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Abstract

In this paper we study the symmetries of the k-bonacci adic systems and their ge-
ometrical realizations known as Rauzy fractals. We consider the maximal invariant
subset under the involution or “mirror image” in {0, 1}N that exchanges 0 with 1.
We explore the dynamical properties of the induced dynamical system on this set
and their geometrical realizations as subsets of Rauzy fractals.

1. Introduction

In this paper we explore some symmetries of the k-bonacci adic systems, (R(k), Tk),
and their geometric realizations known as Rauzy fractals.

These adic systems are symbolic dynamical systems with symbols in the alphabet
{0, 1}. The adic map Tk is given by “addition by 1” in R(k); it will be defined in
Section 2. We consider the maximal subsystems invariant under the involution or
“mirror image” Ψ : {0, 1}N → {0, 1}N, which consists of mapping each 0 into 1 and
vice versa. Let P(k) be the maximal subset of R(k) invariant under Ψ. We obtain
this set using the concept of the product automaton; see Section 3. We show in
Theorem 1 there is a continuous map Sk on P(k) such that the dynamical system
(P(k),Sk) is semi-conjugated to (R(k − 1), Tk−1), and the semi-conjugacy is 2 to
1. So we can interpret P(k) as a double cover of R(k− 1), and the “sucessor map”
in R(k − 1), i.e., Tk−1, is lifted continuously to a map Sk on P(k). We explore
how the symmetries in the symbolic systems are reflected in their geometrical rep-
resentations; we also show that Theorem 1 does not have a geometric counterpart.
However, the dynamical system (P(k),Sk) can be realized in Rk−1 as a permutation
in k − 1 pieces; see Propositions 6 and 7.

The systems (P(k),Sk) were first introduced by the author in [22], where their
metrical properties were studied. Unlike there, in the present paper we use the
language of automata theory and in particular the notion of the product automaton

1http://www.ma.usb.ve/∼vsirvent
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in order to introduce and study these systems. The properties of the geometrical
realizations, and the symmetries involved, were not addressed before.

Here we do not consider the relation of the dynamical systems studied with
substitution dynamical systems [17, 18].

2. Adic Systems

Let A = {1, . . . , k} be a finite alphabet and W ⊂ A∗ = ∪i≥0Ai a set of finite
words on A. An automaton over A, A = (Q,W,E, I), is a direct graph labelled by
elements of A. We let Q be the set of states, I ⊂ Q is the set of initial states, W is
the set of labels and E ⊂ Q ×W ×Q is the set of labelled edges or transitions. If
(p, w, q) ∈ E we say that w is a transition between p and q. Here we will consider
W a finite set, Q = A and I = {1}. A finite path in the automaton A is a word in E;
that is, it is a sequence of transitions: (pn, an, qn)(pn−1, an−1, qn−1) · · · (p0, a0, q0)
such that qi = pi−1 for 1 ≤ i ≤ n and pn ∈ I; however, we usually denote the paths
using only the labels, i.e., an · · ·a0. The automaton reads words from left to right.
See [8] for more on automata theory.

The transition matrix of an automaton is the matrix M whose mij entry is
defined as the number of different transitions from i to j. We shall assume that the
automaton is primitive, i.e., for some integer m > 0 each entry of Mm is positive.

Let

R =
{
a = a0a1 . . . ∈ WN : an . . . a0 is a path in A for all n ∈ N

}
,

where A is an automaton. We consider in R the topology induced from the product
topology of WN, i.e., the usual metric topology on 1-sided infinite sequences over a
finite alphabet.

We can order lexicographically all the finite paths in A, so the addition by 1 of a
given element in W ∗ is its consecutive element. Due to the definition of R, addition
by 1 is well-defined in R, and we will denote this map by T . There are only a
finite number of maximal elements of R. If a is a maximal element of R, then
T (a) is the minimal element of R. Here we suppose that there is only one minimal
element in R. Hence we have the dynamical system (R, T ), which is called the adic
system. If the transition matrix is primitive then the dynamical systems (R, T ) is
primitive, i.e., every orbit is dense. We note that an adic system is sometimes
also called stationary Markov compactum or stationary Bratteli-Vershik system; see
[30, 27, 7, 13, 17, 3] for further details. These dynamical systems are related to
general numeration systems; for details see [20, 6, 10, 11].

Let A = {1, . . . , k}, W = {0, 1} where 0 denotes the empty word, Q = A,

E = {(1, 0, 1), (1, 1, 2), (j, 1, j + 1), (j, 0, 1), (k, 0, 1) : 2 ≤ j ≤ k − 1}
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Figure 1: The Fibonacci automaton.
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Figure 2: The k-bonacci automaton.

and I = {1}; see Figure 2. This is known as the k-bonacci automaton; we shall
denote it by A(k). For k = 2 it is called the Fibonacci or golden mean automaton;
see Figure 1. The corresponding adic system is denoted by (R(k), Tk), in order to
emphasize the dependency on k.

It is easy to check that the automaton A(k) is symmetrical in the sense that
an . . . a0 is a path in A(k) if and only if a0 . . . an is a path in A(k). Then

R(k) :=
{
a = a0a1 . . . ∈ {0, 1}N : an . . . a0 is a path in A(k) for all n ∈ N

}

=
{
a = a0a1 . . . ∈ {0, 1}N : a0 . . . an is a path in A(k) for all n ∈ N

}

=
{
a = a0a1 . . . ∈ {0, 1}N : ai · ai+1 · · · · · ai+k−1 · ai+k = 0, ∀i ≥ 0

}
,

where ai · aj denotes the usual product of natural numbers, i.e., the space R(k)
consists of all one-sided infinite sequences of 0 and 1 such that there are no k
consecutive 1s.

For an automaton A = (Q,W,E, I) whose set of labels W is {0, 1} we define
its dual automaton as the automaton Â = (Q,W, Ê, I) where Ê = {(p, ŵ, q) :
(p, w, q) ∈ E} where

ŵ =

{
0 if w = 1
1 if w = 0.
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For an adic system (R, T ) whose set of labels is W = {0, 1}, we define its dual
adic system (R̂, T̂ ) using the dual automaton. Since taking the dual reverses the

ordering in W ∗, we have the relation T (̂̂T (â)) = a, or equivalently T̂ (T̂ (a)) = â for
any a ∈ R. We remark that T̂ is still “adding by 1,” but on R̂.

3. Product Automaton

Let A1 and A2 be two automata on the alphabets A1 and A2 respectively. The
product automaton A1 × A2 is defined as the automaton satisfying:

• set of states: A1 ×A2.

• labels: w is a label of A1 × A2 if and only if w is a label of A1 and A2.

• transitions: w is a transition between (p1, q1) and (p2, q2) if and only if w is a
transition between pi and qi, for i = 1 and 2.

• initial states: the product of the initial states of A1 and A2.

And finally the connected component containing the initial state is taken.

The paths in A1 × A2 are paths in A1 and A2, so it is said that the paths in
the product automaton are the common paths in each of the factors. The product
automaton was used in [25, 21] in the study of adic systems.

Let A be an automaton with labels in {0, 1}. The product automaton A × Â is
called the canonical product of A. Let

P =
{
a = a0a1 . . . ∈ WN : an . . . a0 is a path in A× Â for all n ∈ N

}
.

Let Ψ : {0, 1}N → {0, 1}N be the involution Ψ(a) = â = â0â1 . . .. By definition, P
is the maximal subset of R invariant under Ψ.

Here we shall consider A(k) × Â(k); see Figure 3. Let B(k) be the automaton

of Figure 4. It can be easily checked that A(k) × Â(k) and B(k) are equivalent,
i.e., both automata recognize the same finite paths. Observe that B(k) is also
symmetrical, i.e., an . . . a0 is a path in B(k) if and only if a0 . . . an is also a path
in B(k). Let P(k) be the set of infinite paths on B(k), for k ≥ 3. The set P(2)
consists of only two points, namely (01)∞ = 010101 . . . and (10)∞ = 101010 . . ..

Since P(k) is invariant under the involution Ψ,

P(k) :=
{
a = a0a1 . . . ∈ {0, 1}N : an . . . a0 is a path in A(k)× Â(k) for all n ∈ N

}

=
{
a = a0a1 . . . ∈ {0, 1}N : a0 . . . an is a path in A(k)× Â(k) for all n ∈ N

}

=




a = a0a1 . . . ∈ {0, 1}N : 0 <
i+k∑

j=i

aj < k, ∀i ≥ 0




 ,
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Figure 3: The canonical product of k-bonacci automaton, i.e., A(k)× Â(k).
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Figure 4: The automaton B(k) is equivalent to A(k)× Â(k).

i.e., the space P(k) consists of all one-sided infinite sequences of 0 and 1 such that
there are no k consecutive 1s nor k consecutive 0s.

Theorem 1. Let (R(k − 1), Tk−1) be the (k − 1)-bonacci adic system and P(k)
as before. For k ≥ 3, there exist continuous maps φk : P(k) → R(k − 1) and
Sk : P(k) → P(k) such that φk is 2 to 1 and semi-conjugates the dynamical system
(P(k),Sk) with (R(k − 1), Tk−1), i.e., the following diagram commutes

P(k)
Sk−−−−→ P(k)

φk

/
/φk

R(k − 1) −−−−→
Tk−1

R(k − 1).



INTEGERS: 11B (2011) 6

Moreover, let σ(a0a1a2 · · · ) = a1a2 · · · be the shift map. Then the dynamical system
(P(k),σ) is semi-conjugate to (R(k − 1),σ), by the semi-conjugacy φk.

Proof. Let A(k) × Â(k) be the canonical product of the k-bonacci automaton; see
Figure 3. If in this automaton we identify the state (1,m′) with (m, 1′) for 2 ≤ m ≤
k, we get the automaton seen in Figure 5. If we erase the state (1, 1′) and define
(2, 1′) as the initial state, we get the (k−1)-bonacci automaton; see Figure 6. More

precisely, let π be the map from the set of edges of the automaton A(k)× Â(k) to
the set of edges of the automaton of Figure 6 defined as follows:

((1, 2′), 1, (2, 1′)) *→ (1, 0, 1), ((2, 1′), 0, (1, 2′)) *→ (1, 0, 1),
((1, j′), 0, (1, j′ + 1)) *→ (j − 1, 1, j), ((j, 1′), 1, (j + 1, 1′)) *→ (j − 1, 1, j),
((1, j′), 1, (2, 1′)) *→ (j − 1, 0, 1), ((j, 1′), 0, (1, 2′)) *→ (j − 1, 0, 1),
((1, 1′), 0, (1, 2′)) *→ (0, 1, 1), ((1, 1′), 1, (2, 1′)) *→ (0, 1, 1);

where 2 ≤ j ≤ k.

The map φk is the resulting map on P(k) after the identification described on

the automaton A(k) × Â(k). Let a ∈ P(k). Due to the symmetry of P(k) pointed
out before, we can write it as:

a = (p0, a0, p1)(p1, a1, p2) · · ·

where pi are the states and ai the labels in A(k). Since π(p0, a0, p1) = (0, 1, 1), we
define φk(a) := π((p1, a1, p2))π((p2, a2, p3)) · · · .

Since φk is continuous and bijective on each

P(k)i := {a = a0a1 . . . ∈ P(k) : a0 = i},

for i = 0 and 1, the map Tk−1 lifts continuously to S0
k : P(k)0 → P(k)0 and

S1
k : P(k)1 → P(k)1, where Si

k = φ−1
k ◦ Tk−1 ◦ φk for i = 0, 1, i.e., each Si

k is
topologically conjugated to Tk−1. We define

Sk :
P(k) −→ P(k)
a *−→ Si

k(a); if a ∈ P(k)i.

Since P(k)0 and P(k)1 are disjoint, the map Sk is well-defined and the continuity
follows from the continuity of Si

k. By construction we get

φk(Sk(a)) = Tk−1(φk(a)).

On the other hand, from the definition of φk, the spaces P(k) and R(k) are
σ-invariant and it also follows that for a ∈ P(k):

φk(σ(a)) = π((p2, a2, a3))π((p3, a3, a4)) . . . = σ(φk(a)).
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Figure 5: The automaton π(A(k)× Â(k)).
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Figure 6: The automaton obtained from the automaton of Figure 5 after removing
the state 0. This automaton is equivalent to the (k − 1)-bonacci automaton.
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Corollary 2. Let Ψ be the involution defined before. Let Sk/Ψ : P(k)/Ψ→ P(k)/Ψ
be the map corresponding to Sk under the projection which maps P(k) into P(k)/Ψ.
Then the dynamical systems (P(k)/Ψ,Sk/Ψ) and (R(k− 1), Tk−1) are topologically
conjugated.

Proof. By the definition of the map φk, we get φk(Ψ(a)) = φk(a). Since Ψ is a
homeomorphism between P(k)0 and P(k)1, we have P(k)/Ψ is homeomorphic to
P(k)0 and P(k)1. According to Theorem 1, φk/Ψ : P(k)j → R(k − 1) is con-
tinuous and bijective for j = 0, 1. Since both spaces are compact, this map is a
homeomorphism. Therefore (P(k)/Ψ,Sk/Ψ) and (R(k− 1), Tk−1) are topologically
conjugated.

This Corollary shows that we can interpret P(k) as the double cover of R(k− 1)
with the “successor map” on R(k − 1) and the corresponding lifted map on P(k).
We point out that the map Sk, i.e., lifted map on P(k), is not the adic map on this
space.

4. Rauzy Fractals

The eigenvalues of the transition matrix of the k-bonacci automaton (i.e., the roots
of the polynomial xk − xk−1 − · · · − x − 1) are of the form γ1, γ1, . . . , γsγs, γs+1, ρ
where |γj | < 1, γ1, . . . , γs are non-real complex, γs+1 is real, this eigenvalue only
exists if k is even; and ρ is real and bigger than 1; see [4]. Let

R(k) :=




(
∑

i≥0

aiγ
i
1, . . . ,

∑

i≥0

aiγ
i
s,
∑

i≥0

aiγ
i
s+1) ∈ Rk−1 : a = a0a1 . . . ∈ R






if k = 2s+ 2, and

R(k) :=




(
∑

i≥0

aiγ
i
1, . . . ,

∑

i≥0

aiγ
i
s) ∈ Rk−1 : a = a0a1 . . . ∈ R






if k = 2s+ 1.

Here we identify Cs with R2s. This set is known as the Rauzy fractal of the
k-bonacci automaton, first introduced by G. Rauzy for k = 3 in 1982 [19]; see
Figure 7. In [19] it was proved, for k = 3, that it is compact, convex and simply
connected. The geometrical and dynamical properties of this set have been studied
extensively; see for instance [1, 2, 5, 12, 16, 17, 29, 24, 26].
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The set R(k) admits a natural partition {R(k)1, . . .R(k)k}, which is also called
the natural decomposition, where

R(k)j :=




ξk(a) : a = 1 · · · 1︸ ︷︷ ︸
j−1

0 · · ·




 . (1)

In Figure 7, R(3) and its natural decomposition can be seen.

Figure 7: The Rauzy fractal R(3) and its natural decomposition.

We define the map

ξk : R(k) → Rk−1,
a *→ (

∑
i≥0 aiγ

i
1, . . . ,

∑
i≥0 aiγ

i
s,
∑

i≥0 aiγ
i
s+1), if k = 2s+ 2;

a *→ (
∑

i≥0 aiγ
i
1, . . . ,

∑
i≥0 aiγ

i
s), if k = 2s+ 1.

By construction R(k) = ξk(R(k)).

The adic dynamical system (R(k), Tk) allows us to define a dynamical system in
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the Rauzy fractal (R(k), Fk) such that the following diagram commutes:

R(k)
Tk−−−−→ R(k)

ξk

/
/ξk

R(k) −−−−→
Fk

R(k).

(2)

The map Fk is defined by Fk(x) = x+ 'vi if x ∈ R(k)i, where

'v1 =




1
...
1



 'v2 =




γ1 − 1

...
γs+1 − 1



 , · · · , 'vk =




γk−1
1 − γk−2

1 − · · ·− γ1 − 1
...

γk−1
s+1 − γk−2

s+1 − · · ·− γs+1 − 1



 .

Here 'vj ∈ Rk−1, and we identify Cs with R2s. We suppose for notational purposes
that k = 2s+ 2, with s ≥ 0.

We say that the dynamical system (X,H) is a piece exchange or domain exchange
if X ⊂ Rk and there exists a partition {X1, . . . , Xm} of X , i.e., X = ∪m

i=1Xi and
their interiors in the relative topology are disjoint pairwise, such that H exchanges
the elements of the partition by translations. So (R(k), Fk) is a domain exchange
transformation. See [1, 5, 17] for details of domain exchange transformations.

Theorem 3. Let ξk : R(k) → R(k) as before. Then ξk(R̂(k)) = R(k) = ξk(R(k)).

Proof. Let us introduce some definitions and notation. Let R̂(k) := ξk(R̂(k)). Let
R∗(k) be the set of finite paths on the automaton A(k), i.e.,

R∗(k) := {a0a1 . . . an ∈ W ∗ : an . . . a0 is a path in A(k) for all n ∈ N}

and R̂∗(k) is its dual. Let us remark that the map ξk is well-defined on elements of

R∗(k) and R̂∗(k).

We give the proof for k = 3 in order to simplify the notation. But the ideas of
the proof are the same for any k.

Let a = a0 . . . an ∈ R∗. We shall associate an element b ∈ R̂∗ such that ξ(a) =
ξ(b). If a ∈ R̂∗ then b = a. If a /∈ R̂∗, without loss of generality we can assume
that an = 1. Let

l := max
0≤j≤n

{j : aj = 1, aj−1 = 0, aj−2 = 0, aj−3 = 0}.

So we define

bl−3 = 1, bl−2 = 1, bl−2 = 1, bl = 0, bl+i = al+i, for 0 ≤ i ≤ n− l.

Now we repeat this process with the word a0 . . . al−4, until l−4 ≥ 0. By construction
b ∈ R̂∗.
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Denote by γ any root of the polynomial x3−x2−x−1. Since 1+γ+γ2 = γ3, we
get ξ(a) = ξ(b). Furthermore, since 1+

∑∞
j=0 γ

3j+1+γ3j+2 = 0, we have ξ(a(0)∞) =

ξ(b1(110)∞) and a0∞ ∈ R, b1(110)∞ ∈ R̂. The elements a0∞, b1(110)∞ are dense
in R and R̂, respectively. Therefore R ⊂ R̂, the reverse inclusion is proved in a
similar manner.

Figure 8: The set F(3).

Let F(k) := ξk(P(k)). Figure 8 shows the set F(3) and its partition {F(3)00,F(3)01,
F(3)11,F(3)10}, where F(3)b0b1 := ξ3(P(3)b0b1) and P(3)b0b1 := {a = a0a1 . . . ∈
P(3) : a0 = b0, a1 = b1}.

Corollary 4. The sets R(k) and F(k) have the same center of symmetry.

Proof. For notational purposes, let k = 2s + 2, with s ≥ 0. Let a ∈ R(k) or
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a ∈ P(k). Then

ξk(a) + ξk(â) = (
∑

i≥0

aiγ
i
1, . . . ,

∑

i≥0

aiγ
i
s,
∑

i≥0

aiγ
i
s+1)

+(
∑

i≥0

âiγ
i
1, . . . ,

∑

i≥0

âiγ
i
s,
∑

i≥0

âiγ
i
s+1)

= (
∑

i≥0

aiγ
i
1, . . . ,

∑

i≥0

aiγ
i
s,
∑

i≥0

aiγ
i
s+1)

+(
∑

i≥0

(1− ai)γ
i
1, . . . ,

∑

i≥0

(1− ai)γ
i
s,
∑

i≥0

(1 − ai)γ
i
s+1)

= (
∑

i≥0

γi
1, . . . ,

∑

i≥0

γi
s,
∑

i≥0

γi
s+1)

= (
1

1 − γ1
, . . . ,

1

1− γs
,

1

1− γs+1
).

Since ξk(a), and ξk(â) are in R(k), or in F(k), then the center of symmetry of these
sets is (1/2(1−γ1), . . . , 1/2(1−γs+1)) if k = 2s+2 or (1/2(1−γ1), . . . , 1/2(1−γs))
if k = 2s+ 1.

Corollary 5. The center of symmetry of R(k) and F(k) is in R(k), but not in
F(k).

Proof. By Proposition 4, the center of symmetry of R(k) and F(k) is (1/2(1 −
γ1), . . . , 1/2(1− γs+1)) if k = 2s+ 2 or (1/2(1− γ1), . . . , 1/2(1− γs)) if k = 2s+ 1.

Since 1 + γi + · · ·+ γk−1
i = γk

i , we have:

1

2(1− γi)
=

1

2

∞∑

j=0

γj
i =

1

2
(2γk

i + 2γ2k+1
i + 2γ3k+2

i + · · · ) =
∞∑

j=0

γ(k+1)j+k
i .

So the center of symmetry of R(k) is ξk(b), where b = (0 . . . 0︸ ︷︷ ︸
k

1)∞. Clearly b is in

R(k), so ξk(b) ∈ R(k).

It is clear that b is not in P(k). In order to prove that ξk(b) /∈ F(k), we shall
show that the image under ξk of a neighbourhood of the point b is disjoint from
F(k). For simplicity we assume that k = 3. Let

Ub := {a ∈ R(3) : a3 = 1, ai = 0 for i = 0, 1, 2, 4, 5, 6}

and U := ξ3(Ub), so U = γ3 + γ7(R(3)). We have
∑

i≥0 aiγ
i =

∑
i≥0 a

′
iγ

i for
a, a′ ∈ R(3) if and only if we can pass from one expression to the other using the
relation 1 + γ + γ2 = γ3. Considering the elements of U are of the form

∑
i≥0 aiγ

i

with a3 = 1 and ai = 0 for i = 0, 1, 2, 4, 5, 6, it is not possible to rewrite them in
any of the following forms:

1 + γ + γ4(x), 1 + γ2 + γ4(x), γ + γ4(x), γ2 + γ4(x),



INTEGERS: 11B (2011) 13

where x is an element of R(3), which are the allowed expressions for the elements
of F(3). Therefore U and F(3) are disjoint.

4.1. Some Remarks

(i) From Theorem 3 and Corollary 4 it follows that the duality on the Rauzy
fractal, R(k) and on the subset F(k), acts as a reflection in the center of
symmetry.

(ii) In the special case of k = 3, the boundary of the set R(3) is contained in the
F(3), since the characterization of the boundary of R(3) given in [16] does not
admit points whose symbolic representation has more than three consecutives
0s. However, the inclusion is proper since the Hausdorff dimension of F(3) is
2 log ρ(2)/ log ρ(3) ≈ 1.579, where ρ(k) is the root outside the unit circle of
the the polynomial xk −xk−1− · · ·−x− 1 for k = 2, 3 [23]; and the Hausdorff
dimension of the boundary of R(3) is 2 log θ/ log ρ(3) ≈ 1.093 where θ is the
root outside the unit circle of the polynomial x4−2x−1 [14, 24]. We conjecture
that for k ≥ 4, the boundary of R(k) is properly contained in F(k).

(iii) The map Fk : R(k) → R(k), was defined on each element of the natural
decomposition of R(k). In a similar way, we will use the symbolic dynamics
to define a map Sk : F(k) → F(k), such that it makes commutative the
diagram:

P(k)
Sk−−−−→ P(k)

ξk

/
/ξk

F(k) −−−−→
Sk

F(k).

The set P(k) admits the natural decomposition



P(k)01,P(k)001, · · · ,P(k)0 · · · 0︸ ︷︷ ︸
k−1

,P(k)10,P(k)110, · · · ,P(k)1 · · · 1︸ ︷︷ ︸
k−1




 ,

where

P(k)b0···bm := {a = a0a1 · · · ∈ P(k) : ai = bi, for 0 ≤ i ≤ m},

so the natural partition of F(k) is given by the image under the map ξk of the
elements of the natural decomposition of P(k).

From Theorem 1 we would expect that the dynamical system (F(3), S3) is
semiconjugate to (R(2), F2); however, this is not true, since the map φ3 does
not preserves the identification of points under the map ξ2. For example,
consider a = 001101101101101 · · · and a′ = 10101101101 · · · ; they are mapped
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Figure 9: At the left the set F̃(3) and its partition; at the right the image of the

partition under S̃3 .

to the same point in F(3), ξ3(a) = ξ3(a′); cf. [24] or [16]. However φ3(a) =
10100100100 · · · and φ3(a′) = 00000100100 · · · , and their images under ξ2 are
different points in R(2), since a necessary condition for points in R(2) to be
mapped to the same point under ξ2 is that their sequences are eventually
periodic of the form 01010101 · · · .

(iv) The involution Ψ allows us to define an equivalent relation in F(3). In The-
orem 2 of [16], necessary and sufficient conditions are given when two points
of R(3) are mapped to the same point in R(3) under the map ξ3. These con-
ditions are invariant under the involution Ψ, so if a and a′ ∈ P(3), such that

ξ3(a) = ξ3(a′), then ξ3(Ψ(a)) = ξ3(Ψ(a′)). So the set F̃(3) := ξ3(P(3)/Ψ) and
the map S̃3 := S3/Ψ are well-defined. The natural decomposition of F(3) in-

duces a natural decomposition on the set F̃(3): {F̃(3)0, F̃(3)1} where F̃(3)0 =

ξ3(P(3)01/Ψ) = ξ3(P(3)10/Ψ) and F̃(3)1 = ξ3(P(3)00/Ψ) = ξ3(P(3)11/Ψ).

(v) The set P(3)/Ψ admits the partition {(P(3)/Ψ)0, (P(3)/Ψ)1}, where

(P(3)/Ψ)0 = P(3)01/Ψ=P(3)10 / Ψ, (P(3)/Ψ)1 = P(3)00/Ψ=P(3)11 / Ψ.

These sets can be obtained as images of the maps Hj : P(3) → P(3), for
j = 0, 1, where

H0(a) :=






0Ψ(a) if a = 0 · · ·

1Ψ(a) if a = 1 · · ·
, H1(a) :=






00Ψ(a) if a = 0 · · ·

11Ψ(a) if a = 1 · · · .

These maps are well-defined since Hj(a) is a path in the automaton A(3) ×
Â(3), for a ∈ P(3). It can be easily checked that φ3(H0(a)) = 0φ3(a) and
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φ3(H1(a)) = 10φ3(a). So the maps {φ3 ◦ H0,φ3 ◦ H1} define the iterated
function system (IFS) [9], whose fixed point is R(2) [23]. This construction
generalizes in a straightforward manner to P(k), for k ≥ 3.

The partition {F̃(3)0, F̃(3)1} of the set F̃(3) given in remark (iv) can be ob-

tained as follows: F̃(3)j = Gj(P(3)), where Gj = ξ3 ◦Hj , for j = 0, 1. Using

techniques of fractal geometry it can be proved that Ms(F̃(3)0)/Ms(F̃(3)1) =
(
√
5 − 1)/2, where Ms is the s-dimensional Hausdorff measure and s is

the Hausdorff measure of F(3); for more details see [23]. Hence the ratio

Ms(F̃(3)0)/Ms(F̃(3)1) is equal to m(R(2)0)/m(R(2)1), where m is the 1-
dimensional Lebesgue measure.

Proposition 6. The dynamical system (F̃(3), S̃3) exchanges the elements of

the partition {F̃(3)0, F̃(3)1}.

Proof. Let

F̃(3)00 := ξ3(P(3)010/Ψ) = ξ3(P(3)101/Ψ) and

F̃(3)01 := ξ3(P(3)011/Ψ) = ξ3(P(3)100/Ψ).

So {F̃(3)00, F̃(3)01} is a partition of F̃(3)0. By the symbolic dynamics, it
follows that

S̃3(F̃(3)00) = F̃(3)10, S̃3(F̃(3)01) ⊂ F̃(3)00 and S̃3(F̃(3)10) ⊂ F̃(3)0.

So the action of S̃3 on the natural decomposition of F̃(3) is a permutation of
its elements.

Using the same ideas we can generalize the previous result to F(k), for k ≥ 3.

So in a similar manner we define the dynamical system (F̃(k), S̃k).

Proposition 7. Let k ≥ 3. The dynamical system (F̃(k), S̃k) acts as a per-

mutation on the k − 1 pieces of the natural partition of F̃(k).

While we have shown that (F(3), S3) is not semi-conjugate to the dynamical

system (R(2), F2); hence (F̃(3), S̃3) is not conjugate to (R(2), F2). We pointed

out the behaviour of the system (F̃(3), S̃3) “resembles” the system (R(2), F2),
from the metrical and dynamical point of view.

(vi) We would like to remark that if we consider the automaton of paths of length
l, with l > 1, of the k-bonacci system, we obtain the same set P(k) as the
maximal invariant subset of R(k) under the mirror involution. In fact: Let
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C(l, k) be the automaton of paths of length l from A(k), the k-bonacci au-
tomaton. The set of infinite paths on C(l, k) is the same set as the set of
infinite paths on A(k), i.e., R(k). The transition matrix of the automaton
C(k − 1, k) is calculated in [22]. The labels of C(l, k) are words of length l
in W = {0, 1}. So we can consider the dual automaton of C(l, k) and get its

canonical product. Let P̃(l, k) be the set of infinite paths on the canonical

product of C(l, k). Since P̃(l, k) and P(k) are, by construction, the maximal

invariant set of R(k) under the the mirror involution, we get P̃(l, k) = P(k).

(vii) Here we shall consider the domain exchange transformation on R̂(k) and its
relation on the domain exchange transformation on R(k).

Let {R(k)1, . . . ,R(k)k} be the natural decomposition of R(k) defined in (1),
i.e., R(k)j = ξk(R(k)j), where

R(k)j :=




a ∈ R(k) : a = 1 · · · 1︸ ︷︷ ︸
j−1

0 · · ·




 .

Let R̂(k)j := ξk(R̂(k)j), so the natural decomposition of R̂(k) is {R̂(k)1, . . . ,

R̂(k)k}. Let ψk : Rk−1 → Rk−1 be the reflection map by the center of
symmetry of R(k), mentioned in Remark (i), i.e., ψk(x) = 2ωk − x, where
ωk is the center of symmetry of R(k) described in Corollary 4. According

to the proof of this corollary, ξk(â) = 2ωk − ξk(a) = ψk(ξx(a)), so R̂(k)j =
ψk(R(k)j).

In Section 4 we introduced Fk, the piece exchange map on R(k), so that the

diagram (2) commutes. Since in R̂(k) there is an adic map T̂k, it induces a

map on R̂(k) so that the following diagram is commutative:

R̂(k)
T̂k−−−−→ R̂(k)

ξk

/
/ξk

R̂(k) −−−−→
F̂k

R̂(k).

In Section 2 we pointed out that the dual adic map relates to the adic map, so

that T (̂̂T (â)) = a, or equivalently T̂ (T̂ (a)) = â. Hence, Fk(ψk(F̂k(ψk(x)))) =

x for any x ∈ R(k). Therefore F̂k(R̂(k)j) = ψk(F
−1
k (R(k)j). We can conclude

that the map F̂k is a piece exchange on the decomposition {R̂(k)1, . . . , R̂(k)k}
of R̂(k).
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By Theorem 3 we have that R̂(k) = R(k). We can conclude that there are
two decompositions on this set, that define different piece exchange transfor-
mations. They are related by the symmetry map ψk.
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