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Abstract
The beta-conjugates of a base of numeration β > 1, β being a Parry number, were
introduced by Boyd, in the context of the Rényi-Parry dynamics of numeration
system and the beta-transformation. These beta-conjugates are canonically asso-
ciated with β. Let β > 1 be a real algebraic number. A more general definition
of the beta-conjugates of β is introduced in terms of the Parry Upper function
fβ(z) of the beta-transformation. We introduce the concept of a germ of curve at
(0, 1/β) ∈ C2 associated with fβ(z) and the reciprocal of the minimal polynomial
of β. This germ is decomposed into irreducible elements according to the theory
of Puiseux, gathered into conjugacy classes. The beta-conjugates of β, in terms
of the Puiseux expansions, are given a new equivalent definition in this new con-
text. If β is a Parry number the (Artin-Mazur) dynamical zeta function ζβ(z) of
the beta-transformation, simply related to fβ(z), is expressed as a product formula,
under some assumptions, a sort of analog to the Euler product of the Riemann zeta
function, and the factorization of the Parry polynomial of β is deduced from the
germ.

1. Introduction

For β > 1 a Parry number, Boyd [9] introduced the notion of the beta-conjugates
of β in the context of the Rényi - Parry numeration system [25] [21] [7] [15]. As
he has shown it in numerous examples, the investigation of beta-conjugates is an
important question. These beta-conjugates, up till now defined for Parry numbers,
are canonically associated to β and to the dynamics of the beta-transformation. Our
aim is to show that their definition can be given in a larger context, namely for any
algebraic number β > 1, and that the theory of Puiseux provides a geometric origin
to the beta-conjugates of β; for doing it, once β is given by its minimal polynomial,
we first put into evidence that a germ of curve “at 1/β” does exist and develop new
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tools deduced from the canonical decomposition of this germ in order to express the
beta-conjugates of β in terms of the Puiseux expansions [24] [11] of the germ.

Though the existence of this germ of curve was discovered by the author some
years ago, the present note is the first account on it and its potential applications. It
establishes a deep relation between the theory of singularities of curves in Algebraic
Geometry and the dynamical system of numeration ([0, 1], Tβ) where β > 1 is an
algebraic number and Tβ is the beta-transformation. The existence of this germ of
curve brings new tools to the Rényi-Parry numeration system, namely the Puiseux
series associated to the germ, and defines new directions of research for old questions.
For instance, if (βi) is a sequence of Salem numbers which converges to a real
number β, then it is known [5] that β is a Pisot or a Salem number, but how is
distributed the collection of the beta-conjugates and the Galois conjugates of βi,
with i large enough, with respect to that of the limit β ? This question is merely
a generalization of the classical question of how is distributed the collection of the
Galois conjugates of βi with respect to that of β ? Why should we add the beta-
conjugates ? Because a new phenomenon appears which generally does not exist
with only the Galois conjugates: under some assumptions the collections of Galois-
and beta- conjugates may have equidistribution limit properties on the unit circle
(§3.6 in [33]) if the two collections of conjugates are simultaneously considered.
Both collections of conjugates are expected to play a role in limit and dynamical
properties of convergent sequences of real algebraic numbers > 1 in general. A
basic question is then to understand the role and the relative density of the beta-
conjugates in this possible equidistribution process, in particular if the limit β is an
integer ≥ 2 or is equal to 1 (context of the Conjecture of Lehmer).

Conversely the curve canonically associated with this numeration dynamical sys-
tem is of interest for itself (critical points, monodromy, ...). It will be studied
elsewhere.

In this first contribution we obtain useful expressions for the beta-conjugates as
Puiseux expansions of β and of the minimal polynomial of β, towards this goal.

As usual now we use the new terminology, which is in honor of W. Parry. The
old terminology used by W. Parry himself in [21] transforms as follows: we now
call Parry number a β-number [21], and Parry polynomial of a Parry number β
the characteristic polynomial [21] of the β-number β. As previously a simple Parry
number β is a Parry number β for which the Rényi β-expansion dβ(1) of unity is
finite (i.e. ends in infinitely many zeros). The exact definitions are given in Section
3.

If β is a Parry number, the roots of the Parry polynomial of β, denoted by β(i),
are called the conjugates of β. A conjugate of β is either a Galois conjugate of β or
a beta-conjugate, if the collection of beta-conjugates of β is not empty.

Let β > 1 be a real number and dβ(1) = 0.t1t2t3 . . . be the Rényi β-expansion
of 1. Since this Rényi β-expansion of 1 controls the language in base β [20], the
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properties of the analytic function constructed from it, called Parry Upper function
at β, defined by fβ(z) := −1 +

∑
i≥1 tizi, is of particular importance.

Ito and Takahashi [17] have shown that the Parry Upper function at a Parry
number β, of the complex variable z, is related to the (Artin-Mazur) dynamical
zeta function

ζβ(z) := exp




∑

i≥1

#{x ∈ [0, 1] | Tn
β (x) = x}

n
zn



 (1)

of the beta-transformation Tβ (Artin and Mazur [2], Boyd [9], Flatto, Lagarias and
Poonen [14], Verger-Gaugry [32] [33]). Namely, if β is a nonsimple Parry number,
with dβ(1) = 0.t1t2 . . . tm(tm+1 . . . tm+p+1)ω (where ( )ω means infinitely repeated),

fβ(z) = − 1
ζβ(z)

= −
P ∗β,P (z)
1− zp+1

(2)

where P ∗β,P (X) = (−1)dP

(∏dP

i=1 β(i)
)
×

∏dP

i=1(X − 1
β(i) ) = XdP Pβ,P (1/X) is the

reciprocal of the Parry polynomial Pβ,P (X) of β, of degree dP = m+p+1 (m is the
preperiod length and p + 1 is the period length in dβ(1), if β is a nonsimple Parry
number, with the convention p + 1 = 0 for a finite Rényi β-expansion of unity (for
β a simple Parry number), with the convention m = 0 if dβ(1) is a purely periodic
expansion [33]); if β is a simple Parry number, with dβ(1) = 0.t1t2 . . . tm, then

fβ(z) = − 1− zm

ζβ(z)
= − P ∗β,P (z). (3)

The zeros of fβ(z) are the poles of ζβ(z). The set of zeros of fβ(z) is the set (1/β(i))i

of the reciprocals of the conjugates (β(i))i of β. The geometry of the conjugates
(β(i))i of β was carefully studied by Solomyak [29] [32]: these conjugates all lie in
Solomyak’s fractal Ω, a compact connected subset of the closed disc D(0, 1+

√
5

2 ) in
the complex plane (Figure 1), having a cusp at z = 1, a spike on the negative real
axis, symmetrical with respect to the real line [29] [33].

If β > 1 is an algebraic number but not a Parry number, some relations are
expected between fβ(z) and ζβ(z), though not yet determined. Indeed, on one
hand, fβ(z) is an analytic function on the open unit disc which admits |z| = 1 as
natural boundary by Szegő-Carlson-Polyá’s Theorem [12] [33]; fβ(z) admits 1/β as
zero of multiplicity one, which is its only zero in the interval (0, 1). On the other
hand ζβ(z) is an analytic function defined on the open unit disc D(0, 1/β), which
admits a nonzero meromorphic continuation on D(0, 1), by [16] [22] [26], or by
Baladi-Keller’s Theorem 2 in [3]. Whether the zeros of fβ(z) correspond to poles of
ζβ(z) is unknown. The behaviour of the dynamical zeta function ζβ(z) on the unit
circle remains unknown, i.e. we do not know whether |z| = 1 is a natural boundary
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for ζβ(z) or not. But the multiplicity of the pole 1/β of ζβ(z) is known to be one [16]
[22] [26]. For β > 1 an algebraic number, as a consequence of Theorem 1 in [3], the
coefficients in (1) obey the following asymptotics of growth (Pollicott, §5.2 in [23])
: for any δ > 0 there exist an integer M > 0 and constants (i) λ1,β,λ2,β, . . . ,λM,β,
with |λi,β| > 1 + δ (i = 1, . . . ,M), and (ii) C1,β, C2,β, . . . , CM,β ∈ C, such that

#{x ∈ [0, 1] | Tn
β (x) = x} =

M∑

i=1

Ci,βλn
i,β + O((1 + δ)n). (4)

In the case where β > 1 is a Parry number, ζβ(z) is a rational fraction and, from
(2) and (3), (4) transforms into the following exact formula (after Pollicott, §1 in
[23]):

#{x ∈ [0, 1] | Tn
β (x) = x} =

k∑

i=1

(ρi)n −
dP∑

i=1

(β(i))n, (5)

where (ρi)i is the collection of k-th roots of unity, (k, dP ) = (p+1,m+p+1) if β is
nonsimple with dβ(1) = 0.t1t2 . . . tm(tm+1 . . . tm+p+1)ω and (k, dP ) = (m,m) if β is
simple with dβ(1) of length m (i.e. dβ(1) = 0.t1t2 . . . tm). Moreover, β is a Perron
number since it is a Parry number (Lind, [20]): hence the asymptotic growth of (5)
is dictated by the geometry and the moduli of the beta-conjugates of β, all being
algebraic integers lying in Solomyak’s fractal Ω, of modulus less than or equal to
(1 +

√
5)/2, and by the geometry and the moduli of the Galois conjugates of β, all

being less than β, by definition.
Our objective consists in showing that a germ of curve exists in a neighbourhood

of the point (0, 1/β) in C2 (this point being the origin of this germ) each time β > 1
is a real algebraic number, that is, roughly speaking, a germ of curve located at
the reciprocal 1/β of the base of numeration β. The construction of this germ of
curve comes from a (unique) writting of the one-variable analytic function fβ(z) as
a (unique) two-variable analytic function parametrized by P ∗β (z) and z−1/β, where
P ∗β (X) = XdegβPβ(1/X) is the reciprocal of the minimal polynomial Pβ(X) of β:

fβ(z) = G
(
P ∗β (z), z − 1/β

)
, (6)

where G = Gβ(U,Z) ∈ C[[U ]][Z], degZ(Gβ(U,Z)) < deg β, is convergent, with
coefficients in C, possibly in some cases in the algebraic number field Kβ := Q(β),
or in a finite algebraic extension of Kβ .

The existence of this germ of curve arises from the fact that β > 1 is a real
number which is an algebraic number, since it is constructed from the imposed
parametrization (P ∗β (z), z− 1/β), which makes use of the minimal polynomial of β.
This parametrization of Gβ(U,Z) leads to the identity (6).

Applying the theory of Puiseux [11] [13] to (6) provides a canonical decomposition
of this germ into irreducible curves, conjugacy classes, as stated in Theorem 8. This
decomposition brings to light several new features of the Parry Upper function fβ(z):
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(i) a new definition of the beta-conjugates of β in terms of the Puiseux expansions
of the germ (Definition 9),

(ii) the explicit relations between the field of coefficients of the Puiseux series of
the germ Gβ , and the beta-conjugates,

(iii) a product formula, as given by (26); in particular, if β is a Parry number,
from (2) and (3), this product gives an analog of the Euler product of the Riemann
zeta function for the dynamical zeta function ζβ(z), where the product is taken over
the different rational conjugacy classes of the germ (as given by (33)).

In addition to the usual Galois conjugation relating the roots of the minimal
polynomial of β, a new conjugation relation, called “Puiseux-conjugation”, among
the beta-conjugates, is defined.

The reader accustomed to numeration systems and to the theory of Puiseux
for germs of curves can skip Section 3 and Section 4 to proceed directly to beta-
conjugates in Section 5.

2. Origin of the Work

The present note finds its origin in [27], for the parametrization by (P ∗β (z), z − 1
β ),

and in the two articles [8] [4], for the idea of developping a two-variable analytic
function canonically associated with the beta-transformation and the minimal poly-
nomial of the base of numeration β. Let us recall them.

In Theorem IV in [27], for constructing convergent families of Salem numbers
(τm)m for which the limit is a (nonquadratic) Pisot number θ, Salem introduces
polynomials of the following type

Qm(z) = zmPθ(z) + P ∗θ (z) or Qm(z) = (zmPθ(z)− P ∗θ (z)) /(z − 1) (7)

where Qm(τm) = 0 and Pθ(X) is the minimal polynomial of the limit θ. We may
consider Qm(z) in (7), in one or the other form, as parametrized by the couple
(P ∗θ (z), z) (ordered pair). This parametrization, and its consequences, were devel-
opped and extended by Boyd [8] to a more general form, by adding ingeniously and
in a “profitable” way a second variable t, as follows

Q(z, t) = znPθ(z)± t zk P ∗θ (z)

with n, k integers. The advantage of introducing a second variable t, as “continu-
ous parameter”, lies in the fact that an algebraic curve z = Z(t) is associated to
Q(z, t) = 0, with a finite number of branches and multiple points [10]. Boyd [8]
shows that the existence of this curve gives a deep insight into the geometry of the
roots of Q(z, t) = 0, for some values of t, in particular those roots on the unit circle.
Using these polynomials Bertin and Boyd [4] explore the interlacing of the Galois
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conjugates of Salem numbers with the roots of associated polynomials (Theorem A
and Theorem B in [4]).

3. Functions of the Rényi-Parry Numeration System in Base β > 1

A Salem number is an algebraic integer greater than 1 for which all the Galois
conjugates lie in the closed unit disc, with at least one conjugate on the unit circle;
the degree of a Salem number is even, greater than 4, and its minimal polynomial
is reciprocal (a Salem number is Galois-conjugated to its inverse) [5]. A Perron
number is either 1 or an algebraic integer β > 1 such that all its Galois conjugates
β(i) satisfy: |β(i)| < β for i = 1, 2, . . . ,deg(β) − 1, if the degree of β is denoted by
deg(β) (with β(0) = β). A Pisot number β is a Perron number &= 1 which has the
property: |β(i)| < 1 for i = 1, 2, . . . ,deg(β)− 1 (with β(0) = β).

Let β > 1 be a real number and define the beta-transformation Tβ : [0, 1] →
[0, 1], x → {βx} ((x), resp. *x+, denotes the closest integer to the real number x,
≥ x, resp. ≤ x, and {x} its fractional part). Denote T 0

β =Id, T j
β = Tβ(T j−1

β ),
and tj = tj(β) := *β T j−1

β (1)+, j ≥ 1 (the dependency of each tj to β will not
be indicated in the sequel). The digits tj belong to the finite alphabet Aβ =
{0, 1, . . . , (β − 1)}. The Rényi β-expansion of unity is denoted by

dβ(1) = 0.t1t2t3 . . . and corresponds to 1 =
∑

j≥1

tjβ
−j (8)

obtained by the Greedy algorithm applied to 1 by the successive negative powers
of β. The set of successive iterates of 1 under Tβ , hence the sequence (ti)i≥1, has
the important property that it controls the admissibility of finite and infinite words
written in base β over the alphabet Aβ , that is the language in base β, by the
so-called Conditions of Parry [15] [20] [33].

A Parry number β is a real number > 1 for which the sequence of digits (ti)i≥1

in the Rényi β-expansion of unity dβ(1) = 0.t1t2t3 . . . either ends in infinitely many
zeros, in which case dβ(1) is said to be finite and β is said a simple Parry number,
or is eventually periodic. In the second case, if the preperiod length is zero, dβ(1)
is said to be purely periodic. The set of Parry numbers is denoted by PP .

Let Q be the set of algebraic numbers. Denote by T, resp. S, resp. P, the set of
Salem numbers, resp. Pisot numbers, resp. Perron numbers. After Bertrand-Mathis
[6], Schmidt [28], Lind [20], the following inclusions hold

S ⊂ PP ⊂ P ⊂ Q.

The question of the dichotomy P = PP ∪ (P \ PP ) is an important open question,
which amounts to finding a method for discrimating when a Perron number > 1 is
a Parry number or not. In particular, for Salem numbers, though conjectured to
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be nonempty with a positive density [10], the set T \ PP is not charaterized yet.
For now, it is a fact that all the small Salem numbers, for instance those given by
Lehmer in [19], and many others known, are Parry numbers [8] [10]. The set of
simple Parry numbers contains N \ {0, 1} and is dense in (1,+∞) [21].

Let β be a Parry number, with dβ(1) = 0.t1t2 . . . tm(tm+1 . . . tm+p+1)ω. If m &= 0,
the integer m is the preperiod length of dβ(1); if p + 1 ≥ 1, the period length of
dβ(1) is p + 1. The iterates of 1 under Tβ are polynomials: Tn

β (1) = βn − t1βn−1 −
t2βn−2 . . .−tn (by induction). This observation allows Boyd in [9] to define uniquely
the Parry polynomial of β. Indeed, writting rn(X) = Xn−t1Xn−1−t2Xn−2 . . .−tn,
we have rn(β) = Tn

β (1) and β satisfies the polynomial equation Pβ,P (β) = 0, where

Pβ,P (X) :=






rm+p+1(X)− rm(X) if m > 0 (p + 1 ≥ 1),
rp+1(X)− 1 if m = 0 (p + 1 ≥ 1, “purely periodic”),
rm(X) if m ≥ 1 (p + 1 = 0, “simple”).

(9)
The Parry polynomial Pβ,P (X) of the Parry number β, monic, of degree dP =
m+p+1, multiple of the minimal polynomial Pβ(X) of β, can also be defined from
the rational fraction ζβ(X): its reciprocal P ∗β,P (z), of the complex variable z, is
the denominator of the meromorphic function ζβ(z), given in both cases by (2) and
(3) (“simple” case). Boyd [9] defines the beta-conjugates of β as being the roots
of Pβ,P (X), canonically attached to β, which are not the Galois conjugates of β.
Beta-conjugates are algebraic integers.

For any real number β > 1, from the sequence (ti = ti(β))i≥1 we form the
Parry Upper function fβ(z) := −1 +

∑
i≥1 tizi at β, of the complex variable z.

The terminology “Parry Upper” comes from the fact that (ti)i≥1 gives the upper
bound for admissible words in base β, where being lexicographically smaller than
this upper bound, with all its shifts, means satisfying the Conditions of Parry for
admissibility [15] [20] [33].

When β is a Parry number, the inverses ξ−1 of the zeros ξ of the analytic function
fβ(z) are exactly the roots of the Parry polynomial Pβ,P (X) of β (from (2), (3);
[33]). In particular we have fβ(1/β) = 0 by (8). The multiplicity of the root 1/β in
fβ(z) is one by the fact that f ′β(1/β) =

∑
i≥1 itiβi−1 > 0. Hence in the factorization

of Pβ,P (X) the multiplicity of the minimal polynomial Pβ(X) of β is one. But the
determination of the multiplicity of a beta-conjugate of β and of the factorization
of the Parry polynomial of β is an open problem [9] [33]. We give a partial solution
to this problem by showing how this factorization can be deduced from the germ of
curve “at 1/β” and the theory of Puiseux.

Though the degree dP of the Parry polynomial Pβ,P (X) of a Parry number β be
somehow an obscure function of β, the Parry polynomial Pβ,P (X), say =

∑dP

i=0 aiXi,
has the big advantage, as compared to the minimal polynomial Pβ(X) of β, to
exhibit a naive height H(Pβ,P ) = maxi=0,1,...,dP |ai| in {*β+, (β)} [33]. This control
of the height by the base of numeration β has an important consequence: given a
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convergent family of Parry numbers (βj)j , an Equidistribution Limit Theorem for
the conjugates (β(i)

j )i,j holds with a limit measure which is the Haar measure on the
unit circle [33], under some assumptions. Solomyak’s fractal Ω is densely occupied
by all the conjugates of all the Parry numbers [29], with a major concentration of
conjugates occuring in a neighbourhood of the unit circle.

Beta-conjugates are then equivalently defined either as roots of Pβ,P (X), as in-
verses of zeros of fβ(z), or as inverses of poles of the dynamical zeta function ζβ(z).
The three equivalent definitions arise from the relations (2) and (3) (“simple” case),
deduced from [17] [14].

The Galois- and beta- conjugates β(i) of a Parry number β all lie in Solomyak’s
fractal [29], represented in Figure 1. The left extremity of the spike on the real
negative axis is −(1 +

√
5)/2 and the general bound |β(i)| ≤ (1 +

√
5)/2 holds for

all i and all Parry numbers β; this upper bound was also found by Flatto, Lagarias
and Poonen [14].

Figure 1: Solomyak’s fractal Ω.

Let β be a Parry number. The three following assertions are obviously equivalent:
(i) β has no beta-conjugate, (ii) the Parry polynomial of β is irreducible, (iii) the
Parry polynomial of β is equal to the minimal polynomial of β. For some families
of Parry numbers [18] [33] it is possible to deduce the irreducibility of their Parry
polynomials.

By Szegő-Carlson-Polyá Theorem [12], the Parry Upper function fβ(z) is a ratio-
nal fraction if and only if β is a Parry number [33]. If β > 1 is an algebraic number,
but not a Parry number, fβ(z) is an analytic function on the open unit disc with
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the unit circle as natural boundary.
For β > 1 any algebraic number, except a Parry number, we define a beta-

conjugate of β as the inverse of a zero of the function fβ(z), if it exists. A priori, it
may happen that fβ(z) admits the only zero 1/β in its domain of definition D(0, 1),
with |z| = 1 as natural boundary. The problem of the existence of zeros of fβ(z)
in D(0, 1) is linked to the gappiness (the terminology gappiness was introduced in
[31] as a notion which is much weaker than that of lacunarity; indeed lacunarity is
classically associated to Hadamard gaps) of the sequence (ti) and its Diophantine
approximation properties [31] [1]; this gappiness cannot be too large at infinity
and the Ostrowski “quotients of the gaps” are dominated by log M(β)/ log β, where
M(β) is the Mahler measure of β.

By a Theorem of Fuchs [32], if fβ(z) is such that (ti) admits Hadamard gaps,
then the number of zeros of fβ(z) is infinite in D(0, 1). This occurence, of having
Hadamard gaps, is conjectured to be true for infinitely many transcendental num-
bers β > 1 but to be impossible as soon as β > 1 is an algebraic number. If β > 1
is an algebraic number, the number of zeros of fβ(z) in D(0, 1), i.e. the number
of beta-conjugates of β of modulus > 1, is conjectured to be finite. This finiteness
property of the number of beta-conjugates would be in agreement with the existence
of an integer M ≥ 1 in (4), in the context of the dynamical zeta function.

4. Fractionary Power Series and Puiseux Expansions for Germs of Curves

In the sequel, we will follow Casas-Alvero [11], Duval [13], Walker [34], Walsh [35]
and restrict ourselves to what is needed for the application of the theory of Puiseux
to beta-conjugates of algebraic numbers > 1, to fix notations. The terminology
”fractionary” is taken from [11]. Let k be a (commutative) field of characteristic
zero and let G(X,Y ) ∈ k[[X,Y ]]. We consider the formal equation

G(X,Y ) = 0

and are interested in solving it for Y , that is we want to find some sort of series in
X, say Y (X), with coefficients in k, such that

G(X,Y (X)) = 0, (10)

G(X,Y (X)) being the series in X obtained by substituting Y (X) for Y in G. The
series Y (X) is called a Y -root of G. When k = C, this general problem was
considered by Newton. In the following we will consider k = C and will consider
rationality questions over smaller fields k in Section 6.

For solving (10), we need to deal with series in fractionary powers of X. First,
let us define the field of fractionary power series over C. Denote C((X)) the field of
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the formal Laurent series
∞∑

i=d

aiX
i, d ∈ Z, ai ∈ C.

An element of C((X1/n)) has the form

s =
∑

i≥r

aiX
i/n.

The field of fractionary power series is denoted by C0X1 and by definition is
the direct limit of the system

{
C((X1/n)), ιn,n′

}
,

where, for n dividing n′ (with n′ = dn),

ιn,n′ : C((X1/n)) → C((X1/n′
)),

∑
aiX

i/n →
∑

aiX
di/dn.

A Puiseux series is by definition a fractionary power series

s =
∑

i≥r

aiX
i/n

for which the order in X

oX(s) :=
min{i | ai &= 0}

n

is (strictly) positive. A natural representant of its class in the direct limit is such
that n and gcd{i | ai &= 0} have no common factor; then n is called the ramification
index (or polydromy order) of s, denoted by ν(s).

If s ∈ C((X1/n)) is a Puiseux series, with n = ν(s) its ramification index, the
series σε(s), εn = 1, will be called the conjugates of s, where

σε(s) =
∑

i≥r

εiaiX
i/n.

The set of all (distinct) conjugates of s is called the conjugacy class of s. The
number of different conjugates of s is ν(s).

Let us recall the Newton polygon of a two-variable formal series. Let

G = G(X,Y ) =
∑

i>0,j>0

Ai,jX
iY j ∈ C[[X,Y ]]

and obtain the discrete set of points with nonnegative integral coefficients

∆(G) := {(i, j) | Ai,j &= 0},
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called the Newton diagram of G. Let (R+)2 := {(x, y) | x ≥ 0, y ≥ 0} be the first
quadrant in the plane R2 and consider

∆′(G) := ∆(G) + (R+)2.

Then the convex hull of ∆′(G) admits a border which is composed of two half-lines
(a vertical one, an horizontal one, parallel to the coordinate axes) and a polygonal
line, called the Newton polygon of G, joining them, denoted by N (G). The height
h(N (G)) of G is by definition the maximal ordinate of the vertices of the Newton
polygon N (G).

If y(X) =
∑

q≥1 aq

(
X1/ν(y)

)q is a Puiseux series, write Gy = Gy(X,Y ) =
∏ν(y)

i=1 (Y − yi(X)), the yi, i = 1, . . . , ν(y), being the conjugates of y. The series
Gy is irreducible in C[[X,Y ]]. The theory of Puiseux allows a formal decomposition
as follows.

Theorem 1. For any G = G(X,Y ) ∈ C[[X,Y ]],

(i) there are Puiseux series y1, y2, . . . , ym, m ≥ 0, in C0X1 so that G decom-
poses in the form

G = uXr Gy1 Gy2 . . . Gys

where r ∈ Z, and u is an invertible series in C[[X,Y ]],

(ii) the height of the Newton polygon of g is the sum of the ramification indices

h(N (G)) = ν(y1) + ν(y2) + · · ·+ ν(ys)

and the Y -roots of G are the conjugates of the yj(X), j = 1, . . . , s.

The Newton-Puiseux algorithm applied to the Newton polygon N (G) of G allows
to compute all the Y -roots of G(X,Y ) and the ramification indices [11] [13] [34].

Definition 2. Let k be a (commutative) field of characteristic zero and g(X,Y ) &= 0
an element of k[[X,Y ]] such that g(0, 0) = 0. A parametrization of g is an ordered
pair (µ1(T ), µ2(T )) of elements of k[[T ]] which satisfies

(i) µ1 and µ2 are not simultaneously identically zero,

(ii) µ1(0) = µ2(0) = 0,

(iii) g(µ1(T ), µ2(T )) = 0 ∈ k[[T ]].

Denote C{x1, x2, . . . , xq} the ring of convergent power series, and turn to conver-
gence questions. Let s =

∑
i≥0 aiXi/n be a fractionary power series, with ai ∈ C.

We say that s is a convergent fractionary power series if and only if the ordinary
power series

s(tn) =
∑

i≥0

ait
i
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has nonzero convergence radius. This condition does not depend upon the integer
n and the set of convergent fractionary power series C{X} is a subring of C0X1.

If s is convergent, with ν(s) = n, one may compose the polydromic (multivalued)
function z → z1/n and the analytic function defined by s(tn) in a neighbourhood
of t = 0: we obtain a polydromic function s, defined in a neighbourhood of z = 0,
which we call the (polydromic) function associated with s. If s is convergent, all
its conjugates are also convergent and any of them defines the same polydromic
function s as s. If s is convergent, the associated function s takes ν(s) different
values on each z0 &= 0 in a suitable neighbourhood of 0.

In the context of convergent series the theory of Puiseux makes Theorem 1 more
accurate as follows.

Theorem 3. If G(x, y) ∈ C{x, y} is a convergent series, then all its y-roots are
convergent, and there are an invertible series v ∈ C{x, y} and a nonnegative inte-
ger r, both uniquely determined by G, and convergent Puiseux series y1, y2, . . . , ys,
uniquely determined by G up to conjugation, so that

G = vxrGy1Gy2 . . . Gys . (11)

If G is a polynomial in Y , i.e., if G ∈ C[[X]][Y ], and if the coefficients aq of the
Puiseux expansions involved in its decompositon are algebraic numbers, denote by
L = Q(a1, a2, . . .) the number field generated by the coefficients. Assume [L : Q] <
+∞ and let r := [L : Q]. Let σ1,σ2, . . . ,σr, the r embeddings of L into Q. Denote

C = C(y(X)) :=





∑

q≥1

σi(aq)
(
ζj
ν(y)X

1/ν(y)
)
| i = 1, . . . , r , j = 0, 1, . . . , ν(y)






the L-rational conjugacy class of y(X). By Proposition 2.1 in Walsh [35], assuming
that all the Puiseux expansions of X in G are distinct,

ν(y)∏

i=1

(Y − yi(X))

is irreducible in Q((X))[Y ], of degree ν(y) in Y , and
∏

yi∈C

(Y − yi(X)) (12)

is irreducible in Q((X))[Y ] of degree ν(y)r/r0 in Y where

r0 := {σ : L → Q | ∃t ∈ Z such that σ(aq) = aqζ
tq
ν(y) for all q ≥ 1}.

If, in addition, G is assumed convergent, gathering the Puiseux expansions by L-
rational conjugacy classes, whose number is (say) e, the collection of such classes
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being (Cj)j=1,...,e, allows to write G in the form of the product of a unit v ∈ C[[x, y]]
by a nonnegative power xr of the first variable x and a product of e irreducible
polynomials in Q[[x]][y] as follows:

G = vxr
e∏

j=1

∏

yi∈Cj

(y − yi(x)). (13)

5. Beta-Conjugates as Puiseux Expansions

Let β > 1 be an algebraic number, not necessarily a Parry number. In the sequel we
will not consider the case where β > 1 is a rational integer: indeed, in this case, β
has no Galois conjugate unequal to β, and fβ(z) = −1 + βz is a polynomial having
only the root 1/β; therefore β has no beta-conjugate.

The key observation, that the three functions z − 1/β, P ∗β (z), fβ(z) cancel at
1/β, each of them with multiplicity one, leads to consider the point (0, 1/β) of C2

as natural origin of the germ of curve. Therefore we consider the new variable
Z := z − 1/β and make the change of variable z → Z into fβ(z) and P ∗β (z), as
follows:

f̃β(Z) := fβ(z), P̃ ∗β (Z) := P ∗β (z).

Lemma 4. Let β > 1 be a real number. Then

f̃β(Z) =
∑

j≥1

λjZ
j (14)

with λj = λj(β) :=
∑

q≥0 tj+q

(
j + q

j

)(
1
β

)q
.

Proof. Expanding fβ(z) = −1 +
∑

i≥1 ti(z − 1
β + 1

β )i as a function of Z = z − 1/β
readily gives (14).

Let β > 1 be any real number. The series λj = λj(β), j ≥ 1, have nonegative
terms and, by Stirling’s formula applied to the binomial coefficients, are convergent.

Proposition 5. Let β > 1 be a real number. For all j ≥ 1, the map (1,+∞) →
R+,β → λj(β) is right-continuous. The set of discontinuity points is contained in
the set of simple Parry numbers.

Proof. Assume β > 1 a real number which is not an integer. Let us fix j ≥ 1. There
exists u > 0 such that the open interval (β − u,β + u) contains no integer. Then
any β′ ∈ (β − u,β + u) is such that its Rényi β′-expansion dβ′(1) of 1 has digits



INTEGERS: 11B (2011) 14

tq(β′) within the same alphabet which is Aβ = {0, 1, . . . , *β+}. Let ε > 0. Then
there exists q0 ≥ j such that

∑

q>q0

(
q
j

)(
1

β − u

)q−j

<
ε

4*β+ .

Then, for all β′ ∈ (β − u,β + u), since 1/β′ ≤ 1/(β − u), the following uniform
inequality holds:

∑

q>q0

tq(β′)
(

q
j

)(
1
β′

)q−j

<
ε

4
. (15)

Now there are are two cases: either β is a simple Parry number, or not.
(i) Assume β > 1 is not a simple Parry number. Then the sequence (ti(β))i

is infinite (does not end in infinitely many zeros). There exists η > 0, η < u,
small enough such that t1(β′) = t1(β), t2(β′) = t2(β), . . . , tq1(β′) = tq1(β) for all
β′ ∈ (β − η,β + η) with q1 = q1(β′) > q0, tq1+1(β′) &= tq1+1(β), for which, since
β′ → β′q−j , q = j, j + 1, . . . , q0, are all continuous,

∣∣∣∣∣∣

q0∑

q=j

tq(β)
(

q
j

)((
1
β′

)q−j

−
(

1
β

)q−j
)∣∣∣∣∣∣

< ε/2. (16)

In this nonsimple Parry case, recall [21] that the function β′ → q1(β′) is monotone
increasing and locally constant when the variable β′ tends to β (i.e. dβ′(1) and
dβ(1) start by the same string of digits t1t2 . . . tq1 when β′ is close to β).

(ii) Assume that β > 1 is a simple Parry number. Let dβ(1) = 0.t1t2 . . . tN be
its Rényi β-expansion of unity (N ≥ 1). If N > q0, there exists η > 0, η < u, such
that |β′ − β| < η =⇒ tq(β′) = tq(β) for all q = 1, . . . , N − 1, and (16) also holds. If
j ≤ N ≤ q0, we express β in base β and β′ in base β′ in the sense of Rényi: then
we deduce that there exists η > 0, η < u, such that β ≤ β′ < β + η implies

∣∣∣∣∣∣

q0∑

q=N+1

tq(β′)
(

1
β′

)q−j
∣∣∣∣∣∣
<

ε

4
1

maxq=N+1,...,q0{
(

q
j

)
}

and ∣∣∣∣∣∣

N∑

q=j

tq(β)
(

q
j

)((
1
β′

)q−j

−
(

1
β

)q−j
)∣∣∣∣∣∣

< ε/4; (17)

in this case, ∣∣∣∣∣∣

q0∑

q=N+1

tq(β′)
(

q
j

)(
1
β′

)q−j
∣∣∣∣∣∣
< ε/4. (18)



INTEGERS: 11B (2011) 15

If q0 ≤ N , we deduce, for all β′ ∈ (β,β + η),

|λj(β)− λj(β′)| ≤

∣∣∣∣∣∣

q0∑

q=j

tq(β)
(

q
j

)((
1
β′

)q−j

−
(

1
β

)q−j
)∣∣∣∣∣∣

+

∣∣∣∣∣
∑

q>q0

tq(β′)
(

q
j

)(
1
β′

)q−j

−
∑

q>q0

tq(β)
(

q
j

)(
1
β

)q−j
∣∣∣∣∣ < ε/2 + 2ε/4 = ε, (19)

and, in the case j ≤ N ≤ q0, we decompose the sum
∑q0

q=j as
∑N

q=j +
∑q0

q=N+1 in
the upper bound (19), using (17) and (18), to obtain |λj(β)− λj(β′)| < ε as well. If
j > N , then λj(β) = 0; there exists η > 0, η < u, such that β ≤ β′ < β + η implies

∣∣∣∣∣∣

q0∑

q=j

tq(β′)
(

1
β′

)q−j
∣∣∣∣∣∣
<

3ε
4

1

maxq=j,...,q0{
(

q
j

)
}
. (20)

Hence, using (15) and (20), for β ≤ β′ < β + u,

|λj(β′)| ≤

∣∣∣∣∣∣

q0∑

q=j

tq(β′)
(

q
j

)(
1
β′

)q−j
∣∣∣∣∣∣
+

∣∣∣∣∣
∑

q>q0

tq(β′)
(

q
j

)(
1
β′

)q−j
∣∣∣∣∣ <

3ε
4

+
ε

4
= ε

and the right-continuity limβ′→β+ λj(β′) = 0 for j > N .
Let us now assume that β > 1 is an integer. Then dβ(1) = 0.β, t1(β) = β,λ1(β) =

β and tj(β) = 0,λj(β) = 0 for j ≥ 2. The same arguments as in (ii), with N = 1,
lead to the result.

Lemma 6. If β > 1 is an algebraic number of minimal polynomial Pβ(X) = a0 +
a1X + a2X2 + . . . + adXd, ai ∈ Z, a0ad &= 0, then

P̃ ∗β (Z) = γ1Z + γ2Z
2 + . . . + γdZ

d, (21)

with γq =
∑d

j=q ad−j

(
j
q

)(
1
β

)j−q
∈ Kβ , γd = a0 &= 0, γ1 = P ∗

′

β (1/β) &= 0.

Proof. The relation P̃ ∗β (Z) = P ∗β (z − 1
β + 1

β ) leads to

P̃ ∗β (Z) =
d∑

j=0

j∑

q=0

ad−j

(
j
q

)(
1
β

)j−q

Zq =
d∑

q=0

d∑

j=q

ad−j

(
j
q

)(
1
β

)j−q

Zq.

The constant term is zero since Pβ(β) =
∑d

j=0 ajβj = 0.
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Theorem 7. Let β > 1 be an algebraic number and Pβ(X) its minimal polynomial.
Then there exists a unique polynomial G = Gβ(U,Z) ∈ C[[U ]][Z] in Z, degZG <deg
β, such that (P̃ ∗β (Z), Z) is a parametrization of G− f̃β ∈ C[[U,Z]], i.e. such that

Gβ(P̃ ∗β (Z), Z)− f̃β(Z) = 0. (22)

Proof. Uniqueness. Assume that G(1) and G(2) are such that G(1)−f̃β and G(2)−f̃β

are both parametrized by (P̃ ∗β (Z), Z). Then (G(1) − G(2))(P̃ ∗β (Z), Z) = 0 with
G(1)−G(2) ∈ C[[U ]][Z], degZ (G(1)−G(2)) < d. Assume G(1) &= G(2) and G(1)−G(2)

irreducible in Z (no loss of generality). Then this equation defines a plane curve

Cβ := {(u, z) ∈ C2 | (G(1) −G(2))(u, z) = 0}

along with a ramified covering π : Cβ → C of the complex plane. Above all
but finitely many points u of the U -plane, the fiber π−1(u) has cardinality ≤
d − 1. The implicit function theorem states that there exist δ analytic func-
tions z1(u), . . . , zδ(u), δ ≤ d − 1, such that π−1(u) = {zi(u) | i = 1, . . . , δ} and
(G(1) − G(2))(u, zi(u)) = 0 for i = 1, . . . , δ. Each of them parametrizes one sheet
of the covering in a neighbourhood of u. The contradiction comes from the fact
that the polynomial P ∗β (z) is irreducible, of degree d, that the parametrization
(P̃ ∗β (Z), Z) is imposed. Therefore the number of sheets δ should be equal to d.
Contradiction.

Existence: by construction. Let U := P̃ ∗β (Z). From (21),

U = γ1Z + γ2Z
2 + . . . + γdZ

d ⇒ Zd =
1
γd

U −
(

γ1

γd
Z +

γ2

γd
Z2 + . . . +

γd−1

γd
Zd−1

)
.

It follows that Zd ∈ Kβ [U ][Z], with degZ(Zd) < d. The idea consists in replacing
all powers Zj , j ≥ d, in f̃β(Z) by polynomials in Z, of degree < d, with coefficients
in Kβ [U ]. Let us prove recursively that Zh ∈ Kβ [U ][Z], with degZ(Zh) < d, for all
h ≥ d: assume Zh :=

∑d−1
i=0 vi,hZi with vi,h ∈ Kβ [U ] and show Zh+1 ∈ Kβ [U ][Z],

with degZ(Zh+1) < d. Indeed,

Zh+1 :=
d−1∑

i=0

vi,h+1Z
i = (Zh)Z =

d−2∑

i=0

vi,hZi+1 + vd−1,hZd

=
d−2∑

i=0

vi,hZi+1 + vd−1,h

[
1
γd

U −
(

γ1

γd
Z +

γ2

γd
Z2 + . . . +

γd−1

γd
Zd−1

)]
.

Hence

v0,h+1 =
1
γd

vd−1,hU and vi,h+1 = vi−1,h −
γi

γd
vd−1,h, 1 ≤ i ≤ d− 1, (23)
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and the result. We deduce

f̃β(Z) =
∑

h≥1

λhZh =
d−1∑

h=1

λhZh +
∑

h≥d

λhZh =
d−1∑

i=1

λiZ
i +

∑

h≥d

λh

(
d−1∑

i=0

vi,hZi

)

=
d−1∑

i=0



λi +
∑

h≥d

λhvi,h



Zi ∈ C[[U ]][Z]. (24)

Equation (22) is exactly (6) with the usual variable z.
We call Gβ the germ associated with the analytic function fβ(z), or with the

base of numeration β.
Following Theorem 3 and the relations (23) and (24), the decomposition of the

germ Gβ shows that the coefficients of its Puiseux series do possess a “right - conti-
nuity” property, with β, via the functions λj (Proposition 5), and an “asymptotic”
property, linked to the invariants of the companion matrix form of (23). This will
be developped further elsewhere. The interest of such a remark may consist in
studying globally the properties of the family of germs (Gβ) when β > 1 varies in
the set of algebraic numbers.

Theorem 8. Let β > 1 be an algebraic number, Pβ(X) its minimal polynomial and
Gβ the germ associated with the Parry Upper function fβ(z). Then

Gβ(U,Z) = v U Gy1Gy2 . . . Gys (25)

where v = v(U,Z) ∈ C{U,Z} is an invertible series, and the convergent Puiseux
series

y1(U) =
∑

i≥1

ai,1U
i/ν(y1), . . . , ys(U) =

∑

i≥1

ai,sU
i/ν(ys)

are uniquely determined by Gβ, up to conjugation, with

Gβ(P ∗β (z), z − 1
β

) = fβ(z) =

v(P ∗β (z), z− 1
β

)P ∗β (z)
ν(y1)∏

i=1

(
z− 1

β
−yi,1(P ∗β (z))

)
. . .

ν(ys)∏

i=1

(
z− 1

β
−yi,s(P ∗β (z))

)
, (26)

and

h(N (Gβ)) =
s∑

i=1

ν(yi) < deg β. (27)
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Proof. Theorem 3 is applied to the germ Gβ(U,Z). Since fβ(z) is convergent in a
neighbourhood of 1/β, Gβ and all the Puiseux expansions involved in its decompo-
sition are convergent in this neighbourhood. The power of U in (32) is necessarily
equal to 1 since f ′β(1/β) > 0, i.e. 0 is a simple zero of Gβ(P̃ ∗β (Z), Z).

Since degZGβ(U,Z) < deg β, by the definition of the height of the Newton
polygon of the germ Gβ , we readily deduce (27) from Theorem 1 (ii).

For β > 1 any algebraic number, a beta-conjugate ξ of β is by definition a
complex number such that (i) ξ−1 is a zero of fβ(z) which lies in its domain of
definition, (ii) ξ is not a Galois conjugate of β.

For Parry numbers β, (2) and (3) show that this definition is exactly the usual
one which uses the Parry polynomial of β [9].

Equation (26) gives the exhaustive list of zeros of fβ(z), and therefore suggests
the following alternate definition of the beta-conjugates of β (where the natural
boundary |z| = 1 of fβ(z) is taken into account, if β is not a Parry number).

Definition 9. Let β > 1 be an algebraic number.
(i) A complex number ξ which satisfies

0 = ξ−1 − β−1 −
∑

i≥1

ai

(
P ∗β (ξ−1)

)i/n
, (28)

where y(U) =
∑

i≥1 aiU i/n, n = ν(y) is any Z-root, is called a cancellation point
of the germ Gβ(U,Z). We say that the cancellation point ξ lies on the Z-root
y(U). The set of cancellation points is denoted by Sβ . Equation (28) has to be
understood as the composition of the (convergent) two analytic functions z → z −
β−1−

∑
i≥1 aizi and z → P ∗β (z) with the multivalued (polydromic) analytic function

z →
(
P ∗β (z)

)1/n
. Since ξ is not a Galois conjugate of β the function z → P ∗β (z) does

not cancel on a small neighbourhood of ξ−1; this give a sense to (28).
Since the Puiseux expansions in (28) are convergent, truncating them to a few

terms transforms (28) into a finite collection of equations whose solutions provide
the geometry of the beta-conjugates of β with a certain approximation, controlled
by the error terms. This approach will be continued elsewhere.

(ii) If β is a Parry number, a beta-conjugate of β is a cancellation point of the
germ. The set Sβ is the set of beta-conjugates of β, and Sβ ⊂ Ω Solomyak’s fractal.

(iii) If β is not a Parry number, a beta-conjugate of β is a cancellation point
ξ ∈ Sβ of the germ such that |ξ| > 1.

(iv) A cancellation point ξ ∈ Sβ , lying on the Z-root y(U), is said Puiseux-
conjugated to another cancellation point ξ′ ∈ Sβ if ξ′, lying on a Z-root y′(U), is
such that y(U) and y′(U) belong to the same conjugacy class of the germ Gβ(U,Z).

If β > 1 is an algebraic number which is not a Parry number the natural bound-
ary |z| = 1 of fβ(z) is the natural boundary of at least one of the factors in (26), but
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not necessarily of all of them a priori. In other terms it may occur that Puiseux-
conjugation may be addressed to cancellation points of the germ Gβ which lie be-
yond the natural boundary of fβ(z), some branches possibly spiraling outside the
domain of definition of fβ(z).

6. Rationality, Descent Over Q, and Factorization of the Parry
Polynomial of a Parry Number

Let β be a Parry number, with m as preperiod lenght and p + 1 as period length in
dβ(1). Then the Parry polynomial of β is, for non-simple Parry numbers,

Pβ,P (X) = Xm+p+1 − t1X
m+p − t2X

m+p−1 − . . .− tm+pX − tm+p+1

−Xm + t1X
m−1 + t2X

m−2 + . . . + tm−1X + tm (29)

and
Pβ,P (X) = Xp+1 − t1X

p − t2X
p−1 − . . .− tpX − (1 + tp+1) (30)

in the case of pure periodicity. For simple Parry numbers, the Parry polynomial is

Pβ,P (X) = Xm − t1X
m−1 − t2X

m−2 − . . .− tm−1X − tm (31)

with m ≥ 1 [15] [20] [33]. The height (= maximum of the moduli of the coefficients)
of the Parry polynomial lies in {*β+, (β)}; if β is a simple Parry number, then it
is equal to *β+ [33]. In the decomposition of Pβ,P (X) as the product of irreducible
polynomials with coefficients in Q, as Pβ,P = Pβ π1 π2 . . . πσ, we may identify the
irreducible factors πj as arising from the conjugacy classes of the germ Gβ . This
requires some assumptions.

Theorem 10. Let β > 1 be a Parry number, Pβ(X) its minimal polynomial,
Pβ,P (X) its Parry polynomial decomposed as Pβ,P = Pβ π1 π2 . . . πσ into irreducible
factors. Let Gβ be the germ associated with β and L be the field of coefficients of the
Puiseux series of Gβ. Assume that all Puiseux expansions of X in Gβ are distinct.
Assume [L : Q] < +∞ and, for each L-rational conjugacy class C, the product

∏

yi∈C

(Y − yi(X)) lies in Q[X][Y ].

If e is the number of L-rational conjugacy classes (Cj)j=1,...,e, then
(i) e = σ < deg β, and
(ii) up to the order,

π∗j (X) =
∏

yi∈Cj

(X − 1
β
− yi(P ∗β (X))) , j = 1, . . . , e. (32)
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Proof. This is a consequence of Proposition 2.1 in Walsh [35]. Under the present
assumptions πi &= πj if i &= j and the decomposition of Gβ , as given by (13), allows
to write fβ(z) as a product of distinct irreducible factors in Q[X][Y ]. From (2) and
(3) the identification of the factors readily gives e = σ, the irreducible factors π∗j
and the unit v = −(1 − zk)−1, with k = m if β is simple, with dβ(1) of length m,
and k = p + 1 if β is not simple, with dβ(1) of period length p + 1.

From (27), the number σ of irreducible factors which arises from L-rational con-
jugacy classes of Puiseux expansions is smaller than deg β.

7. A Product Formula for ζβ(z), β a Parry Number

Using (2) and (3) and assuming the hypotheses of Theorem 10 we obtain the fol-
lowing reformulation of the dynamical zeta function ζβ(z) as a finite product over
the e L-rational conjugacy classes, e < deg β,

ζβ(z) = v
1

P ∗β (z)

e∏

j=1



 1
∏

yi∈Cj

(
z − 1

β − yi(P ∗β (z))
)



 . (33)

The unit v is equal to (1− zk) with k = m if β is simple, with dβ(1) of length m,
and k = p + 1 if β is not simple, with dβ(1) of period length p + 1. The poles of
ζβ(z) are either the reciprocals ξ−1 of the cancellation points ξ of the germ Gβ of
β, or the reciprocals of the Galois conjugates of β.

The assumptions in Theorem 10 could probably be weakened, for obtaining the
same decomposition (33).
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