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Abstract

We consider those positive integers that are not representable as linear combinations of terms
of a generalized arithmetic progression with nonnegative integer coefficients. To do this, we
make use of the numerical semigroup generated by a generalized arithmetic progression. The
number of integers nonrepresentable by such a numerical semigroup is determined as well as
that of its dual. In addition, we find the number and the sum of those integers representable
by the dual of the semigroup that are not representable by the semigroup itself.

1. Introduction

Let a1, . . . , aν be relatively prime positive integers. It is natural to ask which integers are
representable as linear combinations of a1, . . . , aν with nonnegative integer coefficients. A

nonnegative integer x is said to be representable by a1, . . . , aν (or, if the context is clear,

representable) if there exist nonnegative integers x1, . . . , xν such that x = x1a1 + . . . + xνaν

and nonrepresentable otherwise. It is well known that all sufficiently large integers are

representable. Hence, it is natural to ask what is the value of the largest nonrepresentable
integer. This problem is known as the Frobenius problem as it is said to have been mentioned

by Frobenius in his lectures. In general, the Frobenius problem is very difficult [2], [3]. Of
course, there are other ways to learn about nonrepresentable integers. In [4], Brown and

Shiue suggest studying the sum of the nonrepresentable integers. A variation of these ideas
is considered by Tripathi in [15]. To introduce this, we must first set up some notation.

Let N0 denote the monoid of nonnegative integers under addition. A submonoid of N0 is
called a numerical semigroup. Given a1, . . . , aν as above, let S = 〈a1, . . . , aν〉 where

〈a1, . . . , aν〉 :=

{
ν∑

i=1

xiai : xi ∈ N0

}
.
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Then S is a submonoid of N0, called the numerical semigroup generated by a1, . . . , aν . The
integers a1, . . . , aν are called generators of S. Clearly, an integer x is representable by

a1, . . . , aν if and only if x ∈ S. For this reason, we say that x is representable by S if
x ∈ S and nonrepresentable by S otherwise. Given a numerical semigroup S, there exist

positive integers a1, . . . , aν such that S = 〈a1, . . . , aν〉 and ν ≤ a1. Let n(S) := |N0 \ S|
denote the number of integers nonrepresentable by S. The dual of a numerical semigroup

S is B(S) := {x ∈ N0 : x + S \ {0} ⊆ S}. One can check that B(S) is also a numerical

semigroup. The type of S is n∗(S) := |B(S)\S|. In [15], two new parameters are introduced:
g∗(S) := min {x : x ∈ B(S) \ S} and s∗(S) :=

∑
x∈B(S)\S x. For a general reference on

numerical semigroups, see [7], [6], or [1].

The number of integers nonrepresentable by a numerical semigroup S whose generators

are in arithmetic progression has been determined [14] as well as the parameters n∗(S),
g∗(S), and s∗(S) [15]. Numerical semigroups of this form were first studied in [11]. In

this work, we focus our attention on numerical semigroups S with generators that are in
a generalized arithmetic progression. A generalized arithmetic progression is a sequence of

the form a, ha + d, ha + 2d, . . . , ha + kd where a, d, h, k are positive integers. Numerical
semigroups generated by generalized arithmetic progressions have been studied in [8], [12],

[5], and [10]. In [9], the dual of such a semigroup is determined. Here, we use this to find
the number of integers nonrepresentable by the dual of the semigroup, the type of S, g∗(S),

and s∗(S). In addition, we modify the methods of [14] to find n(S), the number of integers
nonrepresentable by S.

Throughout this paper, S will denote the numerical semigroup

S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉 ,

where a, d, h, k are positive integers such that a and d are relatively prime, a ≥ 2, and

k ≤ a − 2. For our purposes, we may assume that k ≥ 2. Otherwise, S is a numerical
semigroup with two generators. For a numerical semigroup S with two generators, the

number of nonrepresentable integers has been determined [13] and the Frobenius problem
has been solved [2]. Brown and Shiue determined the sum of the integers nonrepresentable

by such S [4]. Using the fact that B(S) = S ∪ {g(S)} for a numerical semigroup S with two
generators, it is easy to see that n∗(S) = 1, g∗(S) = g(S) = s∗(S) where g(S) denotes the

largest integer nonrepresentable by S.

2. The number of nonrepresentable integers

In this section, we determine the number of integers nonrepresentable by a numerical semi-
group generated by a generalized arithmetic progression.

Given an integer r, 0 ≤ r ≤ a − 1, let

Cr = {x ∈ Z : x ≡ r mod a}
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denote the equivalence class of r mod a and let

mr = min {x ∈ S : x ∈ Cr}

denote the smallest element of the class Cr that is in S. To determine the number of integers

nonrepresentable by S, we first modify [14, Lemma 1] and [14, Lemma 2] to obtain the
following two results.

Lemma 2.1 The number of integers nonrepresentable by S is n(S) = 1
a

∑a−1
r=1 mr − a−1

2
.

Proof. Clearly, each nonrepresentable integer is in one of the classes Cr, 1 ≤ r ≤ a − 1, and

the number of nonrepresentable integers in the class Cr is
⌊

mr

a

⌋
. Hence,

n(S) =

a−1∑
r=1

⌊mr

a

⌋
=

a−1∑
r=1

mr − r

a
=

1

a

a−1∑
r=1

mr − a − 1

2
.

Proposition 2.2 For each integer y, 1 ≤ y ≤ a − 1, the smallest element of S in the class
Cdy is

mdy = ah

(⌊
y − 1

k

⌋
+ 1

)
+ dy.

Proof. Fix an integer y, 1 ≤ y ≤ a − 1. Write y = kq + r where 0 ≤ r ≤ k − 1. Note that
ah

(⌊
y−1
k

⌋
+ 1

)
+ dy ∈ {x ∈ N0 : x ≡ dy mod a, x ∈ S} as

ah

(⌊
y − 1

k

⌋
+ 1

)
+ dy = a (y0 + y1h + y2h + . . . + ykh) + d (y1 + 2y2 + . . . + kyk)

where yk = q, yr = 1, yi = 0 for all i 	= r, k if r 	= 0, and yk = q, yi = 0 for all i 	= k if

r = 0. Hence mdy ≤ ah
(⌊

y−1
k

⌋
+ 1

)
+ dy. Write mdy = a (x0 + x1h + x2h + . . . + xkh) +

d (x1 + 2x2 + . . . + kxk) for some xi ∈ N0. This implies that y ≡ x1 + 2x2 + . . . + kxk mod a

and so kq + r = y = x1 + 2x2 + . . . + kxk. ¿From the definition of mdy it follows that xi = yi

for all i, 0 ≤ i ≤ k. Therefore, mdy = ah
(⌊

y−1
k

⌋
+ 1

)
+ dy.

The next result is a generalization of [14, Theorem 1(ii)]. Let c :=
⌊

a−2
k

⌋
and t :=

a − 2 − ⌊
a−2
k

⌋
.

Theorem 2.3 The number of integers nonrepresentable by S is

n(S) =
h (c + 1) (a + t) + (d − 1) (a − 1)

2
.

Proof. First note that the nonzero equivalence classes mod a can be represented by dy,
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1 ≤ y ≤ a − 1. Then, according to Lemma 2.1 and Proposition 2.2,

n(S) = 1
a

∑a−1
y=1

(
ah

(⌊
y−1

k

⌋
+ 1

)
+ dy

) − a−1
2

= h
∑a−1

y=1

(⌊
y−1

k

⌋
+ 1

)
+ (d−1)(a−1)

2

= h
∑a−2

y=0

(⌊
y
k

⌋
+ 1

)
+ (d−1)(a−1)

2

= h
∑ck−1

y=0

(⌊
y
k

⌋
+ 1

)
+ h

∑a−2
y=ck

(⌊
y
k

⌋
+ 1

)
+ (d−1)(a−1)

2

= hk (
∑c

i=1 i) + h (t + 1) (c + 1) + (d−1)(a−1)
2

= h (c + 1)
(

1
2
kc + t + 1

)
+ (d−1)(a−1)

2

= h
2
(c + 1) (a + t) + (d−1)(a−1)

2
.

3. Integers representable by the dual

In this section, we consider those integers that are representable by the dual of a semigroup
generated by a generalized arithmetic progression but are not representable by the semigroup

itself. We will use the following two results concerning S and its dual B(S).

Lemma 3.1 [9, Proposition 2.5] The numerical semigroup S is

S =

{
la + jd : 0 ≤ l, 0 ≤ j ≤

⌊
l

h

⌋
k

}
.

Lemma 3.2 [9, Lemma 2.7] The dual of S is

B(S) = S ∪ {(ch + h − 1) a + jd : ck < j ≤ a − 1} .

This allows us to obtain a generalization of the main result of [15].

Theorem 3.3 The set of integers nonrepresentable by S that are representable by the dual
of S is

B(S) \ S = {(ch + h − 1) a + jd : ck < j ≤ a − 1} .

Proof. By Lemma 3.2, we only need to show that (ch + h − 1) a + jd /∈ S for all j, ck < j ≤
a − 1. Let α := (ch + h − 1) a + jd for some j, ck < j ≤ a − 1. Suppose α ∈ S. By Lemma

3.1, α = l′a + j′d for some 0 ≤ l′ and 0 ≤ j′ ≤ ⌊
l′
h

⌋
k. Then (j − j′) d = (l′ − (ch + h − 1)) a

which implies that a | j − j′ as (a, d) = 1. Since l′a + j′d ≤ (ch + h − 1) a + (a − 1) d, either

j′ ≤ a − 1 or l′ ≤ ch + h − 1. If j′ ≤ j, then 0 ≤ j − j′ ≤ j ≤ a − 1 implies j = j′

as a | j − j′. Hence, l′ = ch + h − 1. According to Lemma 3.1, this is a contradiction as

j′ = j > ck ≥ ⌊
ch+h−1

h

⌋
k =

⌊
l′
h

⌋
k. Thus, it must be the case that l′ ≤ ch + h− 1 and j′ > j.

Then 0 ≤ j′ − j ≤ j′ ≤ ⌊
ch+h−1

h

⌋
k ≤ ck ≤ a − 2 implies that j = j′ as a | j′ − j. As before,

this gives a contradiction. Therefore, α /∈ S.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A12 5

As a corollary, we find the number of integers nonrepresentable by the dual and also
generalize of the final result of [15].

Corollary 3.4 The number of integers nonrepresentable by the dual of S is

n(B(S)) =
h (c + 1) (a + t) + (d − 1) (a − 1)

2
− (a − 1 − ck) .

Moreover,

g∗(S) = (ch + h − 1) a + (ck + 1) d,
s∗(S) = (a − ck − 1) (ch + h − 1) a + d

2
(a (a − 1) − ck (ck + 1)) , and

n∗(S) = a − ck − 1.

Proof. By Theorem 2.3 and Theorem 3.3, we have that

n(B(S)) = n(S)− | B(S) \ S |= h (c + 1) (a + t) + (d − 1) (a − 1)

2
− (a − 1 − ck) .

¿From Theorem 3.3, it follows that

g∗(S) = min {(ch + h − 1) a + jd : ck < j ≤ a − 1} = (ch + h − 1) a + (ck + 1) d,

n∗(S) =| {j ∈ N : ck + 1 ≤ j ≤ a − 1} |= a − ck − 1,

and
s∗(S) =

∑a−1
j=ck+1 (ch + h − 1) a + jd

= (a − ck − 1) (ch + h − 1) a + d
2
(a (a − 1) − ck (ck + 1)) .
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