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Abstract

Cutthroat is an all-small game played on a graph with vertices that are colored white,
black or green. For colorings using only black and white, we give a strategy, based on atomic
weights, for playing disjunctive sums of stars; we also give the game theoretic values for all
colorings of complete graphs, some colorings of complete bipartite graphs and the values for
paths with vertices colored alternately white and black.
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1. Introduction.

Cutthroat is a combinatorial game played on a graph each vertex of which has been colored

black, white or green. There are two players, Left and Right, who move alternately, Left
removes a black or a green vertex and Right removes a white or a green vertex. After a move,

or at the beginning of play, any monochromatic, connected component is also removed from
the graph. For example, if the graph were a single edge with one white and one black vertex

then Left moving first would win since he would leave just the white vertex, a monochromatic
component which would then be removed. Similarly, Right would win moving first. The game

was first introduced in [5].

1The author wishes to thank the NSERC for financial support
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Cutthroat originated as a variant of Clobber [1]. In Clobber, the vertices have black or
white tokens and, on their turn, a player slides one of their tokens along an edge to a vertex

occupied by an opposing token. No moves can be played in a connected component occupied
by tokens of just one color. Effectively, this sub-graph is removed from the game. Clobber

is difficult. In [1], it is shown that calculating the atomic weight of a Clobber position is
NP-hard, even when the game has just one black token. In contrast, for Cutthroat, atomic

weights are helpful. Atomic weights are introduced later in this section and the necessary

mechanisms for determining atomic weights are given in Section 2 (see also [2] and [4]).

Cutthroat is an all-small game since either both players have a move, or neither player

does. As a consequence, the value of any position is an infinitesimal, [2,p 229]. For example,
consider the following small (in size) positions. We use • for black vertices and ◦ for white.

� � {0 | 0} = ∗ � � � {0 | 0, ∗} =↓ ∗

� � � {0, ∗ | 0} =↑ ∗ � � � {0 | ∗} =↑ ∗

In this paper, we consider White-Black-Cutthroat, i.e. the vertices will only be colored white
or black. A star, K1,p is a graph with one vertex adjacent to p vertices, these p vertices have

no edges between them. Let ••n◦m (◦•n◦m) denote a star with a black (white) center, n black
leaves and m white leaves. Determining the outcome classes of ••n◦m is simple. The game

••n◦0 is clearly a second player win; ••n◦1 is a first player win since either player can leave a
monochromatic sub-graph; and ••n◦m, m > 1 is a Left win. These results are shown in Table

1.

n\m 0 1 2 3 4 . . . k
0 P N L L L L
1 P N L L L L
2 P N L L L L
...

. . .

j P N L L L L

Table 1: Outcome classes of stars with black centers: ••n◦m

Although the outcomes for stars are simple, the same cannot be said for the values. Ta-
ble 2 has the canonical forms of some stars. The values are defined recursively, ••j◦k =

{0, ••j−1
◦k | ••j◦k−1}, j, k > 0, provided the options exist. In general, the values of ••n◦m do

not simplify, are rather lengthy in presentation and, because of their form, are difficult to

compare. It is difficult to evaluate their sums. For example,

••3◦4 + ◦•4◦5 = {03 ‖ 0, A | 0} + {04 ‖ 0, {0, A | 0} | 0)}
= {{03||0, A|0|||{0||0, A|0}, {02||0, A|0}||||{0, A|0}, {0||0, A|0}}|0, {0, A|0}||02}
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where A = {0, ↑∗ | 0} and {0n|B} = {0|{0|{0| . . .{0|B} . . .}}} where there are n 0’s. The

n\m 1 2 3
0 ∗ ↑ ⇑ +∗
1 ↑* ⇑ 3.↑ +∗
2 A = {0, ↑∗|0} {0||A} {02|A}
3 {0, A||0} {0||0, A|0} {02||0, A|0}
4 {0, {0, A|0}|0} {0||0, {0, A|0}|0} {02||0, {0, A|0}|0}

Table 2: The stars ••n◦m, A = {0, ↑∗ | 0}

values do not lead to an easy-to-understand strategy. Atomic weights were introduced in

[4] (see also [2], [3]), to help with exactly this type of situation. Atomic weights are a
homomorphism of the set of games to itself where aw(↑) = 1. This means that atomic

weights are additive:
aw(G + H) = aw(G) + aw(H);

and atomic weights are order preserving:

If G ≥ H then aw(G) ≥ aw(H).

Essentially, aw(G) = n means that the position is n.↑ plus infinitesimals of a higher order.
A more intuitive, but not completely accurate, interpretation of the atomic weight is that if

aw(G) = n, n ≥ 2 then Left can let Right have j moves, for any j < n, and Left can still

end the game on his move. Sometimes, knowledge of the atomic weight suffices to determine
the outcome the game. Specifically, if aw(G) ≥ 2 then G > 0; if aw(G) ≤ −2 then G < 0;

if 2 > aw(G) > −2 but there is no general relationship between the outcome and atomic
weight if −2 < aw(G) < 2.

Cutthroat stars are a good example of the use of atomic weights. The actual values of
positions are hard to manipulate but all the atomic weights are integers and are easy to

calculate. This leads to a winning strategy that is easy for a player to remember. In general,
an atomic weight is itself a game and can be arbitrarily complicated (see [1]). The stars in

Cutthroat all have integer atomic weights and it is not known if there are Cutthroat positions
with hot or even non-integral atomic weights.

In the next section, we develop a winning strategy for stars based on the atomic weights.
In contrast, only a few moments of reflection are needed for the reader to come up with

winning strategies for Cutthroat played on a single complete graph. The values for a path

in which the colors alternate is a little harder. These we consider in the last section.

All the necessary game theory background can be found in [2] or [4].
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2. Stars.

We let ••w◦b be black centered star with w white leaves and b black leaves. The first lemma

finds the values for ••n◦m, n = 0, 1. These values form the basis for most of the induction
proofs in this section. Recall that if m is even then m.∗ = 0 and if m is odd then m.∗ = ∗.

Lemma 1.

a: For m ≥ 1, ••0◦m = (m − 1).↑ +m.∗ .

b: For m ≥ 1, ••1◦m = m.↑ +m.∗ .

Proof: We use induction on m.

a: As already seen, ••0◦1 = ∗, and ••0◦2 =↑. Now suppose ••0◦m−1 = (m − 2).↑ +(m − 1).∗
and consider ••0◦m, with m ≥ 3. Left’s only move is to 0 by removing the central vertex, and

Right’s move is to ••0◦m−1, thus ••0◦m = {0 | (m − 2).↑ +(m − 1).∗} = (m − 1).↑ +m.∗ .

b: As already observed, ••1◦1 =↓∗. Now suppose ••1◦m−1 = (m − 1).↑ +(m − 1).∗, and

consider ••1◦m where m ≥ 3. Left has two moves: to 0 by taking the center vertex, and to take
the black leaf, which leads to ••0◦m = (m−1).↑ +m.∗. Since m ≥ 3, the game (m−1).↑ +m.∗ is

positive and so Left’s move to 0 is dominated. Right’s moves are all equivalent and therefore

••1◦m = {(m − 1).↑ +m.∗ | (m − 1).↑ +(m − 1).∗} = m.↑ +m.∗ .

Lemma 2. ••n+1
◦m > ••n◦m when m ≥ 1.

Proof: The proof is by induction on n + m. For n + m = 1, we have m = 1 and
n = 0. We see that ••1◦1 =↑ ∗ > ••0◦1 = ∗. For the other cases where n = 0, we have

that ••0◦m = (m − 1).↑ +m.∗ < ••1◦m = m.↑ +m.∗. Now suppose the statement holds for
n + m ≤ t − 1. We wish to show that ••n+1

◦m > ••n◦m with m > 1, so we play the difference

game
••n+1
◦m − ••n◦m = ••n+1

◦m + ◦•m◦n .

We shall show that Left can win regardless of who starts. If it is Left to play first, then he
has a winning move by playing to ••n◦m − ••n◦m = 0. If it is Right to play first, she has three

options. If she plays to ••n+1
◦m−1 −••n◦m, then Left can reply by playing to ••n+1

◦m−1 −••n◦m−1, which
he wins by hypothesis. If Right plays to ••n+1

◦m − ••n−1
◦m , then Left can play to ••n◦m − ••n−1

◦m ,

which he also wins by induction. If Right plays to ••n+1
◦m by taking the center of the −••m◦n ,

she leaves a Left-win game (Table 1). So Left always wins the difference game and hence
••n+1
◦m > ••n◦m when m ≥ 1.

Next, we need a technical lemma to aid in the atomic weight calculations. Let � =
{0, ∗, ∗2, ∗3, . . . | 0, ∗, ∗2, ∗3, . . .}. The game � is called a remote star.
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Lemma 3. ••n◦m > � for all n ≥ 0, m > 0 except (n, m) = (0, 1).

Proof: From Lemma 1, ••0◦m = (m − 1).↑ +m.∗ > � for m ≥ 2. From Lemma 2 then, we

have ••n◦m > ••0◦m > � for n > 0.

If n = 1 then ••1◦1 =↑ ∗ > �. Again, from Lemma 2, we obtain ••n◦1 > ••1◦1 > �

Hence ••n◦1 > � for n ≥ 1.

We now turn our attention to the atomic weights of stars. The atomic weight of a game,
aw(g), is defined recursively: If g = {a, b, c, . . . | d, e, f, . . .} where a, b, c, d, e, f , . . . have

atomic weights A, B, C, D, E, . . ., then the atomic weight of g is

G0 = {A − 2, B − 2, C − 2, . . . | D + 2, E + 2, F + 2, . . .}

UNLESS G0 is an integer and either g > � or g < �. In these exceptional cases, if g > �

then aw(g) is the largest integer G for which G|> D + 2, E + 2, F + 2, . . .. Similarly, if if
g < � then aw(g) is the least integer for which G <|A − 2, B − 2, C − 2, . . ..

Table 3 lists the atomic weights of stars and the next lemma gives the proof.

n\m 0 1 2 3 4 . . . k
0 0 0 1 2 3 k − 1
1 0 1 2 3 4 k
2 0 1 2 3 4 k
...

. . .

j 0 1 2 3 4 k

Table 3: Atomic weights of stars with black centers: ••n◦m

Lemma 4. aw(••0◦0) = 0, aw(••0◦m) = m − 1 for m ≥ 1, and aw(••n◦m) = m for n ≥ 1, as

shown in Table 3.

Proof: For the base cases, aw(••0◦0) = aw(••0◦1) = 0, aw(••0◦m) = aw((m−1).↑ +m.∗) = m−1,
and aw(••1◦m) = aw(m.↑ +m.∗) = m.

Next, we verify that aw(••n◦1 ) = 1 when n ≥ 1 by induction on n. For n = 1 we have
already seen that the claim is true. Now suppose it is true when n ≤ t − 1 and consider a

star with n = t. We have that

{aw(0) − 2, aw(••n−1
◦1 ) − 2 | aw(0) + 2} = {−2,−1 | 2} = 0

which is an integer. From Lemma 3, ••n◦1 > �, thus aw(••n◦1 ) = 1. Now consider aw(••n◦2 ) with
n ≥ 2 and proceed by induction on n. Suppose aw(••n◦2 ) = 2 for n ≤ t−1 and consider n = t.
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We have

aw(••n◦2 ) = {aw(0) − 2, aw(••n−1
◦2 ) − 2 | aw(••n◦1 ) + 2}

= {−2,−1 | 3}
= {−1 | 3}.

By Lemma 3, ••n◦2 > � and thus aw(••n◦2 ) = 2.

Finally, we investigate the stars ••n◦m with n ≥ 2 and m ≥ 2. We proceed by induction on
n + m. Assume that aw(••n◦m) = m holds for n + m = t − 1 and consider when n + m = t.

We have

aw(••n◦m) = {aw(0) − 2, aw(••n−1
◦m ) − 2 | aw(••n◦m−1) + 2}

= {−2, m − 2 | m + 1}
= {m − 2 | m + 1}

and since ••n◦m > � (by Lemma 3), we conclude that aw(••n◦m) = m.

Corollary 5. ••n◦m+i > ••n◦m for i ≥ 2.

Proof: Since aw(••n◦m+i) − aw(••n◦m) = i ≥ 2 then from the properties of atomic weights

••n◦m+i − ••n◦m > 0.

Not all the stars can be compared. As the next lemma shows, adding one white leaf does

not improve the situation for either player.

Lemma 6. ••n◦m is incomparable with ••n◦m+1 for n ≥ 0 and m ≥ 0.

Proof: We shall prove this by induction on n + m. When n + m = 0, we have ••0◦1 = ∗
which is incomparable with 0 = ••0◦0. When n + m = 1, we have ••0◦2 =↑ is incomparable with

∗ = ••0◦1, and ••1◦1 =↑∗ is incomparable with 0 = ••1◦0.
Now suppose the statement holds for n + m ≤ t − 1. Now consider a star ••n◦m, with

n + m = t. Consider the difference game

••n◦m+1 − ••n◦m = ••n◦m+1 + ◦•m◦n .

If it is Right’s turn to start she plays to ••n◦m −••n◦m = 0 and wins. If it is Left’s turn to start,

he may play in −••n◦m to ••n◦m+1 − ••n◦m−1, which is greater than zero (Corollary 5) and so he
wins. Thus, the game ••n◦m+1 − ••n◦m is a first player win and the Lemma follows.

We see from all of this that adding a black leaf and adding two white leaves are both

operations which increase the value of a black centered star. Now a natural question presents
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itself: how many additional black leaves are needed to give the same boost in value to the
star as adding two white leaves? The surprising answer is in the next result.

Corollary 7. ••m◦n+2 > ••m+i
◦n for any i ≥ 0; that is, adding any number of black leaves

gains less advantage than adding two white leaves.

Proof: This follows immediately from Corollary 5 and Lemma 2.

As a final comment on the order relations of stars, Lemma 6 shows that adding one white
leaf to a black centered star does not increase the value but adding a further black leaf does;

that is
••n+1
◦m+1 > ••n◦m when m ≥ 1.

The proof of this we leave to the reader.

3. A Cutthroat Strategy for Stars.

If one uses the exact values, it is difficult to find a strategy for an arbitrary disjunctive
sum of stars. However, the atomic weights help find a winning strategy if one exists. Note

that because of the suppression of higher order infinitesimals, this strategy might not be a
winning strategy if Cutthroat stars is part of a disjunctive sum with other games. We first

consider the case that the atomic weight is at least 2, then we outline the situation if the

atomic weight is 1. It is not known what the best plays are if the atomic weight is zero.

We will examine a position from Left’s viewpoint. From Lemma 2, it seems reasonable

that, unless forced to do so, Left should not remove a leaf from a black-centered star since
this reduces the value of the game. In contrast, removing a black leaf from a white-centered

star increases the atomic weight but does not increase the value, however if white does not
decrease the atomic weight, Left can remove another black leaf from a white-centered star,

increase the atomic weight by a further 1 and, in two moves, has increased the value of the
game. This observation gives us our first heuristic.

Players should move so as to change the atomic weight in their favor.

This is only a heuristic since, as we shall see, it can lead the players astray if the atomic

weight is -1, 0 or 1.

Suppose Left is playing a game consisting of (possibly both) black- and white-centered

stars and the combined atomic weight is 2 or more. Note that the stars ••0◦1 and ◦•1◦0 are

identical. For clarity during our discussion, they will not be considered as stars but as
isolated edges.

In general, when the atomic weight is one, the game may be positive or confused with
zero. If a game of Cutthroat stars has atomic weight 2 with Right to play or if it has atomic
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weight 1 with Left to play, Left wins by modifying Phase 2 which appears below. This
modification is left to the reader.

Cutthroat Stars Strategy: Phase 1 Suppose a Cutthroat game, G, is made up of both
black- and white-centered stars and k (possibly zero) isolated edges (i.e. these are isolated

edges with a white and a black vertex), and aw(G) ≥ 2 and it is Left to play. Left takes leaves
from white-centered stars. When there are no white-centered stars left the atomic weight is

still at least 2; then Left takes leaves from black-centered stars until the atomic weight reaches

exactly two.

Using this strategy, if Left plays first in a game that has atomic weight at least two

at the outset, it will still have atomic weight at least two after Left has destroyed all the
white-centered stars by taking their black leaves. So now suppose that the game involves

only black-centered stars and paths of length two and its atomic weight is two or greater.

Right will reduce the atomic weight each time she takes a leaf from a black-centered star

and Left will be leave it unchanged with each of his moves. Thus it will be Left to play when
the atomic weight reaches two. There will still be black-centered stars with leaves since the

game is positive. The game must take one of five forms. Let k denote the number of isolated
edges. In addition to these the game is composed of one of the following:

1. ••c◦1 and ••d◦1 with c ≥ 1 and d ≥ 1,

2. ••c◦1 and ••0◦2 with c ≥ 1,

3. ••0◦2 and ••0◦2,
4. ••f◦2 with f ≥ 1, or

5. ••0◦3.

Cutthroat Stars Strategy: Phase 2 Left to play: In Phase 2 play, If k is even then

Left should start in the star or stars that remain, avoiding playing in the isolated edges until
Right does (he matches any play in a path with another). He plays each of the following moves

depending on the game. We outline the possible Right responses, omitting any intervening

pair of isolated edge destruction moves. Since the number of isolated edges is even, Left
destroys the last of these, and each of the scenarios below ensures he is last to play overall.

1. Left takes a leaf to leave the game ••c−1
◦1 + ••d◦1. From here, Right can destroy one star

to play to either ••c−1
◦1 or ••d◦1. In either case, Left takes the center of the remaining star

to play last.

2. Left takes the center of the first star to leave only ••0◦2. Now Right must play to ••0◦1
and Left takes the center of this to play last.

3. Left takes a center of one star to again leave ••0◦2, which he will finish as above.
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4. Left takes the center of ••f◦2 , and no stars are left.

5. Left takes the center of ••0◦3, and no stars remain.

If k is odd, Left’s first move is to take a vertex from an isolated edge and so destroy it
leaving an even number of isolated edges. Now Right is the first to move. If she plays in a

path of length two, Left responds by playing in another. Thus, Left will be the last to play in

these edges. In this way, Right will also be the first to play in the star or stars that remain.
For each of her possible first moves in the star or stars, we give a strategy for Left that allows

him to play last.

1. If Right plays first then only one of ••c◦1 and ••d◦1 survives. From either of these, Left

takes the central vertex to play last in the stars.

2. When Right begins she has two moves. One is to ••c◦1 + ••0◦1. From here, Left plays to

••c−1
◦1 + ••0◦1. Right now must eliminate one of these and move to either ••c−1

◦1 or ••0◦1.
Left takes the center vertex of whichever star is left and is the last to play. Right’s

other starting move is to ••0◦2, from which Left takes the center and he is the last to
play.

3. When Right begins, she leaves the game ••0◦1 +••0◦2. Left eradicates the first star to leave
••0◦2. Now Right must play to ••0◦1 and Left finishes off by taking the central vertex.

4. Right’s only move is to ••f◦1 , and then Left is the last to play by deleting the center.

5. Right must play to ••0◦2, which, as before, Left finishes by taking the center and leaving
nothing for Right.

If the atomic weight is 1 then best play for both players is to play the heuristic. This
continues until there are k isolated edges and one ••n◦1 or one ••0◦2.

Left to move: if k is even then Left takes the central vertex of the star leaving a zero
position. If k is odd and there is a ••n◦1 then Left plays in the star to ••n−1

◦1 and then Left

regards this star as an isolated edge making an even number over all. (Note that n > 0 since
the star is not an isolated edge.) If k is odd and there is a ••0◦2 then Left plays in an isolated

edge. Eventually, Right must play in the ••0◦2 and leave an odd number of isolated edges. In
all cases Left wins.

Right to move: if k is even then Right takes the central vertex of the star leaving a zero

position — Right wins! If k is odd then we leave it to the reader to show that Right has no
good move.
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4. Cutthroat Played on Complete and Special Complete Bipartite Graphs.

For complete graphs, size matters or, as is explained in the next section, ‘less is more’. The
same was not true for stars.

We denote by Kb
w the complete graph with b vertices colored black and w colored red.

Lemma 8. Kb
w = 0 if b = 0 or w = 0 otherwise Kb

w = (w − b).↑ +(b + w − 1).∗.
Proof: When b = 0 or w = 0 then the graph is monochromatic and so has value 0.

The rest of the proof is by induction on b + w. When b + w = 1, the complete graph is

monochromatic, neither player can move, so the game has value 0. Suppose that b = 1.
Left’s move is to 0 and Right’s move is to K1

w−1 which by induction is (w − 2).↑ +(w − 1).∗.
Therefore,

K1
w = {0 | (w − 2).↑ +(w − 1).∗} = (w − 1).↑ +w.∗ .

Suppose that b + w = t > 1, b, w > 1 and that the hypothesis holds for complete graphs
with t − 1 vertices or fewer. Then

Kw
b = {Kb−1

w | Kb
w−1}

= {(w − b + 1).↑ +(b + w − 2).∗ | (w − b − 1).↑ +(b + w − 2).∗}
= (w − b).↑ +(b + w − 1).∗ .

Suppose the game consists of the disjunctive sum of only complete graphs. The player
with fewer initial nodes wins! If the nodes are of equal numbers then the player who moves

first wins. This result translates into an easy-to-remember strategy.

Strategy: Left should never remove a vertex from a K1
w unless forced to do so; when

forced to, he should always move in the smallest.

Cutthroat played on a complete bipartite graph, where each of the partitions are monochro-

matic is just as easy. Let the notation K ′
b,w denote the complete bipartite graph with the

partition of size b colored black and the partition of size w colored red.

Corollary 9. The value of a Cutthroat game played on K ′
b,w with monochromatic

partitions is (w − b).↑ +(b + w + 1).∗ when b ≥ 1 and w ≥ 1.

Because all the black and white vertices are joined, edges between black vertices and
between white vertices do not affect the options and therefore the value of the game. This

observation gives us our next result. Let b be the number of vertices in graph G, w in graph
H and G ⊕ H be the graph with edges E(G) and E(H) and in which every vertex of G is

adjacent to every vertex of H .
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Corollary 10. If every vertex of G is colored black and every vertex of H is white then
G ⊕ H has value (w − b).↑ +(b + w + 1).∗ .

This observation can be taken further to get an approximation for the value of a graph.
Let A be an induced monochromatic subgraph of G and let G′

A be the graph with all edges

removed that have both endpoints in A.

Theorem 11. For any graph G and any monochromatic black subgraph A, G ≥ G′
A.

Proof. All we have to prove is that Left going second in G−G′
A can win. If Right plays in

G or −G′
A then Left plays the corresponding vertex in −G′

A or G respectively. Note that by

playing, say x, in −G′
A, Right’s move may eliminate part of A in −G′

A that is not eliminated
when Left plays x in G. But this is only reducing the options for Right and Left will still be

able to play his strategy of deleting corresponding vertices.

5. Cutthroat Played on Alternating Paths.

In black-white Cutthroat, a path is called alternating if the colors alternate and one end
vertex is black. We denote such a path of n vertices by APn. We already know that the

alternating path AP2 = • − ◦ = ∗, AP3 = • − ◦ − • =↓ and, by definition AP1 = 0.
The values of the paths from order 1 through 16 are given below. We use ±(↑, ∗) to mean

{↑, ∗ | ↓, ∗} and ↑2= {0 | ↓ ∗}. (See [2] and [3], page 108, for Gn in general.) Note that
↑2 is positive since Left wins regardless of who goes first but that ↑2 .k <↑ for any positive

number k.

n = 0 2 4 6 8 10 12 14 16 18 20 22
APn 0 ∗ ±(↑, ∗) 0 ±(↑ ∗, 0) ∗ ±(↑, ∗) 0 ±(↑ ∗, 0) ∗ ±(↑, ∗) 0

n = 1 3 5 7 9 11 13 15 17 19 21 23
APn 0 ↓ ∗ ↓ ∗ ↑2 ↓ ↑2 +∗ ↓ ∗ ↑2 ↓ ↑2 +∗ ↓ ∗

The period for AP2k, starts at 2k = 2. However, overall, there is a period of length 8,

given in Table 4. This we prove in the next theorem.

n (mod 8) 0 1 2 3 4 5 6 7
APn ±(↑, ∗) + ∗ ↑2 ∗ ↓ ±(↑, ∗) ↑2 +∗ 0 ↓ ∗

Table 4: Values for alternating paths in Cutthroat, n ≥ 6.

Theorem 12. The values of APn, n ≥ 7, have a period of 8 and are those given in Table
4.
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Proof: By induction on k for paths of order 8k + i, with i = 0, 1, . . . , 7. The values for
n ≤ 23 were given earlier although the induction only requires n ≤ 16.

First, note that each of the even order values are their own negatives. There are 8 cases
to consider in order to prove the periodicity of the values. We present the first in detail but

since the other 7 are similar, we leave these to the interested reader.

For AP8k, with k ≥ 3, Left’s options are pairs of paths which have total order 8k − 1,

with an even and an odd path. The odd path begins and ends with a white vertex and hence

is the negative of the value given in Table 4. The table below gives Left’s options from AP8k.
The top and bottom section of the table contain the options which contain a path which is

not part of the period. (Recall that the period for n even starts at n = 2.)

Path orders Value
8k − 1 and 0 ↑ ∗ + 0 = ↑ ∗
8k − 3 and 2 ↓2 + ∗ +∗ = ↓2

8k − 5 and 4 ↑ + ± (↑, ∗) = ↑ + ± (↑, ∗)
8k − 7 and 6 ↓2 +0 = ↓2

8k − 9 and 8 ↑ ∗ + ±(↑, ∗) + ∗ = ↑ + ± (↑, ∗)
...

...
7 and 8k − 8 ↑ ∗ + ±(↑, ∗) + ∗ = ↑ + ± (↑, ∗)
5 and 8k − 6 ∗ + ∗ = 0
3 and 8k − 4 ↑ ∗ + ±(↑, ∗) + ∗ = ↑ + ± (↑, ∗)
1 and 8k − 2 0+0 = 0

Left’s options are ↑ ∗, ↓2, ↑ +± (↑, ∗), 0, and of these, 0 dominates ↓2, since it is negative.

The games ↑ +± (↑, ∗) and 0 are incomparable. The Right options of the order 8k path are
the same as Left’s options but with the colors reversed, i.e. they are the negatives of Left

options. Hence
AP8k = {↑ ∗, ↑ + ± (↑, ∗), 0 | ↓ ∗, ↓ + ± (↑, ∗), 0}.

We can verify that this equals ±(↑, ∗) + ∗ by playing the difference game

{↑ ∗, ↑ + ± (↑, ∗), 0 | ↓ ∗, ↓ + ± (↑, ∗), 0} − ±(↑, ∗) + ∗
= {↑ ∗, ↑ + ± (↑, ∗), 0 | ↓ ∗, ↓ + ± (↑, ∗), 0} + ±(↑, ∗) + ∗

and show that it is a second player win. Suppose Left is to play first, he has five options:

Option Left’s move Right’s winning response
1: ↑ ∗ + ±(↑, ∗) + ∗ =↑ + ± (↑, ∗) ↑ + ↓= 0
2: ↑ + ± (↑, ∗) + ±(↑, ∗) + ∗ =↑ ∗ 0
3: 0 + ±(↑, ∗) + ∗ ∗ + ∗ = 0
4: AP8k+ ↑ +∗ ↓ ∗+ ↑ +∗ = 0
5: AP8k + ±(↑, ∗) ↓ + ± (↑, ∗) ± (↑, ∗) =↓
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If Right plays first the games are their own negatives so the argument is the same.
Therefore, we conclude that AP8k = ±(↑, ∗) + ∗. .
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