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Abstract

In an earlier paper, we introduced a new algorithm which is something like the
modified Jacobi-Perron algorithm, and gave some computer experiments by which
we can expect that the expansion obtained by our algorithm for o = (a,...,a5) €
K* (with some natural conditions on a) becomes periodic for any real number field
K as far as s + 1 = degg(K) < 4. But, it seems very likely that the algorithm
will not work well if degg(K) = 5. In this paper we give a new algorithm and
discuss some properties and experimental results by which we can expect that the
expansion of a by the new algorithm always becomes periodic for any real number
field K with degg(K) < 5.

1. Introduction

Among problems related to higher dimensional continued fractions, a central prob-
lem has been to find a higher-dimensional generalization of Lagrange’s theorem
concerning the periodic continued fractions. Related to this problem the following
conjecture has been believed.

Conjecture. Let 1,a1,...,a5 be a Q—Dbasis of real number field K with [K :
Q] = s+ 1. Then, the expansion of (aq,...,as) by the Jacobi-Perron algorithm is
eventually periodic, cf. [7].

But this conjecture may be false even in the case where s = 2, cf. [8]. We also
presented an algorithm in [8](say, the algebraic Jacobi-Perron Algorithm) which
is something like the Jacobi-Perron algorithm and discussed some experiments by
which we can expect that the expansion of o = («g,...,a,) with some natural
conditions by the algorithm always becomes periodic for any real field K with
s+ 1=degp(K) <4.



INTEGERS: 11B (2011) 2

In this paper, we have two main objectives:

(1) To give computer experiments of expansions of a = (s, ...,as) € K*® (with
some natural conditions on «) obtained by the algorithm [8] by which we can
expect that the expansions are not always periodic, cf. Tables E.

(2) To introduce a new algorithm and give experimental results according to the
new algorithm by which we can expect that the resulting expansion of « always
becomes periodic for any « € K*®(with some natural conditions on ¢) and any
real number field K with dego(K) = s +1 < 5, cf. Tables A-E. We also give
experiments for @ € K with degg(K) = 6 such that the experiments for some
« obtained by our new algorithm are expected to be non periodic except for
some accidental cases. (cf. Tables F, and a problem given in Section 6.)

2. Cubic Case

In this section, we shall give two algorithms AJPA1 and AJPA2. Throughout this
section K denotes a real cubic field (including totally real cases and not totally real
cases). First, we define Algebraic Jacobi-Perron Algorithm(AJPA) presented in [8],
which will be referred to as AJPA1. We denote by X the set defined by

Xk = {(a,8) € K?|1,, 3 are linearly independent over Q} N[0, 1)%.

)

We define the transformation Té(l on Xk by:
1 1
— = 7@ — é if a > B ,
T(l)(a B) = o al « Q VIN@I ~ V/INB)
K AT RS e al 1 1

= — if 2 <0
6 18 B " 18)) " VIN@I T VING)
for (o, B) € Xk, where |z] is the floor function of x and N(z) is the norm of x € K

over Q.
We define the integer-valued functions a5 and e for (, 3) € Xk by:

1 if (€] > B ,
aM(a, f) := o VIN@)] w;wn
5] i V@I S VNG
B if a > B
b (q, ) = H VNG~ NG
) . 1 . o
M it v < Vivor
0 if—2—>_—_L
€D, B) = b VIN@I T VING)
)i e 5

< .
VIN@)]  V/INB)
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We put (for n € Zso):

(@P,b{), ey = (alP (o, B), 081 (ar, B), eV (ax, B))
= (DT (@, 8)), 6T e, 8)), (T, B)),
SW(a, B) = {(aM(a, B), b (a, B), el (@, B)) 122

The sequence S (o, 3) will be referred to as the expansion of (o, 3) € Xk by TI((l);
T [(g ) gives rise to a 2-dimensional continued fraction expansion algorithm, which
will be called AJPA1.

Secondly, we define an algorithm, which will be referred to as AJPA2. For an
algebraic number 6, we mean by ¢y € Q[x] the monic minimal polynomial of §. We

define v(0) := ||1§‘(9)| where D(0) := [L¢g(x)]__, is the differential coefficient of

odo(x) at x = 6.
We define the transformation T1(<2 )

on Xg by:

(é _ H 2o ED it v(a) > v(d) |

20 5y or v(a)=v(3) with a> 3,
R K e

or v(a)=v(f) with a<p.

We define the integer valued functions a(®,5®) and e on X as follows:

o [J3] 1000 =t
5| it v@) <v(B) or via) = v(B) with a <5,
59 (a0 §) _%_ if v(a) > v(B) or v(a)=v(B) with a > 3,
5| ifvie) <v(B)or v(a) = v(g) with a <4,
() = {0 it (a) > ¥(0) or ¥(a) = ¥(6) vith o> 5,
1 if v(a) <v(B) or v(a)=v(B) with a <3

for (o, B) € Xk.
We put (for n € Z~g)
(a2, el?) = (P, B), b (o, B), e (v, B))
= (@1 (@, B), 6T (@, 8)), ePHT" (, B)),
S (a, B) = {(a{P(a, B), bP (ar, B), e (a0, B)) }o.
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The sequence S (a, 3) will be referred to as the expansion of (a, ) € X by TI((Q);
Tk gives rise to a 2-dimensional continued fraction expansion, which will be called
as AJPA2. Throughout our paper a,, 3, are numbers defined by

(@n, Bn) = T2, B), (n € Zso).

Notice that (a @ b, ) € Z>o X L>o x {0,1}, (n € Zxo).
For each (a,b,e) € Z~o X Z>o x {0,1}, we put

0 0 1
01 b ife=0,
1 0 a
Alape) = (1)
1 0 a
00 1| ife=1,
0 1 b

My(a, ) = | gi(, ) @ (. B) @u(a,B) | =4, @, @A @, o).
(al 0177 heq ) (an’bn’sen’)

(2)
Definition ( The set of periodic points.) We define P77 Al and P#7P42 as follows:

PQJPAl {(a, B) € Xk| there exist m,n € Zs¢ such that m # n and

T (o, B) = T ™ (a, B)},
P’ PA% = {(a, B) € Xk| there exist m,n € Zsq such that m # n and
72" (@, ) = 1" (0, ).

If (o, 0) € PI’?JPAj, the expansion SU)(a, 3) by Tl((j) becomes periodic, and vice
versa for each j = 1,2. In what follows we mean by ”the period” the period obtained

Q

Q

by choosing the shortest period and preperiod. For the periodic continued fraction
obtained by AJPA2, we have the following Proposition 1 ,which can be shown in a
way similar to Perron [5].

Proposition 1. Let (a, ) € Pi/PA2. Then, there exists a constant c(a, 3) > 0
and n(a, B) > 0 such that n(«a, 8) < % and both

an, _ c(a,
_dn <
o TZ(OL,B) and m Tn| - n(a B)

hold. Further, n(a, ) = % holds if and only if K is not a totally real cubic field.
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Remarks.

1. Based on our many experiments ( cf. Tables A, B, C, and D), we can hope
that Xx = Pg’/P42,

2. In view of Proposition 1, we see that («, 8) # (¢/, ') if and only ifS(z)(m 5) £
S/, 8", for (a, B), (!, B') € PRIPA2,

Bernstein [1] gave some classes of periodic continued fractions obtained by the
Jacobi-Perron algorithm. We can also give some examples of periodic expansions
obtained by AJPA2 in the similar manner as in [8].

Theorem 2. Let K = Q(v/m? + 1) with m € Zsq. Let (o,8) = (Vm3+1 —
m, ¢/(m3 +1)2 —m?). Then, (o, 3) € PIPAZ,

Proof. Let m > 4. We put u = v/m3 + 1. We get S®® (o, 3) as in the following
tables. We prove the cases where n = 1 in the tables. We can prove the other cases
in the similar manners.

We see easily that |D(a)| = 3u? and |D(3)| = 3u(m? + 1).

We have

ﬂQ a2
D@00 (51~ e Q
ID(B)] |D(a)
= (=2m*u® + (m® + Du +m*)(3u?) — 3u(l + m?)(u? — 2mu + m?).

Putting u = m + ¢, we have

g o
[D(@)D(B)| (W ) W)

= —9em® — 27¢*m* — 24€3m® + 3% — 6e*'m? + 9em? + 6€2m.
Since
(m+e)d=m3+1, (4)
we have 3m3 = 9em® + 9e?>m?* + 3e3m3 and 9em? = 27¢2m* + 27¢3m3 + 9¢*m? |
which implies
— 9em® — 27m* — 2463m3 4 3m3 — 6¢*m? 4+ 9em? + 6>m
= —182m* — 213m? + 9¢2m3 — 6e*m® 4 9em? + 66>m

=9¢2m? + 663m3 + 9¢2m> + 3e¢*m? + 6¢2m > 0.

2
Thus, we have IDB(—B)I — ﬁi)l > 0. Therefore, we have 652) = 1. Then, we see that
_ . i . 2 2 341 4
% =530 = uim < 1, which implies a; = 0. We have % =nu HQT;SL)“HR .

We are going to prove the following inequalities:

3m 1 m2u2+ (mP+ Du+m* _ 3m
-+ > —. (5)
2 2 2m3 +1 2
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First, we see that

m?u? + (m3 + Du+m*  3m _ 6em® + 2¢2m? — m + 2

2m3 + 1 2 4m3 + 2

On the other hand, by virtue of 3em? + 3¢?m + €3 = 1 we see easily that 67}12 <e<

2, 2 3 4
7. Hence, we get 66”””3*2:2?’;2””*26 > 0. Therefore, we have ™% +§$311)“+m
3m - Secondly, by (5) we see that

3m 1 mPu?+ (mP+ Du+m*  —6em® 4 2m® — 2¢2m? + m — 2+ 1
2 2 2m3 + 1 B 4m3 +2
~(=3e+ 1)m3 + (1 —2¢2m)m + (—2e + 1)
N 4m3 + 2
> 0.
Hence we get that bgz) = 32 for even m, and b§2) =31 — 2 for odd m.

Case 1. m=1.

n 112
a? o2
1)1
1]0

by
et

For n >3, a\t) = ailz_)Q, b = bglz_)Q and el = e o

n | ap, On

0 |lu—1 u?—1

1 1+u27u 72+u2+2u
3 3

Forn > 2, a, = ap_o and B, = Bn_o.

Case 2. m = 3.

n [1]2(314]5]6]7]8]9 [10]11]12]13] 14
ad@lolelolslolalol3]2r]3 o |4 [3 |5
D lalsls|2]6]3[9]oflo (o |9 o |6

e l1lolrloltlol1]o]lo o |1 |o 0

n | 1511617 ] 18] 1920 | 21 | 22
a'? 6 |3 9 o lo o |9
v [5 [o |4 o |3 |27]3 |o
e 1 o1t Jo 11 ]1]o

[\V]

For n > 23, alP) = aglzlzz, b\ = b7(12322 and e{) = 6512222
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n | a, Bn
0 | -3+u —9 + 42
1 | 4+ =u’—Su 294 20 + 2
2 -3+u —6+u®—u
T T 2 T 29 72 1T
3 | g+ 3gu" — 15U —g + 3w + U
4 —3+u —3+uZ—2u
R Tl T e TR
6 -3+ u u? — 3u
7 %UZ —6 + %uQ +u
8 —3+u 9+ u? — 6u
9 | —18+u?+3u —3+4+u
10 | =2 + Zhu’ + fopu | g7 + ogu’ — 1o5u
11 | =94 u? —3+4u
—139 9,2 28 9 1,2 3
12 5 t=uT+ U =t Ut — U
13 =6 +u?—u —34+u
14 *Ter%uQJr%u %Jrg—%qul—lgu
15 | =3 +u?—2u —34+u
16 | =g° + ggu” + 35u | 55 + 55u” — ggu
17 | u? —3u —3+u
18 | -6+ %uQ +u %uZ
19 | 94+ w2 —6u —34u
20 | -3+ u —18 + u? + 3u
21 [ gp +op? — v | S+ aput + gsu
For n > 22, ap = 22 and B3, = Br_22.
Case 3. m is even.
n 1 2 3 4 5 6 7 8 9 10
a0 |o2mlo 377”0 m|3m2|m|o 377”
3
b Tm 0 [2m |0 |3m|o0 |0 0 |3m]|o0
e? |1 0o |1 |o 1 oo 01 |o
n 11 12 13 14 15 | 16 17 | 18
A2 1o loamlo 3m |0 [0 0 |3m
(2) 3m 2
by 2m | 0 53 0 m | 3m m |0
211 Jo |1 0o |1 |1 110
For n > 19, alP) = aﬁLQZlg, b = bglls and e = 6512218.
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n | an Bn
0 u—m u? —m?
1 u? —mu +m? 2m*u® — (—2m® — 2)u — 4m* — 3m
2m3 +1 4m3 +2
9 “—m 2u® — mu —m?
2
3 8u® — dmu + 2m? m?u® + (6m® + 8)u — 12m* — 12m
9m3 4 8 9Im3 48
4 u—m u® — mu
5 u? m?u® + (m® + )u — 2m* — 2m
m3 +1 m3 +1
6 u—m u? — 2um + m?>
7 u? + mu — 2m? u—m
72 3 T 2 2
8 3mu® + (3m° + 1)u — 6m” — 2m u® — 2mu + 4m
Im3 41 Im3 41
9 u? —m? uU—m
10 2m*u® — (=2m® — 2)u — 4m* —3m | u® — mu+m?
4m3 + 2 2m3 +1
2u® — mu —m?®
11 -5 uU—m
12 m?u® + (6m> + 8)u — 12m* — 12m | 8u® — dmu + 2m?
Im3 + 8 9m3 + 8
13 | v —mu u—m
14 m*u® + (m® + )u —2m* — 2m u?
m3 41 m3 +1
15 | u® — 2um +m? u—m
16 | u—m u? + mu — 2m?
17 u? — 2mu + 4m? 3m*u® + (3m® + D)u — 6m™ — 2m
Im3 41 Im3 41
For n > 18, ap, = ap—18 and B, = Br—1s-
Case 4. m is odd.
n 1 2 3 4 5 6 7 8 |9
@ o 2m | 0 1Bm+1) |0 m+1]3m®|m|o0
b | 1Bm—1)[m [2m—1]L(m+1) [3m-3]3 3 0 | 3m
e |1 0 |1 0 1 0 0 |o |1
n 10 11 12 13 14 15 16 17 | 18
a? [ 13Bm—-1)|m [2m—1]Lim+1) [3m—-3]3 3 0 |3m
b | o 2m | 0 13m+1) |0 m+1|3m? | m |0
e’ |0 1 |o 1 0 1 1 1 ]o

For n > 19, ag) = a(2)

n—1

3 bg) = 5512218 and eg) = ef_)ls.
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n | an Br
0 u—m u? —m?
1 u? —um +m? 2m2u? + (2m3 + 2)u — 4m* + 2m3
2m3 4+ 1 4m3 + 2
—3m+1
4m3 + 2
2u? + (1 —m)u—m? —m
2 u—m 5
3 8uZ + (—4m — 4)u + 2m? + 4m + 2 (6m? + 2)u? + (6m> + 2m + 8)u
9m3 +3m?2 +3m +9 9m3 +3m?2 +3m + 9
+—12m4+3m3—m2—11m+5
9m3 +3m2 4+ 3m +9
4 u—m uw + (1 —m)u—m
5 u? —u+1 m? —m+ Du? + (m3 —m?2 +m+1u
m3 + 2 m3 +2
—2m* +2m3 +m? —5m+5
+ -
m3 + 2
6 u—m m? + (—2u — 3)m + u? + 3u
7 u? + mu — 2m? u—m
8 3m2u? + (3m® + )u — 6m* —2m u? — 2mu + 4m?
9m3+1 9m3+1
9 u? —m uU—m
" 2m2u? 4+ (2m3 + 2)u — 4m* 4 2m3 uZ — um + m?2
4m3 + 2 2m3 + 1
—3m+1
4m3 + 2
11 2uZ + (1 —m)u —m?2 —m
u—m
2
1o (6m? + 2)u? + (6m> + 2m + 8)u 8u? + (—4m — 4)u + 2m? +4m + 2
Im3 +3m2 +3m +9 9m3 +3m2 4+ 3m + 9
—12m* 4+ 3m® —m? — 1lm +5
9m3 +3m?2 4+ 3m + 9
Bl uw+0-—mu—m u—m
14 mM?—m+ D+ m3—mZ+m+Du | v>—u+1
m3 + 2 m3 + 2
+72m4+2m3+m275m+5
m3 +2
15 [ W2+ (1 —mu—m u—m
16 | u—m u? + mu — 2m?
17 u? — 2mu + 4m? 3m?u? + (3m3 + Du — 6m? — 2m
9m3 +1 9m3 + 1

For n > 18, ap, = ap—18 and ﬁn = ﬁn718~

O

Theorem 3. Let 6, be the root of x> —mz+1=0 (m € Z,m > 3) determined by

0< 68y, <1. Then, K = Q(d,,) is a totally real cubic number field and (5,,,62,) €
PI?JPAQ.

Proof. We see easily that K = Q(d,,) is a totally real cubic number field. We
put (a,B) = (6m,62,). We get S (a, ) as in the following tables. We prove
the cases where n = 1 in the tables. We see easily that |D(a)| = m — 362, and
|D(B)] = m? — md2, — 35,,.
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We have
a2 /62
D@0 (B = o) ©)
=02, (m?* —mé2, — 30,,) — (m — 362,) (M2, — 6,n) (7)

=262 m + 8,m — 653,.
On the other hand, by 63, — mé,, + 1 = 0 we have

3 41
§m — 6m_+’ (8)

m

which implies # <O < % Therefore, we get

208 M 4 6m — 663, > 202, + 8,m — 663,
24

= Opm — 453’n > O (m — W)

> 0.

Thus, we have e; = 0. Then, we see that 2—2 = 0,n, which implies by = 0. We have

% = m — 62,, which implies a; = m — 1. Hence, we have oy = 1 — 62, and 31 = ,,.

n | a by e | any Bn—1
1|{m-110 0 Om (5,2n
2 |1 0 0 1—5fn Om
3|0 m—1l1 —(m—1)02, =6 +1 | =02, —(m—1)0,, + m —1
m(m —2) m(m —2)

410 1 1 Sm —02, — O + 1
5|lm-—211 0 M M

m—2 m—2
6 |1 0 0 —5,2n—5m+1 Om

62 +1 — 1
711 m—211 5“174_ 57”74_

m—2 m—2

For n > 8§, ag) = ag_)@ bng) = b%224, 6%2) = 622_)4 ;1 = ap—5 and By1 = By_s.
[

3. General Definition

In Section 2, we defined AJPA2 for cubic cases, which can be generalized to any
real number field K with d = degg(K) > 3. In this section, we mean by Xk and
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X/, the set defined by

Xi :={(a1,...,aq4_1) € (KN I)?1| there exists a integer 4 with 1 <i <d — 1
such that K = Q(«;) and 1,aq,...,a4-1 are linearly independent over Q}.

The function v(#) defined in Section 2 can be extended to § € K by

V() = mgﬁﬁ K =Q0), (9)
-1 if K #Q(0),

where [d%qbg(x)}w:e which is the differential coefficient of ¢y(x) at © = 6 as in
Section 2.

For o = (a,...,04-1) € Xk, we define p(a) = max{v(a;)|1 <i<d—1}. We
denote by w(«) the number i € {1,...,d — 1} uniquely determined by

o; = max{ay|p(a) = v(ay)}.

We define a transformation T° ]((2 ) on X x as follows:
For a = (a1,...,aq-1) € Xk, Tk () = (b1, .., B4—1) with

— || time.

B =4 w@ L@
(67 (67
Lo ! if i # w(a i=1,...,d—1).
o Lawm (a) ( )

—

We easily see that T1(<2 is well-defined on Xg. The transformation T1(<2 ) gives rise
to an algorithm of continued fraction of dimension d — 1, which will be also referred
to AJPA2. We define ’PféJPAQ, in a similar fashion to Section 2, that is,

PpIPA2 . — Lo € Xg|there exist my, my € Zsg such that m; # mg and

2)Ym 2)m
T (a) = TP (@)}

We put, for g(p, q € Z are coprime)
p
dh(’) := max{[logyo [p| + 1, [logyo la] + 1]}, db(0) :=0.
The function dh can be extended to Q[z]: for g(z) = Z a;x" € Qz], put
=0

dh(g) := max {dh(a;)}.

0<i<n
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We define dh , dhajpas and rdhajpas , namely, for a = (aq,...,aq-1) € Xx and
n e ZZO
% = dh fd/dEQ(Pi)
(@) @ve{f?.?’é_l}{ (P} )}
dhAJPAQ (n; a) = %(Tl((z)n(a)),
(73" ()
rdh na) = ——2L 2
Agpaz(n; @) ah(o)
where p; = ¢, € Q] (i € {1,...,d — 1}) is the monic minimal polynomial of «;.
We define dhajpas and rdhajpasfor a = (a1,...,a4-1) € Xk as follows:
dhajpaz(@) := sup dhajpaz(n;),
TLGZEO
— dha spaz(a)
rdh o) i =—m —
Agpaz(@) dh(a)

The function dhajpaz(n;a) (resp., rdhajpaz(n; ) is referred to as the nth dec-
imal height of o (resp., the nth relative decimal height of «) with respect to the
AJPA2. The function dhajpaz(c) (resp., rdhaspaz(c)) is referred to as the decimal
height of a (resp.,the relative decimal height of o) with respect to the AJPA2.

For an algorithm A like as AJPA2 on Xk, we can define dh 4(n; «), rdh 4(n; a),
dh4(a), rdh4(a) and P analogously.

4. Numerical Experiments

In this section, we compare the expansion obtained by AJPA1, AJPA2, and modified
Jacobi-Perron algorithm (abbr. MJPA). The modified Jacobi-Perron algorithm is a

classical one, which is defined as follows: For x = (21,...,2,) € [0, 1)" (1,21,..., 2,
are linearly independent over Q), we define t(x) € {1,...,n} and a transformation
T by
Ty(x) = max{ri,...,Tp},
T(x1,...,00) = (Ug,...,u),
where
., if i (),
Tap(x)
Ui 2= 1 1
- \‘ J ) ifi = w(x>
Tap(x) Lap(x)
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This algorithm has connection with accelerated Brun’s algorithm [7],[3] and the
modified Jacobi-Perron algorithm by Podsypanin [6]. It is not difficult to see that
the expansion obtained by the modified Jacobi-Perron algorithm is eventually pe-
riodic if and only if it is eventually periodic by accelerated Brun’s algorithm. We
computed the length of the periods of the expansion S ((¢/m), (V/m?2)) for all
m € Z with 2 < m < 5000 (¢/m ¢ Q) and these decimal heights, cf. Table
A. For the calculation of the tables, we used a computer equipped with GiNaC
[4] on GNU C++. We confirmed that ({/m),(Vm?2)) € Pa'/PA2 for all m with
2 <'m < 5000(¢/m ¢ Q). There are no reports on the periodicity of such pairs num-
bers obtained by Jacobi-Perron algorithm or the modified Jacobi-Perron algorithms.
In [2] Elsner and Hasse gave numerical results for 36 pairs of cubic numbers with
respect to the Jacobi-Perron algorithm. Among the pairs, they found 14 periodic
cases, while the other 22 cases are suspicious to be periodic.

We confirmed that ((,,), (72,)) € Pa/P42 for all integers m with 3 < m < 5000,
where 7,,, is the maximal root of 2 — max + 1, cf. Table B. Notice that Q(7,,) is a
totally real cubic field for any integer m > 3.

We computed the length of the period of the expansion of ({/m), (v'm2), (v'm3))
with \/m ¢ Q) obtained by AJPA2 and relative decimal heights for m all 2 < m <
5000, cf. Table C.

We confirmed that ((/m), (Vm?2), (vVm3)) € P#/P42 for all 2 < m < 5000(y/m ¢
Q).
We computed the length of the period of the expansion of
(/m), (V'm2), (¥Vm3), (Vm4)) with &/m ¢ Q) obtained by Tk for m all 2 < m <
2000 and relative decimal heights given above, cf. Table D. We confirmed that
(&/m), (Vm2), (¥Vm3), (Vm?)) € PaIPA2 for all 2 < m < 2000(/m ¢ Q).

We compare the expansions of ((¥/m), (Vm2), (v/m3), (vm*)) with ¢/m ¢ Q)
obtained by AJPA1, AJPA2 and the modified Jacobi-Perron algorithm for 2 <
m < 30, cf. Table E. We seek the periods of the cases related to each algorithms
in so far as the decimal heights are less than 20 and we terminate seeking the
periods if these are greater than 20 or equal to 20. We find all cases of periodicity
related to AJPA2, 8 cases of periodicity related to AJPA1 and no case of periodicity
related to MJPA. We also try to seek the lengths of the periods of the expansion of
(&/m), (Vm2), (Vm3), (Vm4), (Vm?)) with ¥m?2, Vm? ¢ Q obtained by AJPA2,
AJPA1 and MJPA for 2 < m < 30 in so far as the decimal heights are less than 100
and we terminate seeking the periods if these are greater than 100 or equal to 100;
cf. Table F. We find 2 cases of periodicity related to AJPA2, 2 cases of periodicity
related to AJPA1 and no case of periodicity related to MJPA.
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5. A Conjecture

Conjecture
(1) Let K be a real number field with degg(K) < 5. Then, X = Ppa/PA2,

(2) Let K be areal number field with degg(K) < 5. Then, there exists an absolute
constant ¢ independent of K and o € X such that rdhajpaz(a) < ¢ holds.

(3) For some real number fields K with degg(K) = 5, X # Pi’T41 holds.

(4) For some real number fields K with dego(K) = 6, X # Piu’F42 holds.

6. Problem

The algebraic quantity v(6) given by (9) in Section 3 plays an important role in the
definition of our Algorithm AJPA2. Is it possible to find a suitable modification of
the value /() such that the resulting algorithm A has as a property Xy = Py for
any real algebraic number field K with degg(K) = 67

7. Tables

In Table A, below, L 4(mi,m2), Ha(mi, ma) and Ra(m1,m2) are numbers defined
by

L 4(my, m2) := the maximum value of the length of the shortest period of

the expansion of ((¢/m), (Vm2)) by AJPA2 for m; < m < msy with /m ¢ Q,

H = dh & V'm2
A(m1,m2) mlgmgln?;f%g(@ AJPA2(<\/E>a< m >)7
Ra(my,ma) = max rdhagpaz((/m), (Vm?2)),

my1<m<mgy, ym¢Q,

which are well-defined by the periodicity.
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TABLE A

range of m La(my,ma) | Ha(my,mz) | Ra(myi, ms)
myp <m < mo

2 <m <200 474 5 5/3
201 < m < 400 1062 6 3/2
401 < m <600 1806 6 3/2
601 < m < 800 1586 6 6/5
801 < m < 1000 3338 6 6/5
1001 <m < 1200 2910 6 6/5
1201 < m < 1400 3762 7 7/5
1401 < m < 1600 5642 7 7/5
1601 < m < 1800 8694 7 7/5
1801 < m < 2000 8586 7 7/5
2001 < m < 2200 5846 7 7/5
2201 < m < 2400 6958 7 7/5
2401 < m < 2600 8706 7 7/5
2601 < m < 2800 6966 7 7/6
2801 < m < 3000 5522 7 7/6
3001 < m < 3200 12790 7 7/6
3201 < m < 3400 7286 7 7/6
3401 < m < 3600 10818 7 7/6
3601 < m < 3800 8210 8 4/3
3801 < m < 4000 17014 8 4/3
4001 < m < 4200 14574 7 7/6
4201 < m < 4400 17818 8 4/3
4401 < m < 4600 16214 8 4/3
4601 < m < 4800 16402 8 4/3
4801 < m < 5000 11574 8 4/3

15
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TABLE B

range of m Lp(mi,ma) | Hg(mi,ma) | Rp(mi,ma)
myp <m < ma

3 <m <200 1038 6 2
201 < m <400 4588 7 7/3
401 < m <600 5916 8 7/3
601 < m < 800 11352 7 7/4
801 < m < 1000 13020 8 2
1001 <m <1200 15666 8 2
1201 < m < 1400 18946 8 2
1401 < m < 1600 22396 8 2
1601 < m < 1800 30256 8 2
1801 < m < 2000 39788 9 9/4
2001 <m < 2200 28572 9 9/4
2201 <m < 2400 68866 9 9/4
2401 < m < 2600 54294 9 9/4
2601 < m < 2800 54198 9 9/4
2801 < 'm < 3000 56542 9 9/4
3001 <m < 3200 50394 9 9/4
3201 <m < 3400 69318 9 9/4
3401 < m < 3600 60490 9 9/4
3601 < m < 3800 81362 9 9/4
3801 < m <4000 94904 9 9/4
4001 < m < 4200 102666 10 5/2
4201 < m <4400 128206 10 5/2
4401 < m < 4600 119286 10 5/2
4601 < m < 4800 124616 10 5/2
4801 < m < 5000 109448 10 5/2

In Table B, Lg(m1, ms), Hg(my,ms) and Rp(m1, ms) are numbers defined by

Lg(my, ms) := the maximum value of the length of the shortest period of
the expansion of ((7,,,), (12)) by AJPA2 for m; < m < msy, where 7,, is a
maximal root of z* — max + 1,

Hg(my,mo) := max dhagpas({(Tm), (72)),

m1<m<ma

Rp(mi,mq) := oy Bax rdhaspas((Tim), (72,)),

which are well-defined by the periodicity.
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TABLE C

range of m Le(ma,me) | Ho(ma,me) | Ro(ma,mo)
myp < m < ma

2<m <200 2316 8 2
201 < m < 400 9822 9 3/2
401 <m <600 14182 10 10/7
601 < m < 800 16770 10 10/7
801 < m < 1000 12802 11 11/8
1001 < m < 1200 19116 11 11/8
1201 < m < 1400 27178 11 11/8
1401 < m < 1600 26578 11 11/8
1601 < m < 1800 39660 11 11/8
1801 < m < 2000 27726 13 13/8
2001 < m < 2200 32892 11 11/9
2201 <m < 2400 42564 12 4/3
2401 <m <2600 57774 12 4/3
2601 < m < 2800 118830 12 4/3
2801 < m < 3000 41802 12 4/3
3001 < m < 3200 34758 13 13/9
3201 <'m < 3400 72366 12 4/3
3401 < m < 3600 98418 12 4/3
3601 < m < 3800 74874 13 13/9
3801 < m < 4000 47918 13 13/9
4001 < m <4200 99462 12 4/3
4201 < m < 4400 44928 12 4/3
4401 < m < 4600 43934 13 13/9
4601 < m < 4800 79794 12 4/3
4801 < m < 5000 78162 13 13/9

In Table C, Lo(mq,ma), Ho(ma, me) and Re(my,me) are numbers defined by

Le(my, mg) := the maximum value of the length of the shortest period of
the expansion of ((/m), (Vm2), (Vm3)) by AJPA2 for m; <m < my
with vm ¢ Q,

H, = dh v Vm2), (V'm3
C(mlva) mlgmrgnn?;(,\/ﬁ%@ AJPA2(<\/E>7< m >7< m >)a
Rc(mlva) = max mAJPA2(<%>a<4m2>a<4m3>)7

m1<m<maz,/m¢gQ

which are well-defined by the periodicity.
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TABLE D

range of m Lp(my,ma) | Hp(mi,me) | Rp(my, ma)
m; < m < mg

2 <m <200 94548 17 8/3
201 <m <400 235884 19 19/9
401 < m < 600 308576 21 21/10
601 <m < 800 406580 18 9/5
801 < m < 1000 745932 19 19/11
1001 <m <1200 897654 20 20/11
1201 < m < 1400 1176156 14 14/11
1401 < m < 1600 1073388 19 19/11
1601 < m < 1800 1000436 19 19/11
1801 < m < 2000 1528364 19 19/12

In Table D, Lp(my, ms), Hp(mi, ma) and Rp(my, mg) are numbers defined by

Lp(my, my) := the maximum value of the length of the shortest period of
the expansion of ((§/m), (Vm2), (Vm3), (Vm4)) by AJPA2 for
my < m < mgy with ¢m ¢ Q,

HD(mlva) = max ﬁAJPA?(<\5/E>7<577(L2>7<S’rn3>7<S’rn4>)7
my<m<mgz, YmgQ
Rp(my,mz) == max mAJPAZ(<W>7<5m2>7<5m3>7<5m4>)7

mi<m<ms, {m¢Q

which are well-defined by the periodicity.
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TABLE E
AJPA2 AJPA1 MJPA
m | length of | dhaypas | length of | dhajpai | length of | dhyrypa
period period period
2 4 2 1 2 (148)
3 366 5 (4552) (196)
4 2584 8 (2654) (218)
5 2618 7 (5861) (245)
6 136 7 (6359) (192)
7 40 4 76 4 (163)
8 1194 6 294 6 (172)
9 1016 7 (2000) (111)
10 9536 8 (2686) (211)
11 42 6 24 6 (222)
12 1284 12 (2707) (230)
13 204 7 90 (166) (166)
14 17438 9 (3772) (222)
15 2500 8 (4190) (141)
16 2058 7 (6745) (194)
17 3756 9 (4248) (123)
18 516 8 (5175) (165)
19 138 6 156 7 (157)
20 1950 11 (2365) (110)
21 18556 10 (3946) (104)
22 1160 8 408 7 (159)
23 2260 14 (2708) (250)
24 4884 9 (2445) (170)
25 216 7 (4139) (141)
26 2390 8 (2271) (303)
27 3906 9 (1667) (117)
28 450 7 (3853) (116)
29 126 8 34 8 (158)
30 9486 10 (4648) (278)
For a,, = (({/m), (Vm2),(¥Vm3),(vVm?*)) with 1 < m < 30 and &/m ¢ Q,

we seek to find a period of the expansions related to each algorithms during the
decimal heights dh,(n; ay,) keeps being less than 20 and we terminate seeking to
find a period if it exceeds 20 or is equal to 20. The number n with parentheses in
the columns dh, denotes the minimum number n such that dh. (n; ;) exceeds 20
or is equal to 20.
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TABLE F

m AJPA2 AJPA MJPA

length of EAJPAQ length of ﬁAJPAl length of d_hMJPA

period period period

2 5 3 8 3 (1285)
3 (20935) (7427) (1226)
5 (17777) (6966) (1115)
6 (17543) (6601) (1047)
7 (18516) (8014) (1193)
10 (18080) (7158) (1055)
11 (17286) (6517) (1108)
12 (20031) (6836) (1023)
13 (16304) (6666) (1155)
14 (16774) (6607) (1183)
15 (17406) (6197) (1166)
17 (15241) (6955) (1014)
18 140 7 54 7 (1131)
19 (15681) (7534) (1268)
20 (19786) (7184) (1098)
21 (15430) (6268) (1030)
22 (14375) (7043) (1140)
23 (19745) (7200) (1106)
24 (18464) (6490) (1170)
26 (16857) (6983) (1126)
28 (15433) (7385) (1161)
29 (15742) (6986) (1260)
30 (17328) (5962) (1270)

20

For o, = ((/m), (Vm2), (Vm3), (VmA), (Vm?)) with 1 < m < 30 and V/m?2,
Vm3 ¢ Q), we seek to find a period of the expansions related to each algorithms
during the decimal heights dh,(n; o/, ) keeps being less than 100 and we terminate
seeking the periods if it exceeds 100 or is equal to 100. The number n with paren-
theses in the columns dh, denotes the minimum number n such that dh, (n; )
exceeds 100 or is equal to 100.
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