a$ where $m_{a} \in M \cup\{0\}$ for all $a \in A$, and $m_{a} \in M$ for only finitely many a. Denote by $p_{A, M}(n)$ the number of partitions of n with parts in A and multiplicities in M. It is proved that there exist infinite sets A and M of positive integers whose partition function $p_{A, M}$ has weakly superpolynomial but not superpolynomial growth. The counting function of the set A is $A(x)=\sum_{a \in A, a \leq x} 1$. It is also proved that $p_{A, M}$ must have at least weakly superpolynomial growth if M is infinite and $A(x) \gg \log x$.

-To the memory of John Selfridge

1. Partition Problems With Restricted Multiplicities

Let \mathbf{N} denote the set of positive integers and let A be a nonempty subset of \mathbf{N}. A partition of n with parts in A is a representation of n in the form

$$
n=\sum_{a \in A} m_{a} a
$$

where $m_{a} \in \mathbf{N} \cup\{0\}$ for all $a \in A$, and $m_{a} \in \mathbf{N}$ for only finitely many a. The partition function $p_{A}(n)$ counts the number of partitions of n with parts in A. If $\operatorname{gcd}(A)=d>1$, then $p_{A}(n)=0$ for all n not divisible by d, and so $p_{A}(n)=0$ for infinitely many positive integers n. If $p_{A}(n) \geq 1$ for all sufficiently large n, then $\operatorname{gcd}(A)=1$.

[^0]If $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a set of k relatively prime positive integers, then Schur [8] proved that

$$
\begin{equation*}
p_{A}(n) \sim \frac{n^{k-1}}{(k-1)!a_{1} a_{2} \cdots a_{k}} \tag{1}
\end{equation*}
$$

Nathanson [6] gave a simpler proof of the more precise result:

$$
\begin{equation*}
p_{A}(n)=\frac{n^{k-1}}{(k-1)!a_{1} a_{2} \cdots a_{k}}+O\left(n^{k-2}\right) \tag{2}
\end{equation*}
$$

An arithmetic function is a real-valued function whose domain is the set of positive integers. An arithmetic function f has polynomial growth if there is a positive integer k and an integer $N_{0}(k)$ such that $1 \leq f(n) \leq n^{k}$ for all $n \geq N_{0}(k)$. Equivalently, f has polynomial growth if

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n)}{\log n}<\infty
$$

We shall call an arithmetic function nonpolynomial or weakly superpolynomial if it does not have polynomial growth. Thus, the function f is weakly superpolynomial if for every positive integer k there are infinitely many positive integers n such that $f(n)>n^{k}$, or, equivalently, if

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n)}{\log n}=\infty
$$

An arithmetic function f has superpolynomial growth if for every positive integer k we have $f(n)>n^{k}$ for all sufficiently large integers n. Equivalently,

$$
\lim _{n \rightarrow \infty} \frac{\log f(n)}{\log n}=\infty
$$

In the following section we construct strictly increasing arithmetic functions that are weakly superpolynomial but not superpolynomial.

The asymptotic formula (1) implies the following result of Nathanson [5, Theorem 15.2, pp. 458-461].

Theorem 1. If A is an infinite set of integers and $\operatorname{gcd}(A)=1$, then $p_{A}(n)$ has superpolynomial growth.

Canfield and Wilf [2] studied the following variation of the classical partition problem. Let A and M be nonempty sets of positive integers. A partition of n with parts in A and multiplicities in M is a representation of n in the form

$$
n=\sum_{a \in A} m_{a} a
$$

where $m_{a} \in M \cup\{0\}$ for all $a \in A$, and $m_{a} \in M$ for only finitely many a. The associated partition function $p_{A, M}(n)$ counts the number of partitions of n with parts in A and multiplicities in M. Note that $p_{A, M}(0)=1$ and $p_{A, M}(n)=0$ for all $n<0$.

Let A and M be infinite sets of positive integers such that $p_{A, M}(n) \geq 1$ for all sufficiently large n. Canfield and Wilf ("Unsolved problem 1" in [2]) asked if the partition function $p_{A, M}(N)$ must have weakly superpolynomial growth. The question can be rephrased as follows: Do there exist infinite sets A and B of positive integers such that $p_{A, M}(n) \geq 1$ for all sufficiently large n and the partition function $p_{A, M}(N)$ has polynomial growth? This beautiful problem is still unsolved.

The goal of this paper is to construct infinite sets A and M of positive integers such that the partition function $p_{A, M}(N)$ is weakly superpolynomial but not superpolynomial.

2. Weakly Superpolynomial Functions

Polynomial and superpolynomial growth functions were first studied in connection with the growth of finitely and infinitely generated groups (cf. Milnor [4], Grigorchuk and Pak [3], Nathanson [7]). Growth functions of infinite groups are always strictly increasing, but even strictly increasing functions that do not have polynomial growth are not necessarily superpolynomial.

We note that an arithmetic function f is weakly superpolynomial but not superpolynomial if and only if

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n)}{\log n}=\infty
$$

and

$$
\liminf _{n \rightarrow \infty} \frac{\log f(n)}{\log n}<\infty
$$

In this section we construct a strictly increasing arithmetic function that is weakly superpolynomial but not polynomial.

Let $\left(n_{k}\right)_{k=1}^{\infty}$ be a sequence of positive integers such that $n_{1}=1$ and

$$
n_{k+1}>2 n_{k}^{k}
$$

for all $k \geq 1$. We define the arithmetic function

$$
f(n)=n_{k}^{k}+\left(n-n_{k}\right) \quad \text { for } n_{k} \leq n<n_{k+1}
$$

This function is strictly increasing because

$$
n_{k}^{k}-n_{k} \leq n_{k+1}^{k+1}-n_{k+1}
$$

for all $k \geq 1$. We have

$$
\lim _{k \rightarrow \infty} \frac{\log f\left(n_{k}\right)}{\log n_{k}}=\lim _{k \rightarrow \infty} \frac{k \log n_{k}}{\log n_{k}}=\infty
$$

and so

$$
\limsup _{n \rightarrow \infty} \frac{\log f(n)}{\log n}=\infty
$$

Therefore, the function f does not have polynomial growth.
For every positive integer n there is a positive integer k such that $n_{k} \leq n<n_{k+1}$. Then $f(n)=n+n_{k}^{k}-n_{k} \geq n$ and so

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\log f(n)}{\log n} \geq 1 \tag{3}
\end{equation*}
$$

The inequalities

$$
f\left(n_{k+1}-1\right)=n_{k}^{k}+\left(n_{k+1}-1-n_{k}\right)<\frac{3 n_{k+1}}{2}
$$

and

$$
n_{k+1}-1>\frac{n_{k+1}}{2}
$$

imply that

$$
1<\frac{\log f\left(n_{k+1}-1\right)}{\log \left(n_{k+1}-1\right)}<\frac{\log \left(3 n_{k+1} / 2\right)}{\log \left(n_{k+1} / 2\right)}=1+\frac{\log 3}{\log \left(n_{k+1} / 2\right)}
$$

and so

$$
\lim _{k \rightarrow \infty} \frac{\log f\left(n_{k+1}-1\right)}{\log \left(n_{k+1}-1\right)}=1
$$

Therefore,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\log f(n)}{\log n} \leq 1 \tag{4}
\end{equation*}
$$

Combining (3) and (4), we obtain

$$
\liminf _{n \rightarrow \infty} \frac{\log f(n)}{\log n}=1
$$

Thus, the function f has weakly superpolynomial but not superpolynomial growth.

3. Weakly Superpolynomial Partition Functions

Theorem 2. Let a be an integer, $a \geq 2$, and let $A=\left\{a^{i}\right\}_{i=0}^{\infty}$. Let M be an infinite set of positive integers such that M contains $\{1,2, \ldots, a-1\}$ and no element of M is divisible by a. Then $p_{A, M}(n) \geq 1$ for all $n \in \mathbf{N}$, and $p_{A, M}(n)=1$ for all $n \in A$. In particular, the partition function $p_{A, M}$ does not have superpolynomial growth.

Proof. Every positive integer n has a unique a-adic representation, and so $p_{A, M}(n) \geq$ 1 for all $n \in \mathbf{N}$.

We shall prove that, for every positive integer r, the only partition of a^{r} with parts in A and multiplicities in M is $a^{r}=1 \cdot a^{r}$. If there were another representation, then it could be written in the form

$$
a^{r}=\sum_{i=1}^{k} m_{i} a^{j_{i}}
$$

where $k \geq 2, m_{i} \in M$ for $i=1, \ldots, k$, and $0 \leq j_{1}<j_{2}<\cdots<j_{k}<r$. Then

$$
a^{r-j_{1}}=m_{1}+a \sum_{i=2}^{k} m_{i} a^{j_{i}-j_{1}-1}
$$

We have $j_{i}-j_{1}-1 \geq 0$ for $i=2, \ldots, k$, and so m_{1} is divisible by a, which is absurd. Therefore, $p_{A, M}\left(a^{r}\right)=1$ for all $r \geq 0$. It follows that

$$
\liminf _{n \rightarrow \infty} \frac{\log p_{A, M}(n)}{\log n}=\liminf _{r \rightarrow \infty} \frac{\log p_{A, M}\left(a^{r}\right)}{\log a^{r}}=0
$$

and so the partition function $p_{A, M}$ is not superpolynomial.
Theorem 3. Let A and M be infinite sets of positive integers. If $A(x) \geq c \log x$ for some $c>0$ and all $x \geq x_{0}(A)$, then for every positive integer k there exist infinitely many integers n such that

$$
p_{A, M}(n)>n^{k} .
$$

In particular, the partition function $p_{A, M}$ is weakly superpolynomial.
Proof. Let $x \geq 1$ and let

$$
A(x)=\sum_{\substack{a \in A \\ a \leq x}} 1 \quad \text { and } \quad M(x)=\sum_{\substack{m \in M \\ m \leq x}} 1
$$

denote the counting functions of the sets A and M, respectively. If $n \leq x$ and $n=\sum_{a \in A} m_{a} a$ is a partition of n with parts in A and multiplicities in $M \cup\{0\}$, then $a \leq x$ and $m_{a} \leq x$, and so

$$
\begin{equation*}
\max \left\{p_{A, M}(n): n \leq x\right\} \leq \sum_{n \leq x} p_{A, M}(n) \leq(M(x)+1)^{A(x)} \tag{5}
\end{equation*}
$$

Conversely, if the integer n can be represented in the form $n=\sum_{a \in A} m_{a} a$ with $a \leq x$ and $m_{a} \leq x$, then $n \leq x^{2} A(x) \leq x^{3}$ and so

$$
\sum_{n \leq x^{2} A(x)} p_{A, M}(n) \geq(M(x)+1)^{A(x)}>M(x)^{A(x)} .
$$

Choose an integer n_{x} such that $n_{x} \leq x^{2} A(x)$ and

$$
p_{A, M}\left(n_{x}\right)=\max \left\{p_{A, M}(n): n \leq x^{2} A(x)\right\}
$$

Inequality (5) implies that

$$
\begin{equation*}
p_{A, M}\left(n_{x}\right) \leq\left(M\left(x^{2} A(x)\right)+1\right)^{A\left(x^{2} A(x)\right)} \tag{6}
\end{equation*}
$$

Moreover,

$$
M(x)^{A(x)}<\sum_{n \leq x^{2} A(x)} p_{A, M}(n) \leq\left(x^{2} A(x)+1\right) p_{A, M}\left(n_{x}\right) \leq 2 x^{3} p_{A, M}\left(n_{x}\right)
$$

It follows that for all $x \geq x_{0}(A)$ we have

$$
p_{A, M}\left(n_{x}\right)>\frac{M(x)^{A(x)}}{2 x^{3}} \geq \frac{M(x)^{c \log x}}{2 x^{3}}
$$

Let k be a positive integer. Because the set M is infinite, there exists $x_{1}(A, k) \geq$ $x_{0}(A)$ such that, for all $x \geq x_{1}(A, k)$, we have

$$
\log M(x)>\frac{\log 2}{c \log x}+\frac{3 k+3}{c}
$$

and so

$$
p_{A, M}\left(n_{x}\right)>x^{3 k} \geq n_{x}^{k}
$$

We shall iterate this process to construct inductively an infinite sequence of pairwise distinct positive integers $\left(n_{x_{i}}\right)_{i=1}^{\infty}$ such that

$$
\begin{equation*}
p_{A, M}\left(n_{x_{i}}\right)>n_{x_{i}}^{k} \tag{7}
\end{equation*}
$$

for all i. Let $r \geq 1$, and suppose that a finite sequence of pairwise distinct positive integers $\left(n_{x_{i}}\right)_{i=1}^{r}$ has been constructed such that inequality (7) holds for $i=1, \ldots, r$. Choose x_{r+1} so that

$$
x_{r+1}^{3 k}>\left(M\left(x_{i}^{2} A\left(x_{i}\right)\right)+1\right)^{A\left(x_{i}^{2} A\left(x_{i}\right)\right)}
$$

for all $i=1, \ldots, r$, and let $n_{x_{r+1}}$ be the integer constructed according to procedure above. Applying inequality (6), we obtain

$$
p\left(n_{x_{i}}\right) \leq\left(M\left(x_{i}^{2} A\left(x_{i}\right)\right)+1\right)^{A\left(x_{i}^{2} A\left(x_{i}\right)\right)}
$$

and so

$$
p\left(n_{x_{r+1}}\right)>x_{r+1}^{3 k}>p\left(n_{x_{i}}\right)
$$

for $i=1, \ldots, r$. It follows that $n_{x_{r+1}} \neq n_{x_{i}}$ for $i=1, \ldots, r$. This completes the induction and the proof.

Theorem 4. Let a be an integer, $a \geq 2$, and let $A=\left\{a^{i}\right\}_{i=0}^{\infty}$. Let M be an infinite set of positive integers such that M contains $\{1,2, \ldots, a-1\}$ and no element of M is divisible by a. The partition function $p_{A, M}$ is weakly superpolynomial but not superpolynomial.

Proof. The counting function for the set $A=\left\{a^{i}\right\}_{i=1}^{\infty}$ is $A(x)=[\log x / \log a]+1>$ $\log x / \log a$. By Theorem 3, the partition function $p_{A, M}$ is weakly superpolynomial. By Theorem 2, the partition function $p_{A, M}$ is not superpolynomial. This completes the proof.

4. Open Problems

1. We repeat the original problem of Canfield and Wilf: Do there exist infinite sets A and B of positive integers such that $p_{A, M}(n) \geq 1$ for all sufficiently large n and the partition function $p_{A, M}(N)$ has polynomial growth?
2. By Theorem 3, if the partition function $p_{A, M}$ has polynomial growth, then the set A must have sub-logarithmic growth, that is, $A(x) \gg \log x$ is impossible.
(a) Let $A=\{k!\}_{k=1}^{\infty}$. Does there exist an infinite set M of positive integers such that $p_{A, M}(n) \geq 1$ for all sufficiently large n and $p_{A, M}$ has polynomial growth?
(b) Let $A=\left\{k^{k}\right\}_{k=1}^{\infty}$. Does there exist an infinite set M of positive integers such that $p_{A, M}(n) \geq 1$ for all sufficiently large n and $p_{A, M}$ has polynomial growth?
3. Let A be an infinite set of positive integers and let $M=\mathbf{N}$. Bateman and Erdős [1] proved that the partition function $p_{A}=p_{A, \mathbf{N}}$ is eventually strictly increasing if and only if $\operatorname{gcd}(A \backslash\{a\})=1$ for all $a \in A$. It would be interesting to extend this result to partition functions with restricted multiplicities: Determine a necessary and sufficient condition for infinite sets A and M of positive integers to have the property that $p_{A, M}(n)<p_{A, M}(n+1)$ or $p_{A, M}(n) \leq p_{A, M}(n+1)$ for all sufficiently large n.

References

[1] P. T. Bateman and P. Erdős, Monotonicity of partition functions, Mathematika 3 (1956), $1-14$.
[2] E. R. Canfield and H. S. Wilf, On the growth of restricted integer partition functions, arXiv:1009.4404, 2010.
[3] R. Grigorchuk and I. Pak, Groups of intermediate growth: An introduction, Enseign. Math. (2) 54 (2008), no. 3-4, 251-272.
[4] J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), $1-7$.
[5] M. B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, vol. 195, Springer-Verlag, New York, 2000.
[6] M. B. Nathanson, Partitions with parts in a finite set, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1269-1273.
[7] M. B. Nathanson, Phase transitions in infinitely generated groups, and related problems in additive number theory, Integers 11A (2011), Article 17, 1-14.
[8] I. Schur, Zur additiven Zahlentheorie, Sitzungsber. der preuss. Akad. der Wiss., Math. Phys. Klasse (1926), 488-495.

[^0]: ${ }^{1}$ The work of M.B.N. was supported in part by a PSC-CUNY Research Award.

