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Abstract

Let A and M be nonempty sets of positive integers. A partition of the positive
integer n with parts in A and multiplicities in M is a representation of n in the
form n =

�
a∈A maa where ma ∈ M ∪ {0} for all a ∈ A, and ma ∈ M for only

finitely many a. Denote by pA,M (n) the number of partitions of n with parts in
A and multiplicities in M . It is proved that there exist infinite sets A and M of
positive integers whose partition function pA,M has weakly superpolynomial but not
superpolynomial growth. The counting function of the set A is A(x) =

�
a∈A,a≤x 1.

It is also proved that pA,M must have at least weakly superpolynomial growth if M

is infinite and A(x)� log x.

–To the memory of John Selfridge

1. Partition Problems With Restricted Multiplicities

Let N denote the set of positive integers and let A be a nonempty subset of N. A
partition of n with parts in A is a representation of n in the form

n =
�

a∈A

maa

where ma ∈ N ∪ {0} for all a ∈ A, and ma ∈ N for only finitely many a. The
partition function pA(n) counts the number of partitions of n with parts in A. If
gcd(A) = d > 1, then pA(n) = 0 for all n not divisible by d, and so pA(n) = 0 for
infinitely many positive integers n. If pA(n) ≥ 1 for all sufficiently large n, then
gcd(A) = 1.
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If A = {a1, . . . , ak} is a set of k relatively prime positive integers, then Schur [8]
proved that

pA(n) ∼ nk−1

(k − 1)!a1a2 · · · ak
. (1)

Nathanson [6] gave a simpler proof of the more precise result:

pA(n) =
nk−1

(k − 1)!a1a2 · · · ak
+ O

�
n

k−2
�
. (2)

An arithmetic function is a real-valued function whose domain is the set of posi-
tive integers. An arithmetic function f has polynomial growth if there is a positive
integer k and an integer N0(k) such that 1 ≤ f(n) ≤ nk for all n ≥ N0(k). Equiva-
lently, f has polynomial growth if

lim sup
n→∞

log f(n)
log n

<∞.

We shall call an arithmetic function nonpolynomial or weakly superpolynomial if it
does not have polynomial growth. Thus, the function f is weakly superpolynomial
if for every positive integer k there are infinitely many positive integers n such that
f(n) > nk, or, equivalently, if

lim sup
n→∞

log f(n)
log n

=∞.

An arithmetic function f has superpolynomial growth if for every positive integer k

we have f(n) > nk for all sufficiently large integers n. Equivalently,

lim
n→∞

log f(n)
log n

=∞.

In the following section we construct strictly increasing arithmetic functions that
are weakly superpolynomial but not superpolynomial.

The asymptotic formula (1) implies the following result of Nathanson [5, Theorem
15.2, pp. 458–461].

Theorem 1. If A is an infinite set of integers and gcd(A) = 1, then pA(n) has
superpolynomial growth.

Canfield and Wilf [2] studied the following variation of the classical partition
problem. Let A and M be nonempty sets of positive integers. A partition of n with
parts in A and multiplicities in M is a representation of n in the form

n =
�

a∈A

maa
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where ma ∈ M ∪ {0} for all a ∈ A, and ma ∈ M for only finitely many a. The
associated partition function pA,M (n) counts the number of partitions of n with
parts in A and multiplicities in M . Note that pA,M (0) = 1 and pA,M (n) = 0 for all
n < 0.

Let A and M be infinite sets of positive integers such that pA,M (n) ≥ 1 for
all sufficiently large n. Canfield and Wilf (“Unsolved problem 1” in [2]) asked
if the partition function pA,M (N) must have weakly superpolynomial growth. The
question can be rephrased as follows: Do there exist infinite sets A and B of positive
integers such that pA,M (n) ≥ 1 for all sufficiently large n and the partition function
pA,M (N) has polynomial growth? This beautiful problem is still unsolved.

The goal of this paper is to construct infinite sets A and M of positive inte-
gers such that the partition function pA,M (N) is weakly superpolynomial but not
superpolynomial.

2. Weakly Superpolynomial Functions

Polynomial and superpolynomial growth functions were first studied in connection
with the growth of finitely and infinitely generated groups (cf. Milnor [4], Grig-
orchuk and Pak [3], Nathanson [7]). Growth functions of infinite groups are always
strictly increasing, but even strictly increasing functions that do not have polyno-
mial growth are not necessarily superpolynomial.

We note that an arithmetic function f is weakly superpolynomial but not super-
polynomial if and only if

lim sup
n→∞

log f(n)
log n

=∞

and
lim inf
n→∞

log f(n)
log n

<∞.

In this section we construct a strictly increasing arithmetic function that is weakly
superpolynomial but not polynomial.

Let (nk)∞k=1 be a sequence of positive integers such that n1 = 1 and

nk+1 > 2nk
k

for all k ≥ 1. We define the arithmetic function

f(n) = n
k
k + (n− nk) for nk ≤ n < nk+1.

This function is strictly increasing because

n
k
k − nk ≤ n

k+1
k+1 − nk+1
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for all k ≥ 1. We have

lim
k→∞

log f(nk)
log nk

= lim
k→∞

k log nk

log nk
=∞

and so
lim sup

n→∞

log f(n)
log n

=∞.

Therefore, the function f does not have polynomial growth.
For every positive integer n there is a positive integer k such that nk ≤ n < nk+1.

Then f(n) = n + nk
k − nk ≥ n and so

lim inf
n→∞

log f(n)
log n

≥ 1. (3)

The inequalities

f(nk+1 − 1) = n
k
k + (nk+1 − 1− nk) <

3nk+1

2
and

nk+1 − 1 >
nk+1

2
imply that

1 <
log f(nk+1 − 1)
log(nk+1 − 1)

<
log(3nk+1/2)
log(nk+1/2)

= 1 +
log 3

log(nk+1/2)

and so
lim

k→∞

log f(nk+1 − 1)
log(nk+1 − 1)

= 1.

Therefore,

lim inf
n→∞

log f(n)
log n

≤ 1. (4)

Combining (3) and (4), we obtain

lim inf
n→∞

log f(n)
log n

= 1.

Thus, the function f has weakly superpolynomial but not superpolynomial growth.

3. Weakly Superpolynomial Partition Functions

Theorem 2. Let a be an integer, a ≥ 2, and let A = {ai}∞i=0. Let M be an infinite
set of positive integers such that M contains {1, 2, . . . , a− 1} and no element of M

is divisible by a. Then pA,M (n) ≥ 1 for all n ∈ N, and pA,M (n) = 1 for all n ∈ A.
In particular, the partition function pA,M does not have superpolynomial growth.
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Proof. Every positive integer n has a unique a-adic representation, and so pA,M (n) ≥
1 for all n ∈ N.

We shall prove that, for every positive integer r, the only partition of ar with
parts in A and multiplicities in M is ar = 1·ar. If there were another representation,
then it could be written in the form

a
r =

k�

i=1

mia
ji

where k ≥ 2, mi ∈M for i = 1, . . . , k, and 0 ≤ j1 < j2 < · · · < jk < r. Then

a
r−j1 = m1 + a

k�

i=2

mia
ji−j1−1

.

We have ji−j1−1 ≥ 0 for i = 2, . . . , k, and so m1 is divisible by a, which is absurd.
Therefore, pA,M (ar) = 1 for all r ≥ 0. It follows that

lim inf
n→∞

log pA,M (n)
log n

= lim inf
r→∞

log pA,M (ar)
log ar

= 0

and so the partition function pA,M is not superpolynomial.

Theorem 3. Let A and M be infinite sets of positive integers. If A(x) ≥ c log x for
some c > 0 and all x ≥ x0(A), then for every positive integer k there exist infinitely
many integers n such that

pA,M (n) > n
k
.

In particular, the partition function pA,M is weakly superpolynomial.

Proof. Let x ≥ 1 and let

A(x) =
�

a∈A
a≤x

1 and M(x) =
�

m∈M
m≤x

1

denote the counting functions of the sets A and M , respectively. If n ≤ x and
n =

�
a∈A maa is a partition of n with parts in A and multiplicities in M ∪ {0},

then a ≤ x and ma ≤ x, and so

max {pA,M (n) : n ≤ x} ≤
�

n≤x

pA,M (n) ≤ (M(x) + 1)A(x)
. (5)

Conversely, if the integer n can be represented in the form n =
�

a∈A maa with
a ≤ x and ma ≤ x, then n ≤ x2A(x) ≤ x3 and so

�

n≤x2A(x)

pA,M (n) ≥ (M(x) + 1)A(x)
> M(x)A(x)

.
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Choose an integer nx such that nx ≤ x2A(x) and

pA,M (nx) = max
�
pA,M (n) : n ≤ x

2
A(x)

�
.

Inequality (5) implies that

pA,M (nx) ≤
�
M

�
x

2
A(x)

�
+ 1

�A(x2A(x))
. (6)

Moreover,

M(x)A(x)
<

�

n≤x2A(x)

pA,M (n) ≤
�
x

2
A(x) + 1

�
pA,M (nx) ≤ 2x3

pA,M (nx).

It follows that for all x ≥ x0(A) we have

pA,M (nx) >
M(x)A(x)

2x3
≥ M(x)c log x

2x3
.

Let k be a positive integer. Because the set M is infinite, there exists x1(A, k) ≥
x0(A) such that, for all x ≥ x1(A, k), we have

log M(x) >
log 2

c log x
+

3k + 3
c

and so
pA,M (nx) > x

3k ≥ n
k
x.

We shall iterate this process to construct inductively an infinite sequence of
pairwise distinct positive integers (nxi)

∞
i=1 such that

pA,M (nxi) > n
k
xi

(7)

for all i. Let r ≥ 1, and suppose that a finite sequence of pairwise distinct positive
integers (nxi)

r
i=1 has been constructed such that inequality (7) holds for i = 1, . . . , r.

Choose xr+1 so that

x
3k
r+1 >

�
M

�
x

2
i A(xi)

�
+ 1

�A(x2
i A(xi))

for all i = 1, . . . , r, and let nxr+1 be the integer constructed according to procedure
above. Applying inequality (6), we obtain

p (nxi) ≤
�
M

�
x

2
i A(xi)

�
+ 1

�A(x2
i A(xi))

and so
p

�
nxr+1

�
> x

3k
r+1 > p (nxi)

for i = 1, . . . , r. It follows that nxr+1 �= nxi for i = 1, . . . , r. This completes the
induction and the proof.
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Theorem 4. Let a be an integer, a ≥ 2, and let A = {ai}∞i=0. Let M be an infinite
set of positive integers such that M contains {1, 2, . . . , a − 1} and no element of
M is divisible by a. The partition function pA,M is weakly superpolynomial but not
superpolynomial.

Proof. The counting function for the set A = {ai}∞i=1 is A(x) = [log x/ log a] + 1 >

log x/ log a. By Theorem 3, the partition function pA,M is weakly superpolynomial.
By Theorem 2, the partition function pA,M is not superpolynomial. This completes
the proof.

4. Open Problems

1. We repeat the original problem of Canfield and Wilf: Do there exist infinite
sets A and B of positive integers such that pA,M (n) ≥ 1 for all sufficiently
large n and the partition function pA,M (N) has polynomial growth?

2. By Theorem 3, if the partition function pA,M has polynomial growth, then the
set A must have sub-logarithmic growth, that is, A(x)� log x is impossible.

(a) Let A = {k!}∞k=1. Does there exist an infinite set M of positive integers
such that pA,M (n) ≥ 1 for all sufficiently large n and pA,M has polynomial
growth?

(b) Let A =
�
kk

�∞
k=1

. Does there exist an infinite set M of positive integers
such that pA,M (n) ≥ 1 for all sufficiently large n and pA,M has polynomial
growth?

3. Let A be an infinite set of positive integers and let M = N. Bateman and
Erdős [1] proved that the partition function pA = pA,N is eventually strictly
increasing if and only if gcd(A \ {a}) = 1 for all a ∈ A. It would be inter-
esting to extend this result to partition functions with restricted multiplic-
ities: Determine a necessary and sufficient condition for infinite sets A and
M of positive integers to have the property that pA,M (n) < pA,M (n + 1) or
pA,M (n) ≤ pA,M (n + 1) for all sufficiently large n.
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