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Abstract

For a given positive integer k, sr(m, k) denotes the minimal positive integer such that every
coloring of [n], n ≥ sr(m, k), that uses each color at most k times, yields a rainbow AP (m);
that is, an m-term arithmetic progression, all of whose terms receive different colors. We
prove that sr(3, k) = 17

8 k + O(1) and, for m > 1 and k > 1, that sr(m, k) = Ω(m2k),
improving the previous bounds of Alon, Caro, and Tuza from 1989. Our new lower bound
on sr(m, 2) immediately implies that for n ≤ m2

2 , there exists a mapping φ : [n] → [n]
without a fixed point such that for every AP (m) A in [n], the set A ∩ φ(A) is not empty.
We also propose the study of sub-Ramsey–type problems for linear equations other than
x+ y = 2z. For a given positive integer k, we define ss(k) to be the minimal positive integer
n such that every coloring of [n], n ≥ ss(k), that uses each color at most k times, yields a
rainbow solution to the Schur equation x + y = z. We prove that ss(k) = %5k

2 &+ 1.

Key words: rainbow arithmetic progressions, sub-Ramsey problems, Schur triples
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1. Introduction

Let N denote the set of positive integers, and for i, j ∈ N, i ≤ j, let [i, j] denote the set
{i, i + 1, . . . , j} (with [n] abbreviating [1, n] as usual). A k-term arithmetic progression,
k ∈ N, is a set of the form {a + (i− 1) d : i ∈ [k]}, for some a, d ∈ N, and will be abbreviated
as AP (k) throughout. The classical result of van der Waerden [vW27, GRS90] states that
for all natural numbers m and k there is an integer n0 = n0(m, k), such that every k-coloring
of [n], n ≥ n0, contains a monochromatic AP (m). This statement was further generalized to
sets of positive upper density in the celebrated work of Szemerédi [Sz75]. Canonical versions
of van der Waerden’s theorem were discovered by Erdős and others [E87].

Given a coloring of N, a set S ⊆ N is called rainbow if all elements of S are colored
with different colors. In [JL+03], Jungić et al. considered a rainbow counterpart of van
der Waerden’s theorem, and proved that every 3-coloring of N with the upper density of
each color greater than 1/6 contains a rainbow AP (3). Improving on their methods and
some extensions [JR03], Axenovich and Fon-Der-Flaass [AF04] proved the following “finite”
version of this result.

Theorem 1 (Conjectured in [JL+03], proved in [AF04].) Given n ≥ 3, every partition of
[n] into three color classes R, G, and B with min(|R|, |G|, |B|) > r(n), where

r(n) :=

{
%(n + 2)/6& if n *≡ 2 (mod 6)
(n + 4)/6 if n ≡ 2 (mod 6)

(1)

contains a rainbow AP (3).

Theorem 1 is the best possible. It is interesting to note that similar statements about
the existence of rainbow AP (k) in k-colorings of [n], k ≥ 4, do not hold [AF04, CJR].

In lay terms, Axenovich and Fon-Der-Flaass showed that sufficiently large color classes
in a 3-coloring imply the existence of a rainbow AP (3). In this paper, we are interested in
conditions that guarantee the existence of rainbow patterns when color classes have small
cardinality. A notable distinction between these two approaches is that in the latter case
the number of colors can be greater than the number of elements in the particular pattern.

This setup was first studied by Alon, Caro and Tuza in [ACT89], where for a given k ∈ N,
they defined sub-k-colorings as colorings in which every color class has size at most k. For
given k, m ∈ N, they introduced the sub-k-Ramsey number sr(m, k) as the minimum integer
n0 = n0(m, k) such that every sub-k-coloring of [n], n ≥ n0, yields a rainbow AP (m). They
proved that for every m ≥ 3, k ≥ 2,

1

6

(k − 1)m(m− 1)

log (k − 1)m
− k + 1 ≤ sr(m, k) ≤ (1 + o(1))

24

13
(k − 1)(m− 1)2 log (k − 1)(m− 1),
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where the factor of 1 + o(1) approaches 1 as m →∞. Also, if m is fixed and k grows, they
proved that

sr(m, k) ≤ (1 + o(1))
1

2
m(m− 1)2(k − 1).

For k = 2, we improve on their lower bound by constructing a coloring that has already
been used in [JL+03] to prove a lower bound for a related problem concerning rainbow
arithmetic progressions in equinumerous colorings.

Theorem 2 For m ≥ 3, sr(m, 2) > %m2

2 &.

Motivated by [EH58] and [AC86], Caro [C87] proved that for every positive integer m,
there is a minimum integer n = n0(m) such that for every φ : [n] → [n] without a fixed
point, there is an AP (m) A satisfying: φ(i) *∈ A for i ∈ A. Moreover, he showed that
c1m2

log m ≤ n0(m) ≤ m2(log m)
c2 log m
log log m for some absolute constants c1 and c2. In [ACT89], Alon

et al. applied the same methods they had used to bound sr(m, k) to drastically improve the
earlier bounds on n0(m). They proved that for every m,

m(m− 1)

3 log m
+ O(1) ≤ sr(m, 3)− 1 ≤ n0(m) ≤ (1 + o(1))

48

13
m2 log m.

Since sr(m, k) is an increasing function in both m and k, then in particular, sr(m, 2) ≤
sr(m, 3). Therefore, Theorem 2 implies the following improvement on the lower bound for
n0(m) for all m:

Corollary 1 For all positive integers m, n0(m) ≥ %m2

2 &.

Furthermore, we prove the following theorem, which together with the fact that sr(3, k) =
Ω(k) and sr(m, 2) = Ω(m2) implies sr(m, k) = Ω(m2k) for all integers m and k with m > 2
and k > 1.2

Theorem 3 Let k ≥ 3 and m ≥ 46 be integers and set a = %k
3& and l = %m−1

9 &. Then
sr(m, k) > 3(l2 + l)a.

The exact determination of the asymptotic behavior of sr(m, k) appears to be difficult.
In the case of AP (3), i.e. for m = 3, the above mentioned upper bounds of Alon et al.
[ACT89] yield sr(3, k) ≤ (1 + o(1))6k. They provided a sharper estimate:

as k grows, 2k ≤ sr(3, k) ≤ (4.5 + o(1))k.

In what follows, we use sr(k) to denote the sub-k-Ramsey number sr(3, k). Using methods
developed in [JL+03, AF04], we determine sr(k) for k > 603.

2In the trivial cases, we have sr(1, k) = 1, sr(2, k) = k + 1, and sr(m, 1) = m.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A12 4

Theorem 4 For k ≥ 603, sr(k) is the the least positive integer n such that k < 8n+ε(n)
17

where ε(n) is defined by

n mod 17 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ε(n) 0 −8 1 10 2 11 3 −5 4 −4 5 −3 6 −2 7 −1 8

In particular,

sr(k) =
17

8
k + O(1) .

A set {x < y < z} of integers is an arithmetic progression of length three if and only
if x + z = 2y. Hence, one can define sub-Ramsey problems for other linear equations. A
classical candidate is the Schur equation x+y = z [S16]. Arguably, the first result in Ramsey
theory is due to Schur, who, in 1916, proved that for every k and sufficiently large n, every
k-coloring of [n] contains a monochromatic solution to the equation x + y = z. More than
seven decades later, building up on the previous work of Alekseev and Savchev, E. and G.
Szekeres (see [JL+03] and references therein), Schönheim [S90] proved the following rainbow
counterpart, which is clearly an analogue of Theorem 1.

Theorem 5 ([S90]) For every n ≥ 3, every partition of [n] into three color classes R, G,
and B with min(|R|, |G|, |B|) > n/4, contains a rainbow solution to the equation x + y = z.
The term n/4 cannot be improved.

For a given positive integer k, let ss(k) denote the minimal number such that every
coloring of [n], n ≥ ss(k), that uses each color at most k times, yields a rainbow solution to
the equation x + y = z. We prove the following theorem.

Theorem 6 For all positive integers k, ss(k) = %5k
2 &+ 1.

The paper is organized as follows. In Section 2, we construct a coloring that settles
Theorem 2 and hence Corollary 1. In Section 3, we constructively prove Theorem 3. In
Section 4, we use Theorem 1 and prove a somewhat surprising claim that, in order to
prove good bounds on sr(k), it suffices to only consider sub-k-colorings with three colors.
Furthermore, we relate our problem to the problem of finding good bounds on σ(n), the
minimum integer k such that there is a sub-k-coloring of [n] with three colors and no rainbow
AP (3). In Section 5, we provide lower and upper bounds on σ(n), which in turn imply
Theorem 4. In Section 6, we prove lemmata that together imply Theorem 6. In Section 7,
we propose new sub-Ramsey–type problems, while surveying the current state of rainbow
Ramsey theory.
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2. Proof of Theorem 2

We construct a coloring c of [%m2

2 &] that uses each color exactly twice and prove that it does
not contain a rainbow AP (m). Define a j-block Bj (j ∈ N) to be the sequence 12 . . . j12 . . . j,
where the left half and the right half of the block are naturally defined. For a ∈ Z, let Bj +a
be the sequence (a + 1)(a + 2) . . . (a + j)(a + 1)(a + 2) . . . (a + j). Define B−

j = Bj −
(

j+1
2

)

and B+
i = Bi +

(
i
2

)
. If m = 2l + 1 is odd, define the coloring c of [2l2 + 2l] in the following

way (bars denote endpoints of the blocks):

|B−
l | . . . |B

−
j | . . . |B−

2 ||B−
1 ||B+

1 ||B+
2 | . . . |B+

i | . . . |B+
l |.

If m = 2l is even, define the coloring c of [2l2] in the following way (bars denote endpoints
of the blocks):

|B−
l−1| . . . |B

−
j | . . . |B−

2 ||B−
1 ||B+

1 ||B+
2 | . . . |B+

i | . . . |B+
l |.

We only show the proof of Theorem 2 in the case when m is odd (since the case when m is
even is essentially the same). Note that the coloring c uses each of the l2 + l colors exactly
twice (the colors are integers from the interval [1 −

(
l+1
2

)
,
(

l+1
2

)
]). Now, we show that the

coloring c of [2l2 +2l] contains no rainbow AP (2l+1). The key observation is that a rainbow
AP with length greater than l and difference d cannot contain elements from opposite halves
of any block B−

j (or B+
j ) where d is a factor of j. Fix a longest rainbow AP A and let d

denote its difference. If d = 1, then the length of A is ≤ l. If d > l, then the length of A is
≤ 2l. If 1 < d ≤ l, then A is one of the following three types:
(1) A is contained in |B−

d | . . . |B
−
j | . . . |B−

2 ||B−
1 ||B+

1 ||B+
2 | . . . |B+

i | . . . |B+
d |. Then A intersects

neither the left half of B−
d nor the right half of B+

d . Therefore, the length of A is at most
1 + 2d2−1

d < 2d + 1 ≤ 2l + 1.
(2) A is contained in |B−

(j+1)d||B
−
(j+1)d−1| . . . |B

−
jd| or in |B+

jd||B
+
jd+1| . . . |B

+
(j+1)d|, where (j +

1)d ≤ l. Assume the first case occurs (both cases are handled the same way). Then A
intersects neither the left half of B−

(j+1)d nor the right half of B−
jd. Therefore, the length of

A is at most

1 +
(2j + 1)d2 − 1

d
< (2j + 1)d + 1 ≤ 2l + 1.

(3)A is contained in |B−
l ||B

−
l−1| . . . |B

−
jd+1||B

−
jd| or in |B+

jd||B
+
jd+1| . . . |B

+
l−1||B

+
l |, where l−jd <

d. We note that 1 < d ≤ jd ≤ l. Assume the first case occurs (both cases are handled the
same way). Then A does not intersect the right half of B−

jd. Therefore, since jd ≥ l− d + 1,
the length of A is at most

1 +
1

d
(l(l + 1)− j2d2 − 1) ≤ 1 +

2ld− l − d2 + 2d− 2

d
= 2l + 1− l + d2 − 2d + 2

d

< 2l + 1− d2 − d

d
= 2l + 1− (d− 1) ≤ 2l .
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3. Proof of Theorem 3

We construct a coloring c of [3a(l2 + l)] that uses each color exactly 3a times and prove that
it does not contain a rainbow AP (9l + 1). As we did in the proof for the case k = 2, we
construct a block coloring where each color appears in only one block.

For each j, let Cj denote the sequence of aj terms such that the ith term equals - i
a..

Notice that Cj consists of j constant strings of length a. For j ∈ N, let Bj be the sequence
of 3aj terms that consists of 3 copies of Cj. The beginning third, middle third, and last third
of Bj, which are all copies of Cj, are naturally defined. Notice that in the sequence Bj, there
are exactly 3a terms equal to i for each i ∈ [1, j].

For j ∈ N and n ∈ Z, we define a block Bj + n as the sequence obtained by adding n to
each term of Bj. Define the block sequences B−

j = Bj −
(

j+1
2

)
and B+

j = Bj +
(

j
2

)
. Finally,

define the coloring c of [3a(l2 + l)] in the following way (bars denote endpoints of the blocks):

|B−
l | . . . |B

−
j | . . . |B−

2 ||B−
1 ||B+

1 ||B+
2 | . . . |B+

i | . . . |B+
l |.

Note that each color appears in one block only. Since each color is used exactly 3a times,
then c is a sub-k-coloring. Now, we show that the coloring c contains no rainbow AP (9l+1).

Let A = {x + id| i ∈ [0, s− 1]} be a maximal rainbow progression, i.e., if x− d or x + sd
belong to [3a(l2 + l)] then they are colored by one of the colors used to color A.

We say that A goes through block B+
j (or B−

j ), j ∈ [l − 1], if there are p, r ∈ [0, s − 1]
with the property that {x + id| i ∈ [p, r]} ⊆ B+

j and {x + (p− 1)d, x + (r + 1)d} ∩B+
j = ∅.

The key observation is that A cannot go through any block B−
j or B+

j if d ≤ ja and
a multiple of d belongs to the interval [(j − 1

2)a, (j + 1
2)a]. Suppose the opposite, let t ∈

[(j − 1
2)a, (j + 1

2)a] be a multiple of d and let A go through B+
j or B−

j . Without loss of
generality, A goes through B+

j . Since d ≤ ja, then there is a term x + id of A that is in the
middle third of the block B+

j , and then either x + id − t or x + id + t is the same color as
x + id, which contradicts the fact that A is rainbow.

If d ≤ a, then by the key observation A cannot go through any block and therefore must
lie in two consecutive blocks. Since any two consecutive blocks contain less than 2l colors,
then the length of A is less than 2l.

If d > a, then by the key observation, the rainbow AP A with difference d does not go
through any block B+

j or B−
j with j = -de

a −
1
2. and e an integer satisfying e > 1. So either

A is contained in -d
a.+ 1 consecutive blocks or lies in

|B−
b | . . . |B−

2 ||B−
1 ||B+

1 ||B+
2 | . . . |B+

b |,
where b = min(l, -2d

a −
1
2.). In the former case, the length of A is less than 1+(-d

a.+1)3la
d <

9l+1. In the latter case, the length ofA is less than 1+ 2
∑b

i=1 3ia
d = 1+ 3b(b+1)a

d < 1+ 15
2 (l+1) ≤

9l + 1 since ab < 5d
2 , b + 1 ≤ l + 1, and l ≥ 5 (in view of m ≥ 46).
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4. Proof of Theorem 4: A Reduction to 3-colorings

As we mentioned in the introduction, the number of colors in a sub-k-coloring can be greater
than three. In the following lemma we show that it is enough to consider only sub-k-colorings
with three colors.

Lemma 1 Let n, k, r ∈ N be such that n ≥ 21, k ≤ n
2 −

13
6 , and r ≥ 3. For every sub-k-

coloring c of [n] with r colors and no rainbow AP (3) there exists a sub-k-coloring c of [n]
with three colors and no rainbow AP (3), such that for all i, j ∈ [n]

c(i) = c(j) ⇒ c(i) = c(j).

Proof. Let C1, C2, . . . , Cr be the color classes of a sub-k-coloring c of [n] with k ≤ n
2 −

13
6

and r ≥ 3. Suppose that c contains no rainbow AP (3). Without loss of generality, assume
that |C1| ≥ |C2| ≥ . . . ≥ |Cr|. Then Theorem 1 implies that |C3| ≤ n+4

6 . Indeed, otherwise
|C1| ≥ |C2| > n+4

6 and |∪r
i=3Ci| > n+4

6 imply that there is an AP (3) with terms from C1, C2,
and Ci for some i ∈ [3, r].

Suppose |C2| ≤ n+4
6 . Let s = min

{
j :

∣∣∪j
i=1Ci

∣∣ > n+4
6

}
. If s = 1, then |∪s

i=1Ci| = |C1| ≤
k ≤ n

2 −
13
6 , and if s > 1, then |∪s

i=1Ci| =
∣∣∪s−1

i=1Ci

∣∣ + |Cs| ≤ n+4
6 + n+4

6 = n+4
3 . In either case,

we have |∪s
i=1Ci| ≤ n

2 −
13
6 . Let t = min

{
j :

∣∣∪j
i=s+1Ci

∣∣ > n+4
6

}
. Since t ≥ 2 and |C2| ≤ n+4

6 ,
we have

∣∣∪t
i=s+1Ci

∣∣ ≤ n+4
3 . It follows that |[n]\ ∪t

i=1 Ci| ≥ n− n
2 + 13

6 −
n+4

3 = n+5
6 . Therefore,

by Theorem 1, the 3-coloring with color classes ∪s
i=1Ci, ∪t

i=s+1Ci, and [n]\ (∪t
i=1Ci) yields a

rainbow AP (3), that clearly implies the existence of a rainbow AP (3) in the original coloring
c. This contradicts our assumptions.

Since k ≥ |C1| ≥ |C2| > n+4
6 it follows that |∪r

i=3Ci| ≤ n+4
6 , else Theorem 1 implies there

is a rainbow AP (3), a contradiction. Then, we define c of [n] to be the 3-coloring given by
color classes C1, C2, and ∪r

i=3Ci. Clearly, c is a sub-k-coloring with no rainbow AP (3), as
required. !

For n ∈ N, we define σ(n) as the minimum positive integer k such that there is a sub-k-
coloring of [n] with three colors and no rainbow AP (3).

We will prove in Proposition 2 that

σ(n) =
8n + ε(n)

17
≤ n

2
− 13

6

for n ≥ 1280, where ε(n) is as defined in the statement of Theorem 4.

Note k < σ(sr(k)) holds trivially, while Lemma 1 implies sr(k) is the minimal such
integer, provided k ≤ sr(k)−1

2 − 13
6 and sr(k) − 1 ≥ 21. However, if sr(k) ≥ 1280, then

k +1 ≤ σ(sr(k)) ≤ sr(k)
2 − 13

6 follows from Proposition 2, whence both these conditions hold.
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Finally, if sr(k) < 1280, then k < σ(1280). Therefore, it follows from Proposition 2 that for
k ≥ σ(1280) = 8·1280+11

17 = 603, we have that sr(k) is the least positive integer n such that
k < σ(n). Hence, Theorem 4 follows from Proposition 2.

5. Proof of Theorem 4: Bounds on σ(n)

For a given 3-coloring c : [a, b] → {R,B,G} let R, B, and G denote sets of elements of [a, b]
colored with R, B, and G, respectively. First, we determine an upper bound for σ(n).

Proposition 1 For all n ∈ N, σ(n) ≤ 8n+ε(n)
17 ≤ 8n+11

17 where ε(n) is as defined in the
statement of Theorem 4.

Proof. We define a 3-coloring c : N → {R,G,B} by

c(n) =






G if n ≡ 0 (mod 17)
R if n ≡ 1, 2, 4, 8, 9, 13, 15, 16 (mod 17)
B if n ≡ 3, 5, 6, 7, 10, 11, 12, 14 (mod 17).

The coloring c is periodic with a period 17. We claim that c contains no rainbow AP (3).
Otherwise, let {i, j, k} be an AP (3) with i + k = 2j. If c(j) = G, then i + k ≡ 0 (mod 17),
which implies c(i) = c(k). If c(i) = G, then 2j ≡ k (mod 17). It is not difficult to check
that in this case c(j) = c(2j) = c(k).

It is easily noted what interval of length x, where 0 ≤ x < 17 and x ≡ n (mod 17),
minimizes the maximum number of integers colored by R or B. In fact, in all but the case
x = 3 and x = 5, the estimate given by the pigeonhole principle is attainable. Calling this
minimum y(x), it follows that σ(n) ≤ 8(n−x)

17 + y(x), and the bound in terms of ε(n) follows
by computing y(x). !

Next, we prove a lower bound for σ(n). We will do so through a sequence of lemmas.
We start with some definitions from [JL+03, JR03]. Given a 3-coloring c of [n] with colors
R(ed), B(lue), and G(reen), we say that X ∈ {R,B,G} is a dominant color if for every two
consecutive elements of [n] that are colored with different colors, one of them is colored with
X. We say that Y ∈ {R,B,G} is a recessive color if there are no two consecutive elements
of [n] colored with Y .

Lemma 2 ([JR03]) In every 3-coloring c : [n] → {R,B,G} with no rainbow AP (3), one of
the colors must be dominant and another color must be recessive.
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Without loss of generality, let R be a dominant color and let G be a recessive color.
The set g1 < g2 < . . . < gs of all elements of [n] colored by G divide [n] naturally into
subsegments, called blocks, of the form Ii = [gi, gi+1 − 1], for 1 ≤ i ≤ s− 1, Is = [gs, n], and,
if g1 *= 1, I0 = [1, g1− 1]. Clearly, each block Ii, 1 ≤ i ≤ s, contains a single element colored
by G.

Our goal is to show the following.

Proposition 2 If n ≥ 1280, then σ(n) = 8n+ε(n)
17 .

If B is a recessive color, then, since R is dominant and G is recessive, in every pair of
consecutive integers in [n], at least one of them is color R. This implies that |R| ≥ %n

2 & ≥
8n+11

17 for n ≥ 39. Therefore, in the rest of the proof of Proposition 2, we can assume that B
is not a recessive color.

We note that, in this setting, R, a dominant color, cannot be recessive. Otherwise, since
all three colors are used, there will be a rainbow AP (3) with difference 1.

Next, we prove that G, the unique recessive color, is sparse.

Lemma 3 gi+1 − gi > 3 for 1 ≤ i ≤ s− 1.

Proof. Suppose there exists i ∈ [s− 1] such that gi+1 = gi + 2. Note that the fact that G is
recessive and R is dominant implies c(gi+1) = R. Since B is not recessive there exists j ∈ [n]
such that c(j) = c(j + 1) = B. Fix j so that there is no other occurrence of consecutive
elements colored with B between j +1 and gi, if j +1 < gi; or between gi+1 and j if j > gi+1.

If gi ≡ j (mod 2), then the following AP (3)s: {gi,
gi+j

2 , j}, {gi+1, gi+j
2 +1, j+1}, and {gi+

2, gi+j
2 + 1, j} are not rainbow, so c

(
gi+j

2

)
∈ {G,B} and c

(
gi+j

2 + 1
)

= B. This contradicts
either our choice of j or our assumption that R is the dominant color. If gi *≡ j (mod 2),
then the following AP (3)s: {gi,

gi+j+1
2 , j + 1}, {gi + 1, gi+1+j

2 , j}, and {gi + 2, gi+j+3
2 , j + 1}

are not rainbow, so we have that c
(

gi+j+1
2

)
= B and c

(
gi+j+3

2

)
∈ {G,B}, which, as above,

contradicts our assumptions.

Therefore, gi+1 − gi > 2 for all i.

Now, suppose there is i ∈ [s − 1] such that gi+1 = gi + 3. Since R is dominant and c
has no rainbow AP (3), we have c(gi + 1) = c(gi + 2) = R. As above, we choose j with
c(j) = c(j + 1) = B, that is the closest to either gi from the left or gi+1 from the right.

If gi ≡ j (mod 2), then the following AP (3)s: {gi,
gi+j

2 , j}, {gi + 1, gi+j
2 + 1, j + 1}, and

{gi+3, gi+j
2 +2, j+1} cannot be rainbow, so we have c

(
gi+j

2

)
∈ {G,B}, c

(
gi+j

2 + 2
)
∈ {G,B},
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and c
(

gi+j
2 + 1

)
= R.3 Since there are no two elements colored with G that are one place

apart and since c has no rainbow AP(3), we have that c
(

gi+j
2

)
=

(
gi+j

2 + 2
)

= B.

If gi ≡ gi+j
2 (mod 2), then from the fact that

{
gi,

gi+(gi+j)/2
2 + 1, gi+j

2 + 2
}

and {gi + 2,

gi+(gi+j)/2
2 + 1, gi+j

2

}
are not rainbow, it follows that c

(
gi+(gi+j)/2

2 + 1
)

= B. At the same

time, since
{
gi,

gi+(gi+j)/2
2 , gi+j

2

}
is not rainbow, then c

(
gi+(gi+j)/2

2

)
∈ {G,B}. However,

{
c

(
gi + (gi + j)/2

2

)
, c

(
gi + (gi + j)/2

2
+ 1

)}
⊆ {G,B}

contradicts our choice of j or our assumption that R is the dominant color.

If gi *≡ gi+j
2 (mod 2), then the fact that the following AP (3)s:

{
gi + 3, gi+(gi+j)/2+1

2 + 1,

gi+j
2

}
and

{
gi + 3, gi+(gi+j)/2+1

2 + 2, gi+j
2 + 2

}
are not rainbow implies that

{
c

(
gi + (gi + j)/2 + 1

2
+ 1

)
, c

(
gi + (gi + j)/2 + 1

2
+ 2

)}
⊆ {G,B},

which is a contradiction as above.

If gi *≡ j (mod 2), then the AP(3)s: {gi,
gi+j+1

2 , j + 1}, {gi + 1, gi+1+j
2 , j}, and {gi +

3, gi+j+1
2 + 1, j} are not rainbow, so we have c

(
gi+j+1

2

)
= B and c

(
gi+j+1

2 + 1
)
∈ {G,B},

which again contradicts our assumptions.

Therefore, gi+1 − gi > 3 for all i. !

Now, we have the following corollaries.

Corollary 2 If {c(k), c(k + 2)} ⊆ {B,G} for some k ∈ [n− 2], then c(k) = c(k + 2) = B.

Corollary 3 Each block Ii, 1 ≤ i ≤ s− 1, is of length of at least four.

Note that Corollary 2 immediately implies the following property of c, which will be
repeatedly used throughout the proof.

Corollary 4 Every element colored with G is always followed and preceded by the string RR
in c.

In the rest of the proof of Proposition 2, we discuss two cases.

3Here, we have also used the definition of j.
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Case 1. Each block Ij, 1 ≤ j ≤ s− 1, contains two consecutive elements colored with B.

We first observe that if Ij contains two consecutive elements colored with B then its size
must be greater than 10. This easily follows from Corollary 4 and the fact that the coloring
is rainbow AP (3) free.

If gj + 3 is blue then the initial part of Ij must be GRRBR B R, where denotes an
unknown color. If gj + 3 is red then the initial part of Ij must be GRRRR R R. Because of
the symmetry, the final part of Ij must either be R B RBRR(G) or R R RRRR(G), where
(G) represents gj+1. If the size of Ij is less than 17 then the initial and final parts of the
block, as they are shown above, must overlap. This leads to only two possibilities for Ij

(if |Ij| ≤ 20): either Ij is of size 15 and looks like GRRBRBBRRBBRBRR(G) or it is of
size 17 and looks like GRRBRBBBRRBBBRBRR(G). Both of these blocks have a very
special “self-propagating” property that we use to determine R, B, and G.

We describe this property with the following statement for the first mentioned block (the
other case being almost identical and left to the reader).

Lemma 4 If c : [15l + r] → {B,G,R}, l ≥ 1 and 1 ≤ r ≤ 15, is a coloring without rainbow
AP(3), with G recessive and R dominant, and such that the first 16 numbers are colored as
GRRBRBBRRBBRBRRG, then for any i ∈ [l] and any j ∈ [2, 15] with 15i + j ≤ 15l + r,
we have c(15i + j) = c(j).

Proof. Our proof is by induction on l. First, we establish the base case l = 1. Since
c(16) = G, it follows from Corollary 4 that c(17) = c(18) = R. The AP (3)s {13, 16, 19} and
{11, 15, 19} force c(19) = B, which in turn implies c(20) = R, due to AP (3)s {18, 19, 20}
and {16, 18, 20} not being rainbow. Now, the AP (3)s {19, 20, 21} and {11, 16, 21} are not
rainbow, so c(21) = B; while the AP (3)s {20, 21, 22} and {16, 19, 22} force c(22) = B. Since
neither {1, 12, 23} nor {15, 19, 23} is rainbow, then c(23) = R. Continuing in this fashion,
{22, 23, 24} and {16, 20, 24} force c(24) = R; while the fact that {21, 23, 25} and {1, 13, 25}
are not rainbow implies c(25) = B. Since neither {24, 25, 26} nor {16, 21, 26} is rainbow,
then c(26) = B. Further, c(27) = R, due to AP (3)s {23, 25, 27} and {1, 14, 27} not being
rainbow. Next, the AP (3)s {26, 27, 28} and {16, 22, 28} force c(28) = B, which in turn
implies c(29) = R, because of the AP (3)s {27, 28, 29} and {1, 15, 29}. Finally, the AP (3)s
{28, 29, 30} and {16, 23, 30} force c(30) = R; hence, for all j ∈ [2, 15], c(15 + j) = c(j), and
Lemma 4 is true for l = 1.

Now suppose that the claim is true for some l ≥ 1 and consider a coloring c : [15(l +
1) + r] → {B,G,R} with the properties listed in Lemma 4. By induction hypothesis, for all
i ∈ [l] and j ∈ [2, 15], c(15i + j) = c(j).

For j ∈ [2, r], depending on the parity of (l+1)+ j, either {1, 15(l+1)+j+1
2 , 15(l+1)+ j} or

{16, 15(l+1)+j+16
2 , 15(l + 1) + j} is an AP (3). Since c is a coloring without rainbow AP (3), it

follows that c(15(l+1)+j) = G or c(15(l+1)+j) = c(j). However, assuming c(15(l+1)+j′) =
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c(j′) for 2 ≤ j′ < j, then the observations concerning the structure of the initial part of a
block, as given after the start of Case 1, show that c(15(l + 1) + j) *= G. !

Now, back to the settings of Case 1; suppose that there is a block Ij of length 15. Going
in both directions from that block, from Lemma 4, we see that the coloring of [n] is almost
completely determined, repeating the same 14-term sequence of Bs and Rs as described in
Lemma 4. Let r1 ∈ [0, 14] be such that there is an element s with c(s) = G and s ≡ r1 + 1
(mod 15). Let n = r1 +15l + r2, where l and r2 are positive integers with r2 ≤ 15. Since the
14-term sequence contains 8 Rs and 6 Bs, and at least half of the first r1 elements and the
last r2 − 1 elements are colored by R, we have

max{R,B} ≥ 8l +
r1 + r2 − 1

2
=

8n

15
− r1 + r2

30
− 1

2
≥ 8n

15
− 43

30
≥ 8n + 11

17

for n ≥ 34. Moreover, since |Ij| ≥ 15 for all 1 ≤ j ≤ s− 1, we have s = |G| < n/15 + 1.

Since the block GRRBRBBBRRBBBRBRR(G) is self-propagating (in the way de-
scribed in Lemma 4 for the block GRRBRBBRRBBRBRR(G)), we get that if a coloring
contains a block of length 17 then

max{R,B} ≥ 8n + ε(n)

17

where ε(n) is as defined before Proposition 1.

Finally, if each block Ij is of length greater than 20 for all 1 ≤ j ≤ s − 1, we have
s = |G| < n

21 + 1 and

max{|R|, |B|} >
n− n

21 − 1

2
=

10n

21
− 1

2
≥ 8n + 11

17

for n ≥ 205.

Case 2. There is a block with no two consecutive numbers colored with the non-recessive
color B.

Suppose Ij, 0 ≤ j ≤ s, is the first block that contains two consecutive elements colored
with B. Let m ∈ Ij denote the smallest number k in Ij such that c(k) = c(k+1) = B. Next,
we show that there cannot be three elements colored with G both before and after m.

Lemma 5 If m > g3, then m > gs−2.

Proof. Suppose this is not true and let g3 < m < gs−2. Then, there are u, v, x, and y such
that gu < gv < m < gx < gy, gu ≡ gv (mod 2), and gx ≡ gy (mod 2).

If 2m− gv + 2 ≤ n, then {gv,m, 2m− gv} and {gv,m + 1, 2m− gv + 2} are AP (3)s that
are not rainbow, and we have {c(2m− gv), c(2m− gv + 2)} ⊆ {G,B}. From Corollary 2 it
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follows that c(2m − gv) = c(2m − gv + 2) = B. Since {gu, (2m − gv + gu)/2, 2m − gv} and
{gu, (2m − gv + gu + 2)/2, 2m − gv + 2} are AP (3)s that are not rainbow, it follows that
c((2m− gv + gu)/2) = c((2m− gv + gu)/2 + 1) = B. However, since gu < gv, we have that
(2m− gv + gu)/2 < m, which contradicts our choice of m. Therefore, 2m− gv + 2 > n.

If 2m− gy ≥ 1, then both 2m− gy and 2m− gy + 2 must be blue, whence 2m−gy+gx

2 < m

and 2m−gy+gx

2 + 1 must also both be blue (by the same arguments as used in the first part of
the proof), which will contradict the minimality of m. Otherwise, 2m ≤ gy, which combined
with 2m− gv ≥ n− 1, implies n + 1 ≤ n− 1 + gv ≤ gy ≤ n, a contradiction. !

Case 2 naturally breaks into two subcases: (1) m > g3, and (2) m < g3.

First we deal with (1).

Let gv be as defined in the proof of Lemma 5. The following lemma shows that B,
although a non-recessive color, is sparse after m.

Lemma 6 For every k ∈ [n− 3], {c(k), c(k + 1), c(k + 2), c(k + 3)} ∩ {R} *= ∅.

Proof. Suppose there exists k ∈ [n− 3] such that c(k) = c(k +1) = c(k +2) = c(k +3) = B.

Let k′ ∈ {k, k + 1} be such that gv ≡ k′ (mod 2). Then c
(

gv+k′

2

)
= c

(
gv+k′

2 + 1
)

= B.

From the proof of Lemma 5, we have 2m− gv + 2 > n. From k′ ≤ n− 3 < 2m− gv + 2− 3,
it follows that gv+k′

2 < m, which contradicts our choice of m.

We note that if G ∈ {c(k), c(k +1), c(k +2), c(k +3)}, then since all occurrences of G are
preceded and followed by a string RR, it follows that {c(k), c(k+1), c(k+2), c(k+3)}∩{R} *=
∅. !

In order to prove the lower bound on σ(n), claimed in Proposition 2, we need to dig
deeper into the structure of the coloring c.

Lemma 7 m ≥ 2gj − 1.

Proof. Suppose m < 2gj−1. Then, 2gj−m, 2gj−m−1 ∈ [m], and {c(2gj−m), c(2gj−m−
1)} ⊆ {B,G}. Since R is dominant and G is recessive, we have c(2gj−m) = c(2gj−m−1) =
B, which is impossible because of our choice of m. !

Lemma 8 |{k ∈ [gj + 1, 2gj − 1] : c(k) = R}| ≥ |{k ∈ [gj − 1] : c(k) = R}|.

Proof. For every k ∈ [gj − 1] with c(k) = R, the element 2gj − k of [gj + 1, 2gj − 1] is
colored with R, since the AP (3) {k, gj, 2gj − k} is not rainbow, and [gj + 1, 2gj − 1] ⊂ Ij by
Lemma 7. !
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Since R is dominant and G is recessive and since there are no consecutive blue integers in
[2gj − 1,m− 1] and since none of these integers is colored green (except possibly the integer
1 in the case 2gj − 1 = gj = 1), we obtain |{k ∈ [2gj − 1,m − 1] : c(k) = R}| ≥ m−2gj+1

2 .
Furthermore, from Lemma 6, since both m and m + 1 are colored B, it follows that |{k ∈
[m + 2, n] : c(k) = R}| ≥ n−(m+2)

4 .

If c(2gj − 1) *= R, using Lemma 8, we get:

|R| ≥ 2|{k ∈ [gj − 1] : c(k) = R}|+ m− 2gj + 1

2
+

n−m− 2

4
,

which by Lemma 7 becomes:

|R| ≥ 2|{k ∈ [gj − 1] : c(k) = R}|+ n

4
− gj

2
− 1

4
.

If c(2gj − 1) = R then the bound from Lemma 7 becomes strict and we consider the
intervals [1, 2gj − 1], [2gj,m− 1], and [m + 2, n] to get

|R| ≥ 2|{k ∈ [gj − 1] : c(k) = R}|+ m− 2gj

2
+

n−m− 2

4
,

which by the improved bound from Lemma 7 becomes:

|R| ≥ 2|{k ∈ [gj − 1] : c(k) = R}|+ n

4
− gj

2
− 1

2
.

By Corollary 3, each block Ii, 1 ≤ i ≤ j − 1, has length at least four. Moreover, each
block starts and ends with the string GRR or RR respectively, as observed in Corollary 4.
Now, the definition of m implies

|{k ∈ Ii : c(k) = R}| ≥ |Ii|
2

+ 1,

for all i ∈ [j − 1], where |Ii| denotes the length of the block Ii. Similarly, since m > g3,
|{k ∈ I0 : c(k) = R}| ≥ |I0|

2 . Summing up these inequalities, we get

|{k ∈ [gj − 1] : c(k) = R}| =
j−1∑

i=0

|{k ∈ Ii : c(k) = R}| ≥ gj − 1

2
+ (j − 1),

since
∑j−1

i=0 |Ii| = gj − 1. Therefore,

|R| ≥ n

4
+

gj

2
+ 2j − 7

2
.

Since each block Ii, 1 ≤ i ≤ j − 1, has length at least four, we have gj ≥ 4j − 3. Thus,
|R| ≥ n

4 + 4j − 5. By Lemma 5, we have j ≥ s− 2 and |R| ≥ n
4 + 4s− 13. Hence,

max{|R|, |B|} ≥ |R| ≥ n

4
+ 4|G|− 13 ≥ n

4
+ 4(n− 2 max{|R|, |B|})− 13.
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It follows from here that

max{|R|, |B|} ≥ 17n

36
− 13

9
≥ 8n + 11

17

for n ≥ 1280. Finally, we deal with the remaining subcase (2).

Let m < g3. Let t = max{k : c(k) = c(k + 1) = B}. If t < gs−2, then we apply the
argument for the previous subcase to the coloring c : [n] → {R,B,G} defined by c(i) =
c(n+1− i). Let r ∈ [s−2, s] be the greatest integer with the property that t ≥ gr. We need
the following lemma.

Lemma 9 Suppose c(u) = c(u + 1) = B, c(v) = c(x) = G, and c(y) = c(y + 1) = B, where
u < v < x < y are integers in [n]. Then, there are two consecutive elements in [v + 1, x− 1]
colored with B.

Proof. Let u′ = max{k < v : c(k) = c(k + 1) = B}, and y′ = min{k > x : c(k) = c(k + 1) =
B}. Note that u′ ≥ u and y′ ≤ y. Without loss of generality, we can assume that v−u′−1 ≤
y′ − x. Clearly, arithmetic progressions {u′, v, 2v − u′} and {u′ + 1, v, 2v − u′ − 1} are not
rainbow which implies, by Corollary 2, c(2v−u′−1) = c(2v−u′) = B. If 2v−u′ < x, we have
completed the proof. Otherwise, we have 2v−u′ = (v−u′− 1)+ (v +1) ≤ (y′−x)+x = y′,
which contradicts our definition of y′. !

Thus, given two blocks, both with pairs of consecutive numbers colored with B, there is
a block between them with a pair of consecutive numbers colored with B. This immediately
implies that each of the blocks Ij, Ij+1, . . . , Ir contains a pair of consecutive numbers colored
with B. Based on Case 1, we conclude that each of these blocks has length at least 21. From
|G| ≤ 1 + (r − j + 1) + 2 ≤ 3 + n

21 , we get

max{|R|, |B|} ≥
n− n

21 − 3

2
=

10n

21
− 3

2
≥ 8n + 11

17

for n ≥ 384.

Therefore for n ≥ 1280, σ(n) ≥ 8n+ε(n)
17 , which with Proposition 1 completes the proof of

Proposition 2.

6. Proof of Theorem 6

We call a coloring of [n] rainbow Schur-free if it does not contain any rainbow solutions to
equation x + y = z. In order to show the lower bound ss(k) > %5k

2 &, we define the coloring
c : [n] → {R,B,G} as follows:
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c(i) :=






R if i ≡ 1 or 4 (mod 5)
B if i ≡ 2 or 3 (mod 5)
G if i ≡ 0 (mod 5)

Clearly, c is rainbow Schur-free and each color class has at most -2n
5 . elements.

Now, let c denote an arbitrary rainbow Schur-free coloring of [n]. In the rest of the
section, we establish properties of c that imply that one of the color classes has size at least
2n
5 . The tight upper bound ss(k) ≤ %5k

2 & + 1 immediately follows. Recall that in a coloring
of [n], a color X is called dominant if for every two consecutive integers with different colors,
one of them is colored with X. Note that in every coloring that uses at least three colors,
there is at most one dominant color. Also, recall that a color Y is called recessive if no two
consecutive elements of [n] receive color Y .

By the pigeonhole principle, we may assume that c uses at least three colors; so there is
at most one dominant color. In fact, it is easy to conclude that color R := c(1) is the unique
dominant color. Indeed, if c(1) is not dominant, then there exist integers i and i + 1 such
that the colors c(1), c(i), and c(i + 1) are all different. However, the set {1, i, i + 1} is then
a rainbow solution to x + y = z, which contradicts our assumption on c. Furthermore, if
all the colors that are not dominant are recessive, then for every pair of consecutive integers
1 ≤ j < j + 1 ≤ n, we have c(j) = R or c(j + 1) = R. Hence, the there are at least n

2 > 2n
5

elements colored with (the dominant color) R. Therefore, we may assume that at least one
color in c is neither dominant nor recessive. As the following lemma shows, this color is
necessarily unique as well.

Lemma 10 There is at most one color neither dominant nor recessive.

Proof. Suppose there are (at least) two colors in c that are not dominant and not recessive.
Let i, i + 1, . . . , i + k be the longest string of consecutive integers colored with such a color,
which we denote by Y . Let j, j + 1 be a string of two consecutive elements colored with
Z, where Z denotes a non-dominant and non-recessive color other than Y . There are two
possible cases depending on which of these two monochromatic strings comes first.

If i + k < j, then none of the integers in the string j − i− k, j − i− k + 1, . . . , j − i + 1
can receive the dominant color R. Hence, all of them receive the same color, which is not
dominant and is not recessive. However, the length of this string is k + 2, which contradicts
our choice of the string i, i + 1, . . . , i + k.

Similarly, if i > j + 1, then none of the integers in the string i− j − 1, i− j, . . . , i− j + k
can receive the dominant color R. Hence, all of them receive the same color, which is not
dominant and is not recessive. However, the length of this string is k + 2, which again
contradicts our choice of the string i, i + 1, . . . , i + k. !
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Let B denote the unique color in c which is neither dominant nor recessive. Let Nc be
the number of elements of [n] that are not colored with R or B. Thus, these integers receive
a non-dominant color that is recessive. As in Lemma 1, we can limit our consideration to
3-colorings. Define the 3-coloring c̄ by c̄(i) = c(i), if c(i) = R or B, and c̄(i) = G otherwise.
We note that, for the coloring c̄, R is dominant, B is neither dominant nor recessive and, by
Lemma 10, G is recessive. Let G = {g : g ∈ [n], c(g) = G}. Then c̄ is a rainbow Schur-free
coloring of [n] and |G| = Nc. For 1 ≤ i ≤ |G|, let gi denote the ith smallest element of
G. Let B = {b : b ∈ [n − 1], c(b) = B, c(b + 1) = B}. For 1 ≤ i ≤ |B|, let bi denote
the ith smallest element of B. If b1 > g1, then c(b1 − g1) *= R and c(b1 + 1 − g1) *= R, so
b1 − g1 ∈ B and b1 − g1 < b1, a contradiction. Hence, b1 < g1. Since c(g1 − 1) = R, then
1 < b1 < b1 + 1 < g1 − 1 < g1, so g1 ≥ 5.

Next, we show that for 1 ≤ i ≤ |G|−1, there exists b′ ∈ B such that gi < b′ < gi+1. Since
b1 < g1 ≤ gi, then there exists a largest element b ∈ B such that b < gi. Since c(gi − b) *= R
and c(gi − b − 1) *= R, then gi − b − 1 ∈ B. However, then c(gi+1 − (gi − b)) *= R and
c(gi+1− (gi− b− 1)) *= R, which implies that b+ gi+1− gi ∈ B. Since b is the largest element
in B that is less than gi, we have b + gi+1 − gi > gi. Defining b′ = b + gi+1 − gi, we obtain
b′ ∈ B such that gi < b′ < gi+1.

Now, clearly, c(gi + 1) = c(gi+1 − 1) = R, so gi < gi + 1 < b′ < b′ + 1 < gi+1 − 1 < gi+1.
Therefore, gi+1 − gi ≥ 5 for 1 ≤ i ≤ |G| − 1. Since g1 ≥ 5, then |G| ≤ n

5 . It immediately
follows that in the coloring c̄, as well as in c, we have at least 2n

5 elements colored with R or
B. We have completed the proof of Theorem 6.

7. Conclusion

We believe that our methods cannot be used for improving the upper bounds on sr(m, k) in
[ACT89], when m > 3. The main obstacle is the fact that there is no analogue of Theorem 1
for m-term arithmetic progressions, m ≥ 4 (as shown in [AF04] for m ≥ 5, and [CJR] for
m = 4), that could be used as in Lemma 1.

Fox et al. [FMR] consider yet another partition-regular4 equation, “the Sidon equation”
x + y = z + w, which is a classical object in combinatorial number theory. They proved the
following.

Theorem 7 ([FMR]) For every n ≥ 4, every partition of [n] into four color classes R, G, B,
and Y, such that

min{|R|, |B|, |G|, |Y|} >
n + 1

6
contains a rainbow solution of x + y = z + w. Moreover, this result is tight.

4For the definition of partition regularity, please refer to [GRS90].
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For a given positive integer k, let sd(k) denote the minimal number such that every
coloring of [n], n ≥ sd(k), that uses each color at most k times, yields a rainbow solution to
equation x + y = z + w. We propose the following open problem.

Problem 1 Determine sd(k).

We hope one could use Theorem 7 to prove a lemma similar to Lemma 1 and reduce
Problem 1 to studying the minimal size of the largest color class in 4-colorings of [n] without
rainbow solutions to the above equations. Some structural results about such colorings are
already provided in [FMR].

It is interesting to note that there are still no other existential rainbow-type results for
partition regular equations other than the ones mentioned above. We are nowhere near the
rainbow Rado-type characterization. For numerous open problems concerning the existence
of rainbow subsets of integers in appropriate colorings of [n] or N, please refer to the survey
[JRN05].

Both rainbow-Ramsey and sub-Ramsey problems have received considerable attention in
graph theory. The sub-Ramsey number of a graph G, denoted by sr(G, k), is the smallest
integer n such that every edge-coloring of Kn, where each color is used at most k times,
contains a rainbow subgraph isomorphic to G. Hell and Montellano [HM04] improved the
bounds of Alspach et al. [AG+86], and proved that sr(Km, k) is O(km2) and Ω(m3/2). Hahn
and Thomassen [HT86] show that sr(Pm, k) = sr(Cm, k) = m, when m is large enough with
respect to k.5 Results on sub-Ramsey number of stars and some other results dealing with
existence of rainbow subgraphs in colorings with bounded color classes can be found in
[AJMP03, ENR83, FHS87, FR93, LRW96].

Remark: After this work was originally submitted for publication, it came to our attention
that Theorem 4 has been independently obtained by Maria Axenovich and Ryan Martin in
[AM0x].

Acknowledgment: The authors would like to thank the anonymous referee whose com-
ments and suggestions led to a significant improvement of the originally submitted work.
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