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Abstract
Our goal in this article is to review the known properties of the mysterious Kolakoski
sequence and at the same time look at generalizations of it over arbitrary two letter
alphabets. Our primary focus here will be the case where one of the letters is odd
while the other is even, since in the other cases the sequences in question can be
rewritten as (well-known) primitive substitution sequences. We will look at word
and letter frequencies, squares, palindromes and complexity.

1. Introduction

A one-sided infinite sequence z over the alphabet A = {1, 2} is called a (classical)
Kolakoski sequence, if it equals the sequence defined by its run-lengths, i.e.:

z = 22︸︷︷︸ 11︸︷︷︸ 2︸︷︷︸ 1︸︷︷︸ 22︸︷︷︸ 1︸︷︷︸ 22︸︷︷︸ 11︸︷︷︸ 2︸︷︷︸ 11︸︷︷︸ . . .

2 2 1 1 2 1 2 2 1 2 . . . = z.

Here, a run is a maximal subword consisting of identical letters. The sequence
z′ = 1z is the only other sequence which has this property.

This sequence was introduced by Kolakoski in [22] who asked “What is the nth
term? Is the sequence periodic?”1 This sequence has attracted attention over the
years since, although it is easy to define, it resists any attempt to reveal even some of
its most basic properties like recurrence or the frequency of its letters. There is even
some prize money offered for answering some of these question about its properties,
see [20, 21]. The maybe most basic question is known as Keane’s question [19]:

Does the frequency of the symbol 1 in z = 221121 . . . exist, and is it
equal to 1

2?

1 The first question is still studied today, see [32] and [15]. In these articles, recursive formulae
for the nth term are derived thus answering the first question.
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The line of attack in trying to answer this question has often been to detect some
structure by rewriting the generation rule of the Kolakoski sequence in some sort of
generalized substitution rule, see for example [31, 14], [28, Section 4.4] and references
therein. However, these attempts have not been successful in answering Keane’s
question.

Our goal in this article is more humble – we want to give an overview of (the
little) what is known about the Kolakoski sequence but at the same time look
at generalizations to arbitrary two-letter alphabets A = {r, s} where r and s are
natural numbers (with r != s). We note that “10” or “439” in this generalization
is one letter not two or three, and we can (well, if we really want to) examine the
Kolakoski sequence(s) over the alphabet A = {10, 439}.

If we do this generalization, then we find that there is a drastically different
behavior depending on whether r + s is odd (i.e., one of the letters is odd while
the other even) or r + s is even (i.e., either both are even or both are odd). In
particular, in the latter case we can answer Keane’s question immediately. For this
we use the observation made in [10]: One can obtain the Kolakoski sequence z above
by starting with 2 as a seed and iterating the two substitutions

σ0 : 1 "→ 1
2 "→ 11, and σ1 : 1 "→ 2

2 "→ 22

alternatingly, i.e., σ0 substitutes letters on even positions and σ1 letters on odd
positions:

2 "→ 22 "→ 2211 "→ 221121 "→ 221121221 "→ . . .

Clearly, the iterates converge to the Kolakoski sequence z (in the obvious product
topology), and z is the unique (one-sided) fixed point of this iteration.

Similarly, a (generalized) Kolakoski sequence over an alphabet A = {r, s}, which
is again also equal to the sequence of its run-lengths, can be obtained by iterating
the two substitutions

σ0 : r "→ rr

s "→ rs and σ1 : r "→ sr

s "→ ss

alternatingly. Here, ab denotes a run of b a’s, i.e., ab = a . . . a (b times).
Let us now assume that both r and s are even numbers. Building blocks of two

letters A = rr and B = ss and applying the alternating substitution rule to them,
one actually obtains a usual substitution rule for A and B:

σ : A "→ AmBm

B "→ AnBn

where m = r
2 and n = s

2 . In fact, from this (primitive) substitution rule it is easy
to see that the frequency of the letters r and s in the original sequence must be
equal, see [29, 30].
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Let us now assume that both r and s are odd numbers. Again, building blocks
of two letters helps, although we need three such blocks here: A = rr, B = rs and
C = ss. For these three letters one again obtains a usual (primitive) substitution
rule:

σ :
A "→ AmBCm

B "→ AmBCn

C "→ AnBCn
(1)

where m = r−1
2 and n = s−1

2 . From this representation it is straightforward to
calculate the letter frequencies in the corresponding Kolakoski sequence. However,
here the frequencies of r and s are not equal2, see [1, 29].

We will therefore look at the generalizations of the Kolakoski sequence in this
article where one of the letters in the alphabet is odd while the other is even. We
will not look at generalizations to three-letter alphabets (see for example [2]) since
there the situation is in general3 certainly worse than for two-letter (where we only
alternate between two letters).

2. Derivatives and Primitives

Broadly speaking, there are (currently) two approaches to study a Kolakoski se-
quence: Either takes the “global perspective” and tries to examine the set of all
infinite sequences over A = {r, s} with the property that their run-length sequence
is also a sequence over the same alphabet A = {r, s} (and the run-length sequence
of the run-length sequence – and so on – is also a sequence over A = {r, s}). Or, one
takes the “local perspective” and tries to study the set of all possible (finite) sub-
words (or factors) of the Kolakoski sequence. This leads to the study of so-called
C∞-words. In some sense, these two approaches are two sides of the same coin,
nevertheless we will split our exposition into these two parts. We will introduce
C∞-words in this and the next section, and will show how the former approach via
sequences is used in Section 4.

We start with some basic definitions. Let A be an alphabet, which throughout
this article will always be a two-letter alphabet A = {r, s} where r, s ∈ N. Then
z ∈ AN is a (one-sided infinite) sequence of letters in A. Any w = w1w2 . . . wn ∈ An

where n ∈ N is a word of length n and we use the notation |w| = n to denote the
length of w. We denote the empty word by ε. Furthermore, we use the notation

2 One can show that the substitution in (1) is a Pisot substitution with cubic Pisot-Vijaraghavan
number if 2(r + s) ≥ (r − s)2. It is a unimodular Pisot substitution if r = s ± 2. In the case
2(r+s) < (r−s)2, all roots of the corresponding substitution matrix are greater than 1 in modulus
(and cubic algebraic numbers). A formula for the letter frequencies in the case that one of the odd
numbers is 1 can be found in [4].

3 Of course, there are also simple cases where we can rewrite everything using one substitution
rule: If the three letters are equal modulo 3, building blocks of three letters is the key. At least,
if we alternate the three letters periodically in the original sequence.
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|w|r and |w|s for the number of r’s and s’s in the word w, and, moreover, |w|v for
the number of occurrences of the word v in the word w.

Since we are working in a two-letter alphabet, we can define the following two
properties: Let ·̃ be the operation that exchanges letters, i.e., r̃ = s and s̃ = r
extended to any word w = w1w2 . . . wn by w̃ = w̃1w̃2 . . . w̃n. Then a sequence z is
called mirror invariant if

w occurs in z ⇐⇒ w̃ occurs in z.

Similarly, the operation
←· denotes the reversed word

←
w= wnwn−1 . . . w2w1 of a

word w = w1w2 . . . wn−1wn, and we say that a sequence z is reversal invariant if

w occurs in z ⇐⇒ ←
w occurs in z.

Our goal is now to see if we can say something about these properties in the case
where one of the letters {r, s} is odd while the other is even4. Here, we will closely
follow [14, Section 3]. From now on, we will use the following convention:

r = min{r, s} and s = max{r, s}.

Let w be a word over A = {r, s}. We define the following “differentiation” rule for
w: The derivative D(w) of w is, in principle, the run-length sequence of w except
for (possibly) the first and last symbol. If w is a single run of length less than s, we
set D(w) = ε. If w consists of more than one run and the first (last) run of w is of
length less than or equal to r, we discard this run from it. If w consists of more than
one run and the first (last) run of w has length between r + 1 and s, we extend it
to a run of length s. The word D(w) is now the run-length sequence of this altered
word and might be the empty word ε (we use the convention D(ε) = ε). We say
that w is differentiable if D(w) is again a word over the same alphabet A = {r, s}.
Let us look at some examples using the alphabet {2, 5}:

D(255555222) = 55 D(2555552) = 5 D(2255) = ε D(222555) = 55
D(25555552) = 6 D(25252) = 111 D(222522) = 51 D(2555222) = 35

Note that the words in the second line are not differentiable!
4 Let us have a look back at those Kolakoski sequences where either r and s are both odd or

both even:

• If r and s are both even, the corresponding Kolakoski sequence is not mirror invariant, e.g.,
the sequence z = 2244222244442 . . . has the subword 4444224 but not 2222442.
This example also shows that such a Kolakoski sequence is not reversal invariant (e.g.,
2442222 does not appear in the previous z).

• If r and s are both odd, the corresponding Kolakoski sequence is also not mirror invariant,
e.g., 313331 appears in the Kolakoski sequence z = 3331113331313331 . . . while 131113 does
not. However, in this case one has reversal invariance.
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The definition of differentiable is chosen such that every subword of a Kolakoski
sequence is differentiable. In fact, every subword of a Kolakoski sequence is smooth
or a C∞-word with respect to this differentiation rule over the respective alphabet,
i.e., it is arbitrarily often differentiable.

We say that a word v is a primitive of a word w if D(v) = w. From our differ-
ential rule (discarding and/or extending the first and last run), one can conclude
that each (nonempty) word has at least 2r2 and at most 2s2 primitives (the factor
2 appears since we have D(v) = w = D(ṽ), i.e., a word and its mirrored word
have the same derivative). E.g., over the alphabet {2, 3} the primitives of 33 are:
222333, 3222333, 33222333, 2223332, 22233322, 32223332, 332223332, 322233322,
333222, 2333222, 22333222, 3332223, 33322233, 23332223, 223332223, 233322233,
3322233322, 2233322233.

One can now use the differentiation rule to prove the following statements:

Theorem 1 (i) Kolakoski sequences are not eventually periodic (where a
sequence z is called eventually periodic if there exist m, q ∈ N such that
zi+1 . . . zi+q = zi+q+1 . . . zi+2 q for all i ≥ m).

(ii) For a Kolakoski sequence, mirror invariance implies recurrence (where a se-
quence z is called recurrent if any word that occurs in z does so infinitely
often).

(iii) For a Kolakoski sequence, mirror invariance holds iff each C∞-word occurs
in it.

Proof.

(i) Compare [22] and [12, Example 4]. The reason is that a (minimal) period
of length q in a sequence z yields a period of length q′ < q in its run-length
sequence. Thus such a sequence z cannot be equal to its run-length sequence.

(ii) The proof of [14, Proposition 3.1] also applies here.

(iii) The proof of [13, Proposition 2] also applies here. !

For all Kolakoski sequence over one even and one odd symbol5, nothing seems
to be known beyond the above implications. We don’t know whether or not all
C∞-words occur in such a Kolakoski sequence, or whether or not it is recurrent.
In fact, it is even not known whether or not a Kolakoski sequence is repetitive (or
uniformly recurrent), i.e., whether every word that occurs in the sequence does so
with bounded gaps. The problem with the last property is, of course, that the

5 For the case where the letters {r, s} are both even or odd, see Footnote 4 on p. 4. Note
that since they can be constructed using a primitive substitution rule, they are recurrent and even
repetitive.
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gap might be quite large, thus one has to be careful with claims based on numerical
studies (as in [24, Section 4.1.4]). But one can use C∞-words to answer the following
question6: Given a word w, what is the maximal possible length of v such that wvw
is a C∞-word and w is not a subword of v? For the classical Kolakoski sequence
over {1, 2} one obtains the following table:

|w| 1 2 3 4 5 6 7 8 9 10 11
maximal |v| 2 7 7 36 36 37 173 172 171 170 1230

So, at least all words of length less than 12 must occur with bounded gaps in the
classical Kolakoski sequence supporting the conjecture that it is repetitive. Note
that making this observation precise would prove that the Kolakoski sequence is
repetitive, because this list tells us that there is no C∞-word of length greater than
2 ·11+1230 = 1252 such that its prefix of length (less than) 11 does not occur again
within this word. The jumps in this list are closely related to the “degree” that we
introduce in the next section.

3. C∞-words and the “Kolakoski Measure”

We say that a C∞-word has degree j if

Dj(w) != ε, Dj+1(w) = ε.

We call C∞-words of degree 0, i.e., the primitives of the empty word ε, fundamental
words. Note that a fundamental word has length less than max{s, 2r + 1}.

We now define a function µ on the cylinder sets [w] of AN, i.e., [w] = [w1 . . . wn] =
{z ∈ AN | z1 = w1, . . . , zn = wn}, by

µ([w]) =

{
µ

([
Dj(w)

])
· 1

(r+s)j if w is a C∞-word of degree j,

0 if w is not a C∞-word.

Here, we have to fix the function µ for all fundamental words, and we do so by
requiring that µ([w]) = µ([w̃]), µ([w]) = µ([

←
w]) and µ([wr]) + µ([ws]) = µ([w]) for

all fundamental words w and that
∑

w∈An µ([w]) = 1 for 1 ≤ n < max{s, 2r + 1}.
For example, one has for the fundamental words

using A = {1, 2}: µ([1]) = 1
2 µ([2]) = 1

2 µ([12]) = 1
3 µ([21]) = 1

3

using A = {2, 3}: µ([2]) = 1
2 µ([3]) = 1

2 µ([23]) = 1
5 µ([32]) = 1

5

µ([22]) = 3
10 µ([33]) = 3

10 µ([223]) = 1
5 µ([332]) = 1

5

µ([233]) = 1
5 µ([322]) = 1

5 µ([2233]) = 1
5 µ([3322]) = 1

5

6 For the question “Given |v| ≤ n, what is the maximal possible length of w such that wvw
is a C∞-word?” see [7, Proposition 7]: Based on the computations in [9], this length is bounded
O(n1.002), and it is conjectured to be O(n). Also see [11, Section 6.3] and [8] on this question and
its connection to Keane’s question.
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We note that there are 2 · (r2 + s− 1) fundamental words7.
Clearly, one has the property µ([D(w)]) = (r + s) · µ([w]) for any C∞-word of

length greater than or equal to max{s, 2r + 1}, and one can use this to show:

Theorem 2 For any A = {r, s}, the function µ extends to a Borel-measure (also
denoted µ) on AN. This measure is mirror invariant, reversal invariant and shift
invariant.

Proof. A careful case study as in [14, Theorem 5.1] works in the general case. !

The aim of introducing this measure is to connect it somehow to the frequencies
of subwords w in a Kolakoski sequence. Indeed, one can show:

Theorem 3 Suppose that z is a Kolakoski sequence over A = {r, s}, where one
of the numbers r, s ∈ N is odd and the other even, and that the frequencies fw =
lim

n→∞
|z1...zn|w

n exist and satisfy fw = fw̃ for all words occurring in z. Then for all
words w we have fw = µ([w]).

Proof. The proof of [14, Proposition 5.1] carries over to the general case,
see [29, Proposition 2.5]. !

This is a nice result – if only we would know that the frequencies satisfy the re-
quired properties. In fact, one can state Keane’s question for all Kolakoski sequences
where one of the letters is odd and other one is even:

Does the frequency of r exist in a Kolakoski sequence over {r, s} (where
one letter is odd and the other one is even)? And if so, does the letter
frequency equal 1

2?

Much computing time has been dedicated to find evidences for or against the
conjecture that the letter frequency is 1

2 . The numerical evidences against it are
usually dismissed by looking at larger and larger parts of the Kolakoski sequence,
see [32].

Since already the existence of the letter frequency is in question, one can try
to find bounds on lim supn→∞ |z1 . . . zn|r/n and lim infn→∞ |z1 . . . zn|r/n using the
C∞-words. A brute force approach is, of course, to generate all C∞-words of a
certain length, say n, and check for those with the least number8 a of r’s (since for
any C∞-word w, its mirrored version w̃ is also a C∞ word, the maximal number of
r’s is n− a). One then has9

a

n
≤ lim inf

n→∞

|z1 . . . zn|r
n

≤ 1
2
≤ lim sup

n→∞

|z1 . . . zn|r
n

≤ n− a

n
.

7 There are 2 · (s− 1) “single run” fundamental words (e.g., 2, 22, 3, 33) and 2 · r2 “two runs”
fundamental words (each of the two runs might be of length between 1 and r). The factor 2
appears because with each fundamental word also its mirrored word is a fundamental word.

8 I.e., we have a = min{|w|r | |w| = n and w is a C∞-word}
9 For a proof see [23, Section 3.2].
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For example, one finds the following numbers for alphabets with r + s ≤ 7:

alphabet {1, 2} {2, 3} {1, 4} {3, 4} {2, 5} {1, 6}
length n 1355 8003 6003 1000 1000 1000
a = min

|w|=n
|w|r 669 3989 2750 493 481 451

letter freq. 0.5±0.0063 0.5±0.0016 0.5±0.0419 0.5±0.007 0.5±0.019 0.5±0.049

Alternatively, one can use a generating function approach; see [23] (based on
[26]) as follows. For each word w on the alphabet {r, s}, one defines the its weight
as polynomial x|w|r y|w|s t|w|. By summing these weights over all C∞-words10, a
lower bound on the frequency is obtained by looking at the minimal degree of x for
a given power tn. The bound 1

2 ± 17
762 ≈ 0.5 ± 0.0223097 was obtained using this

method for the alphabet A = {1, 2}.

4. Chvatal’s Bound on the Letter Frequency

Instead of considering C∞-words, Chvatal [9] in his unpublished technical report
looked at infinite words over {1, 2} with the property that their run-length sequence
is also a sequence over the same alphabet. A sequence over {r, s} is said to be 1-
special. If only runs of length r and s occur in this sequence, we say that the
sequence is 2-special. And if in this run-length sequence only runs of length r and
s occur, we call the original sequence 3-special. We continue in this way and note
that a Kolakoski sequence is d-special for all d ∈ N.

Note that the (finite) subwords of a 2-special sequence are once differentiable, the
subwords of a 3-special sequence are twice differentiable etc. So, one can think of
(d+1)-speciality as extension of d times differentiability to infinite words. However,
when considering an (iterated) run-length sequence, we do not discard the first
letter/run of it here. E.g., while a Kolakoski sequence 2255222225 . . . over A =
{2, 5} is d-special for all d, the sequence 52255222225 . . . is only 1-special although
all its subwords are C∞-words as well.

We now write (a d-special) sequence and its d iterated run-length sequences in a
special way in an array: The first row is the original sequence, the first row its run-
length sequence and so on, but we align them appropriately in the columns. E.g.,
for the classical Kolakoski sequence (here we use the Kolakoski sequence starting

10 In fact, it is computationally more feasible to sum over all words that just avoid to be C∞-
words, i.e., words on {r, s} that are not C∞-words but any of its (genuine) subwords is. This is
the method used in [23, 26].
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with 1), we write

1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 . . .
1 2 2 1 1 2 1 2 2 1 2 2 1 . . .
1 2 2 1 1 2 1 2 . . .
1 2 2 1 1 . . .

We now call the ith element in a the original sequence d-special if the sequence
itself is d-special and the ith column in this array has length at least d (there are no
blanks in the first d lines of this column). We call this column (of length d) the type
of the corresponding d-special element in the sequence. E.g., the third letter in the
Kolakoski sequence above is 2-special of type 22, while the 7th letter is 4-special of
type 1122 (it is also 2-special of type 11).

Now, the observation is that the type of a d-special element determines the first d
terms of the type of the previous d-special element as well as all the letters between
them, and the type of a d-special element and the last term of the type of the next
d-special element determine the remaining terms of the type of this next d-special
element. These properties can be used to iteratively build graphs Gd, d ≥ 1. Since
the same observations can be made about Kolakoski sequences on any alphabet
{r, s}, we describe the more general case here.

The vertices of the graph Gd are the types of the d-special elements. Since all
elements of Ad occur as types, the graph Gd has 2d vertices. We connect two
vertices u and v by a directed edge u

w−→ v labelled w, if v is the next d-special
type after u in a d-special sequence z. If v is the ith element of such a d-special
sequence and u the jth element, then the label w is the word zi+1zi+2 . . . zj−1zj . So
if we follow any (infinite) directed path in such a graph and read the edge-labels,
we get a d-special sequence. Conversely, any d-special sequence arises as such an
infinite path.

The trick is that one can build the graph Gd+1 from the graph Gd.

• A path Ar
w1−→ B1s

w2−→ B2s
w3−→ . . .

wr−→ Brs in the graph Gd gives rise
to the edges Arr

w1w2...wr−→ Brsr and Ars
w1w2...wr−→ Brsr in Gd+1.

• A path As
w1−→ B1r

w2−→ B2r
w3−→ . . .

wr−→ Brr in the graph Gd gives rise
to the edges Asr

w1w2...wr−→ Brrr and Ass
w1w2...wr−→ Brrr in Gd+1.

• A path Ar
w1−→ B1s

w2−→ B2s
w3−→ . . .

ws−→ Bss in the graph Gd gives rise
to the edges Arr

w1w2...wr−→ Bsss and Ars
w1w2...wr−→ Bsss in Gd+1.

• A path As
w1−→ B1r

w2−→ B2r
w3−→ . . .

ws−→ Bsr in the graph Gd gives rise
to the edges Asr

w1w2...ws−→ Bsrs and Ass
w1w2...ws−→ Bsrs in Gd+1.
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The graphs G1 and G2 are :

rr
s

s s
r

rr

ss

sr

sr

rs

rr

ss

rr

rs

rs

sr

ss

To get bounds on the letter frequencies from a graph Gd, one associates to an edge
with edge label w the cost x · |w|− |w|r. If one now uses for x a number 1

2 ≤ x < 1
that is smaller than the maximal possible letter frequency that can occur for a
d-special sequence, then one finds a negative cycle in this graph, i.e., a cycle such
that the sum of the costs over its edges is negative. Applying this method to G6

for alphabets with r + s ≤ 7, one finds the following bounds:

alphabet {1, 2} {2, 3} {1, 4} {3, 4} {2, 5} {1, 6}
upp. bound 12/23 53/105 592/1085 46/91 4834/9527 1478/2821
letter freq. 0.5±0.0218 0.5±0.0048 0.5±0.0457 0.5±0.0055 0.5±0.0075 0.5±0.0240

By a clever use of the structure of the graphs Gd and efficient programming, Chvatal
used G22 in [9] which yields the upper bound 616 904/1 231 743 for the classical
Kolakoski sequence over A = {1, 2}, i.e., the letter frequencies are confined to
0.5 ± 0.000838.

5. Squares (and Cubes)

The question which (and how many) squares occur in the classical Kolakoski se-
quence was asked by [27]. Shortly thereafter, Carpi [6, 7] and Lepistö [25] answered
the question by finding all squares that occur: in the classical Kolakoski sequence
(i.e., using the alphabet A = {1, 2}) only squares of length 1, 2, 3, 9 and 27 ([25,
Theorem 1], [6, Proposition 1], [7, Proposition 3]) occur; in particular, it is cube-free
([25, Corollary 1],[6, Proposition 2], [7, Proposition 4]). Here, a square w of length
n is a C∞-word with |w| = n such that ww is appears in the respective Kolakoski
sequence (in particular, ww is then also a C∞-word).

The algorithm for finding squares is based on the following observations: If ww
is a square, its derivative has the form D(ww) = uvu where |uv| has to be even
(otherwise, not ww but ww̃ will be a primitive) and |v| ≤ 1 (we have D(w) = u
and v arises because of the rule on how to derive first and last runs). There is one
speciality, though, if r < s

2 : In these cases, v might also be a “negative” power r−1

or s−1 of length −1, meaning that in uv the v cancels the last symbol of u.
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length n
number of
squares

complexity
γ(n)

max.
MOOR

1 2 2 2
2 2 4 2
3 6 6 2 2/3
9 12 42 2 1/9
27 24 486 2 1/27

Table 1: The classical Kolakoski case over A = {1, 2}: There are 46 squares and no
cubes.

length n
number of
squares

thereof also
cubes

complexity
γ(n)

max.
MOOR

1 2 2 2 3
4 4 8 2 1/2
6 4 14 2 1/6
10 20 2 30 3
15 30 58 2 7/15
25 100 16 130 3 4/25

Table 2: For A = {2, 3}, there are 160 squares and 20 cubes among the C∞-words.

If one continues differentiating, one gets a sequence of words D(ww) = u1v1u1,
D2(ww) = u2v2u2, . . .Dk(ww) = ukvkuk. But one can show that in this sequence
the length of |vi| is bounded by −1 ≤ |vk| ≤ 2s + 1 where the lower bound −1 only
can appear if r < s

2 , see [29, Lemma 4.4] (compare to [25, Lemma 1] for A = {1, 2}).
Furthermore, we must always have that |uivi| is even for all i. Thus, one now has an
algorithm to find squares in Kolakoski sequences: We start with all C∞-words of the
form uvu where u is a fundamental word, −1 ≤ |v| ≤ 2s+1 and |uv| is even (and/or
v = ε and thus we already have a square uu). Then construct all primitives which
are again of the form u′v′u′ with either |u′v′| even and −1 ≤ |v′| ≤ 2s + 1, and/or
which happen to be a square u′u′. Continue in this way. If there are eventually no
more words of this form left, the algorithm stops and one has calculated all squares
among the C∞-words. Lastly, one checks that each square indeed occurs in the
respective Kolakoski sequence.

We note, however, that it is a priori not clear whether this algorithm will indeed
stop, or if there are only finitely many squares in a Kolakoski sequence besides the
classical one(s). However, we used this algorithm to check the C∞-words over the
alphabets {2, 3} and {1, 4}: Both, similar to the classical Kolakoski sequence, have
only finitely many squares – there are a total of 160 different squares of smooth words
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over {2, 3} but 59, 964 squares of smooth words in {1, 4}. We list the numbers in
this case together with the classical Kolakoski sequence in Tables 1–3. We also listed
the number of cubes and fourth powers in these cases together with the complexity
at this word length. The maximal order of repetition, for short MOOR, or repetition
exponent for a C∞-word w = uv, is given by the maximum of |ww . . . wu|/|w| such
that ww . . . wu is also a C∞-word.

Since there are only finitely many squares, the corresponding Kolakoski sequences
cannot be obtained by a (usual) substitution rule; see [25, Theorem 2] (if a sub-
stitution sequence has one square, one gets infinitely many using the substitution
rule repeatedly). Also, the following conjecture was stated in [7]: For any repetition
exponent q > 1, the length of C∞-words having this exponent is bounded.

6. Palindromes

If a C∞-word is a palindrome, i.e., if we have w =
←
w, then D(w) is also a palin-

drome. Conversely, only palindromes of odd length have primitives that are also
palindromes. We have a look at the following table:

palindrome primitives
22 1122, 21122, 11221, 211221,

2211, 12211, 22112, 122112
212 11211, 211211, 112112, 2112112,

22122, 122122, 221221, 1221221
121 121121, 212212

Thus, together with a further observation, one has in fact an algorithm on how to
construct palindromes as follows (compare to [24, Section 4.1.3]; see also [5, 3]):
Start with all palindromic fundamental words. Palindromes of odd length where
the letter in the middle is odd, will have palindromes of odd length among their
primitives. Palindromes of odd length where the letter in the middle is even, will
have palindromes of even length among their primitives. Palindromes of even length
do not have palindromic primitives.

Since w is a palindrome if and only if w̃ is a palindrome, palindromes (in fact,
palindromic fundamental words) of odd length where the letter in the middle is
odd play a special role and can be used to construct all palindromes. For example,
by repeatedly constructing primitives, one gets the following palindromic two-sided
infinite sequence with the number 1 “in the middle” when starting with the funda-
mental word 1 over A = {1, 2}:

. . . 122121122 1 221121221 . . .
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Applying the operation ·̃ to this word yields:

. . . 211212211 2 112212112 . . .

The primitives of this infinite sequence are:

. . . 12112212 11 21221121 . . .

. . . 21221121 22 12112212 . . .

Consequently, looking at the symmetric part of these sequences, one has two palin-
dromes of each length (for details see the cited literature). In fact, one always has
the single letters as fundamental words, so there are, for all alphabets, at least two
palindromic C∞-words for each length. For example, for A = {2, 3}, the same
construction as before works, where we now have

. . . 2223322332223|3|3222332233222 . . .

The situation gets a bit more complicated if there is more than one palindromic
fundamental word of an odd length with an odd letter in the middle. For example,
for the alphabet A = {1, 4} the two fundamental words with the stated property
are 1 and11 111. Thus, additional palindromes appear (but for each length, one
has at most two times the number of palindromic fundamental words of odd length
with odd letter in its middle):

length palindromes
1 1, 4
2 11, 44
3 111, 414, 444, 141
4 1111, 4444
5 44144, 14141, 11411, 41414
6 411114, 144441
7 4441444, 1114111
8 14111141, 44111144, 41444414, 11444411

Generalizations of palindromes, namely words of the form
←
wvw (“palindromes

with a gap in the middle”), have been studied in [16, 17].

7. Complexity

It is clear that the set of subwords of a Kolakoski sequence is a subset of the C∞-
words over the same alphabet. Since one, in fact, conjectures that the two sets are
even identical, one tries to establish bounds on the number of C∞-words for a given

11 Note that 111 is a single run of length 3 < 4 = s and thus we have D(111) = ε.
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length. We denote the complexity of C∞-words, i.e., the number of C∞-words of
length n, by γ(n).

Again, one can straightforwardly generalize results by Dekking.

Theorem 4 Let γ(n) be the number of C∞-words of length n in the alphabet A =
{r, s}. Then

(i) there is an N ∈ N such that γ(n) ≤ nα where α = ln(2s2)
ln( 2rs

r+s )
for all n ≥ N .

(ii) there is an N ∈ N and a constant C > 0 such that γ(n) ≥ C · nβ where
β = ln(r+s)

ln( r2+s2
r+s )

for all n ≥ N .

Proof. For a proof in the classical case A = {1, 2}, see [13, Propositions 3 & 4]. For
the generalizations, see [29, Propositions 4.1 & 4.3]. !

For the alphabet A = {1, 2} these bounds have recently been improved in [18]
(based on previous work [33]). In this case, there are positive constants C1, C2 such
that

C1 n2.7087 < γ(n) < C2 n2.7102

for all n ∈ N.
In fact, one can conjecture:

There are positive constants C1, C2 such that

C1 · nδ ≤ γ(n) ≤ C2 · nδ, where δ =
ln(r + s)
ln r+s

2

.

Noting that for A = {1, 2} we have δ = ln 3/ ln 3
2 ≈ 2.7095, we see that this

conjecture is well supported by the above result. For A = {2, 3} and A = {1, 4},
we refer to numerical results that we show in Fig. 1.
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Sém. Th. Nombres Bordeaux 1979–1980, 901–910.

[13] F.M. Dekking, On the structure of selfgenerating sequences (exposé no. 31), Sém. Th. Nom-
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length n
number of
squares

thereof
also

cubes

thereof
also fourth

powers

complexity
γ(n)

max.
MOOR

1 2 2 2 2 4
2 4 2 4 3
5 10 8 20 3 2/5
8 6 36 2 1/4
13 4 96 2 1/13
20 30 198 2 7/20
40 8 630 2 1/40
50 152 964 2 12/25
100 48 3124 2 3/50
116 364 4160 2 59/116
134 400 5438 2 65/134
174 8 8658 2 1/174
241 144 14694 2 20/241
259 100 16588 2 2/37
272 864 18358 2 145/272
308 960 23288 2 1/2
317 960 24554 2 160/317
353 1044 29738 2 169/353
408 4 38462 2
417 16 40046 2 1/139
453 28 46474 2 2/151
644 2072 82292 2 177/322
716 2252 100990 2 375/716
734 2312 106410 2 375/734
806 2492 126570 2 399/806
975 12 177330 2 2/975
1065 12 208018 2 2/1065
1529 4960 376874 2 845/1529
1691 5404 451208 2 929/1691
1709 5404 460688 2 896/1709
1745 5500 480304 2 178/349
1871 5860 550730 2 983/1871
1925 12020 581470 2 989/1925
2105 6508 684994 2 1049/2105

Table 3: For A = {1, 4}, there are 59 964 squares, 12 of which are also cubes and
only 2 are also fourth powers among the C∞-words.


