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Abstract
We consider the distribution of orbits of linear actions of certain discrete groups on
the complex plane.

1. Introduction

In this note we will consider the distribution of orbits of linear actions of certain
discrete groups on the complex plane. It is convenient to first formulate this problem
in a slightly more general setting, so we first let SL(2,K) denote the group of 2× 2
matrices with unit determinant having entries in a field K (typically R or C). Given
a cocompact lattice Γ < SL(2,K) (with−I ∈ Γ) we can consider the standard linear
action

Γ×K2 → K2

γ(x, y) = (ax + by, cx + dy), where γ =
(

a b
c d

)
.

We define a norm by ||γ|| =
√

|a|2 + |b|2 + |c|2 + |d|2 and given X = (x1, x2) ∈ K2

we denote ||X|| =
√

|x1|2 + |x2|2.
In [5], Ledrappier proved equidistribution results on the Γ-orbits when K = R (cf.

also [9]). A decade later, Maucourant and Weiss showed in this setting a stronger
result on the rates of convergence for the distribution of such orbits.

Theorem 1 (Maucourant-Weiss [7]). Given a cocompact group Γ < SL(2, R)
with −I ∈ Γ there exists ρ > 0 such that for any C∞ compactly supported function
F and any X ∈ R2 − {(0, 0)} we can write

1
T

∑

γ∈Γ,‖γ‖≤T

F (γX) =
1
‖X‖

∫
F (Y )
‖Y ‖ dλ(Y ) + O

(
1

T ρ

)
(1)

as T → +∞.
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The approach in [7] uses estimates on horocycles due to Strombergsson, giving
additional estimates on the value of ρ. Even sharper estimates in the case that
Γ = SL(2, Z) were proved by Laurent and Nogueira [4].

There are analogous equidistribution results on Γ-orbits to those in [5] with
K = C in [6]. We begin by recalling a simple example due to Jorgensen [3].

Example 2. Let us fix the values

β =
1
4
(
√

10 + 2
√

17 + (−6 + 2
√

17)) and x =
(
√

10− 2
√

17 + i(6 + 2
√

17))
(2(−6 + 2

√
17)

.

We can then consider the matrices

A =
(

β 0
0 β−1

)
and B =

(
−(1 + I)x/

√
2 −(1 + x2)

1 (1− i)x/
√

2

)

and then let Γ < SL(2, C) denote the group they generate. This is a discrete cocom-
pact group and we can consider the the orbit of the X = (1, 0) ∈ C2, say, under the
linear action Γ×C2 → C2. In figure 1 we plot the real and imaginary coordinates of
part of this orbit which lends credence to the relatively slow polynomial convergence.

We will show the following result, which is an analogue of Theorem 1 in the
setting of SL(2, C).

Theorem 3. Given a cocompact group Γ < SL(2, C) with −I ∈ Γ there exists ρ > 0
such that if F is a C∞ compactly supported function then for any X ∈ C2 − {0, 0}:

1
T 2

∑

||γ||≤T

F (γX) =
1
‖X‖

∫
F (Y )
‖Y ‖ dλ(Y ) + O

(
1

T ρ

)
(2)

as T → +∞. Moreover, we can choose ρ to be independent of Γ.

We establish Theorem 3 using a very straightforward approximation argument
whose simplicity compensates for the lack of sharpness it gives on estimating ρ.
The method we will use to prove Theorem 3 can also be used to recover Theorem
1, albeit with implicitly weaker estimates on the value of ρ > 0.

The main difference between the formulae (1) and (2) is that the normalization
1/T is replaced by 1/T 2. In the proof this corresponds to the real dimension of the
nilpotent subgroup of SL(2,K) changing from 1 (when K = R) to 2 (when K = C).

Another interesting distinction between the cases K = R or C is the dependence
of ρ on the group Γ. In Theorem 3, we observed that we can choose ρ > 0 indepen-
dently of the choice of Γ. This is in complete contrast to the situation when K = R
in Theorem 1, where for any ε > 0 we can choose a cocompact group Γ < SL(2, R)
such that in (1) we require ρ = ρ(Γ) < ε. To see that, we first observe that H2/Γ
is a compact surface and that the first eigenvalue of the Laplacian λ1(Γ) has the
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property that C1 ≤ ρ(Γ)/λ1(Γ) ≤ C2, where C1, C2 > 0 are constants that depend
only on the genus [10]. In particular, if the surface has a sufficiently small dividing
closed geodesic then ρ can be made arbitrarily small.

Remark 4. The original version of this short note was written in 2003, but was
unpublished at the time.

2. Case K = C: Averages on Horospheres

We first need to establish a result on the distribution of stable manifolds for the
flow gt : M →M on the quotient space M = PSL(2, C)/Γ of cosets defined by

gtx =
(

et/2 0
0 e−t/2

)
x

where x = gΓ. We denote h+
z =

(
1 z
0 1

)
and h−z =

(
1 0
z 1

)
and then we can write

Wu(x) =
{
h+

z x : z ∈ C
}

and W s(x) =
{
h−z x : z ∈ C

}
.

Moreover, given T > 0 we let

Wu(x, T ) =
{
h+

z x : |z| ≤ T
}

and W s(x, T ) =
{
h−z x : |z| ≤ T

}

denote the balls of radius T in Wu(x) and in W s(x), respectively, in the induced
metric. In particular, we see that each ball has volume πT 2.

Lemma 5. For any t ∈ R and T > 0 we have that gtWu(x, T ) = Wu(gtx, Tet).

Proof. This is immediate from the identity

gth
+
t g−t =

(
et/2 0
0 e−t/2

)(
1 z
0 1

)(
e−t/2 0

0 e−t/2

)
=

(
1 zet

0 1

)
.

Geometrically, gt corresponds to the frame flow on the frame bundle over a three
dimensional manifold V with sectional curvatures all equal to −1. The discrete
group Γ corresponds to the fundamental group of V acting on the frame bundle
over three dimensional hyperbolic space, identified with the upper half-space H3 =
{z + jt : z ∈ C, t > 0} with the Poincaré metric. As is well-known, geodesics
in H3 are semi-circular arcs which meet the boundary Ĉ perpendicularly and the
horospheres are spheres which are tangent to the boundary Ĉ. The frames are then
translated on these horopheres [6].
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Moreover, the frame flow is an extension of the geodesic flow ψt : N → N on the
unit tangent bundle of V by the one parameter subgroup

K =
{

kθ =
(

eiθ 0
0 e−iθ

)
: 0 ≤ θ < 1

}
= SO(2)

where N = K\PSL(2, C)/Γ and ψt(KgΓ) = KgtgΓ (since gt commutes with kθ ∈
K).

The next result describes the equidistribution of horospheres.

Lemma 6. There exists ρ > 0 such that for any C∞ function f : M → R and
x0 ∈M we have that

1
πT 2

∫

W u(x0,T )
f(ξ)dξ =

∫
fdµ + O

(
1

T ρ

)
as T → +∞.

To prove Lemma 6, we first need the following classical estimate on the rate of
mixing of the flow gt : M →M . Let µ be the normalized Haar measure on M .

Lemma 7. There exists λ > 0 and C > 0 such that for any C∞ functions f1, f2 :
M → R we have that

∣∣∣∣
∫

f1(gtx)f2(x)dµ(x)
∣∣∣∣ ≤ C.e−λt||f1||.||f2||, for t > 0,

where ‖ · ‖ is a Sobolov norm. 1

Proof. The first version of this result was proved by Fomin and Gelfand [2]. A more
general result appears in [8]. In particular, λ > 0 is shown to be uniformly bounded
away from zero.

Remark 8. Unfortunately, we do not know if the analogue of this result holds when
V have variable negative curvature, i.e., Do frame flows mix exponentially quickly
with respect to the invariant measure equivalent to the volume if V has variable
curvature?

We can now return to the proof of Lemma 6.

Proof of Lemma 6. Fix δ > 0 and x0 ∈ M . For any t > 0, we can use the scaling
property of the frame flow in Lemma 1 to first write that

1
πδ2

∫

W u(g−tx0,δ)
f(ξ)dµu(ξ) =

1
πδ2e2t

∫

W u(x0,δet)
f(g−tξ)dµu(ξ)

1i.e., for l ≥ 1 we use the usual definition of || · || = || · ||l in terms of the L2-norms of the first
l-derivatives.
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where the integrals are with respect to the volume µu on the unstable manifolds in-
duced from the Haar measure µ. We can choose a neighbourhood U ⊃Wu(g−tx0, δ)
defined by

U =
{
kθh

+
z gux : x ∈Wu(g−tx0, δ), |θ|, |z|, |u| < ε(t)

}

where ε(t) = e−α1t, where α1 > 0 will be chosen later. In particular, the image gtU
of U under gt will then be a neighbourhood of the set gtWu(g−tx0, δ) = Wu(x0, etδ).
The effect of the flow is that:

1. gt shrinks the set U exponentially in the strong stable directions, i.e., the h+
t

orbit direction; and

2. gt preserves distance in the neutral directions (corresponding to both the flow
and frame directions, i.e., gt and kθ orbits) and thus it will at least stay within
ε(t) of the image horosphere.

Since f is Lipschitz (for some 0 < γ ≤ 1) we can approximate
∣∣∣∣∣

1
πδ2e2t

∫

W u(x0,δet)
f(ξ)dµ+(ξ)− 1

µ(U)

∫

gtU
f(ξ)dVol(ξ)

∣∣∣∣∣ ≤ ‖f‖Lipe
−tα1 (3)

for t > 0, where ‖f‖Lip = supx&=y
|f(x)−f(y)|

d(x,y) and d(·, ·) denotes the Riemannian
metric.

We can also L1-approximate the indicator function χU by a smooth positive
function h so that for any α1 < α2 and α3, to be chosen later, so that:

(i) |
∫

hdµ− µ(U)| < te−α2t; and

(ii) ‖h‖ < eα3t.

The multiplicative term of t in (i) will be to accommodate the fact that the ball
Wu(x0, etδ) has a one-dimensional boundary. If ||h|| is now taken to be a Sobolev
l-norm, for some sufficiently large fixed l ≥ 1, then one may choose α3 := lα2.

In particular, we can use (i) to approximate
∣∣∣∣
∫

gtU
f(ξ)dVol(ξ)−

∫
h(g−tξ)f(ξ)dVol(ξ)

∣∣∣∣ ≤ ||h||∞te−α2t (4)

and we can use Lemma 7 and (ii) to write
∣∣∣∣
∫

h(g−tξ)f(ξ)dµ(ξ)
∣∣∣∣ ≤ ‖h‖.‖f‖e

−λt = O
(
eα3te−λt

)
. (5)

Comparing (3), (4) and (5) we get that

1
2δet

∫ δet

−δet

f(hsx0)ds = O
(
e−tα1γ , e−α2t, e−(λ−α3)t

)
= O

(
e−tα1γ , e−α1t, e−(λ−lα1)t

)
.
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The best bound on this last term comes from choosing γχ1 = λ − lχ1. The result
follows where the exponent can be taken to be ρ = γλ

l+γ .

Finally, we come to the proof of Theorem 3.

Proof of Theorem 3. This is an easy modification of the proof in [6], given the
estimates in the preceding lemmas. One can define a map Ψ : C2 − {(0, 0)} →
SL(2, C), by associating to a point X = (x, y) ∈ C2 − {(0, 0)} an element γ ∈
SL(2, C) such that X = γ(1, 0) and then defining

Ψ(X) =
(

a b
c d

)(
λ 0
0 1/λ

)
∈ SL(2, C)

where the matrices correspond to the compact and abelian components in the KAN
decompositions (i.e., Ψ is a section for the horocycle foliation).

The geometric interpretation of the action of an element γ ∈ SL(2, C) on H3 is
that it carries a horosphere for the frame Ψ(X) to a horosphere for the frame γΨ(X).
Moreover, the vectors are related by a horospherical translation, i.e., γΨ(x)h+

z =
Ψ(γx), for some z = z(γ, x). More precisely, if

(
a b
c d

) (
λ 0
0 1/λ

)
represents X ∈

C2 − {(0, 0)} and
(

a′ b′

c′ d′
) (

λ′ 0
0 1/λ′

)
represents γX, and z ∈ C satisfies

γ

(
a b
c d

)(
λ 0
0 1/λ

)
=

(
a′ b′

c′ d′

)(
λ′ 0
0 1/λ′

)(
1 z
0 1

)
,

then ||γ||2 = |X|2|γX|2|z|2 + |X|2
|γX|2 + |γX|2

|X|2 .

For any small region D ⊂ C2−{(0, 0)} we have ||γ|| ≤ T and γX ∈ D if and only
if Ψ(X)hz ∈ γΨ(D), for some z ∈ C with |z| ≤ T

|X||γX| . Assume that f is a smooth
function whose support is in D. The above identity allows us to approximate

∑

γ∈Γ:||γ||≤T

f(γX) by
∫

|z|≤ T
|X||Y |

f̃(ΓXhz)ds,

where hz is the right multiplication by hz = ( 1 z
0 1 ) ∈W , and f̃ is a suitable function

with small support on Γ\SL(2, C). More precisely, we first lift f to the sections,
and then smooth it in the direction of the horospheres to obtain f̃ . The difference
between these terms will then be O(1), which is sufficient for our purposes. Theorem
3 now follows immediately from applying Lemma 6.
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329 (1999), 61-64.

[6] F. Ledrappier and M. Pollicott, Ergodic properties of linear actions of 2× 2 matrices, Duke
Math J. 116 (2003), 353-388.

[7] F. Maucourant and B. Weiss, Lattice actions on the plane revisited, preprint.

[8] C. Moore, Exponential decay of correlation coefficients for geodesic flows, in Group Represen-
tations, Ergodic Theory, Operator Algebras and Mathematical Physics, MSRI Proceedings,
Volume 6, 163-181, Springer, New York, 1987.

[9] A. Nogueira, Orbit distribution on R2 under the natural action of SL(2, Z), Indag. Math. 13
(2002). 103-124,

[10] R. Schoen, S. Wolpert, and S.T.Yau, Geometric bounds on the low eigenvalues of a compact
surface, Proc. Sympos. Pure Math. XXXVI (1980), 279-285.


