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Abstract

Let z1, . . . , zN be complex numbers, situated on the unit circle |z| = 1 so that any open arc
of length ϕ ∈ (0,π] of the circle contains at most n of them. Write S := z1 + · · · + zN .
Complementing our earlier result, we show that

|S| ≤ n
sin(ϕN/2n)

sin(ϕ/2)
.

Consequently, given that |S| ≥ αN with α ∈ (0, 1], there exists an open arc of length ϕ
containing at least

ϕ/2

g−1(αg(ϕ/2))
N

of the numbers z1, . . . , zN ; here g(x) = sinx/x and g−1 is the function, inverse to g on the
interval 0 < x ≤ π.

Let U := {z ∈ C : |z| = 1} and suppose that for integers N ≥ n ≥ 1 and real ϕ ∈ (0,π], the
numbers z1, . . . , zN ∈ U have the property that any open arc of U of length ϕ contains at most n
of them. Extending a well-known lemma of Freiman [F62, Lemma 1], we showed in [L05] that,
writing S := z1 + · · · + zN , one has

|S| ≤ 2n−N + 2(N − n) cos(ϕ/2); (1)

thus, if |S| ≥ αN with α ∈ [0, 1], then there is an open arc of U of length ϕ containing at least

α + 1− 2 cos(ϕ/2)

2(1− cos(ϕ/2))
N (2)

of the numbers z1, . . . , zN . Estimate (1) is sharp in the range N/2 ≤ n ≤ N : equality is attained,
for instance, if 2n−N of the numbers z1, . . . , zN equal 1, and the remaining 2N − 2n of them
are evenly split between exp(iϕ/2) and its conjugate exp(−iϕ/2). Accordingly, the bound (2)
is sharp if α ≥ cos(ϕ/2). Indeed, if in this case n is the smallest integer, greater than or equal
to the expression in (2), then N/2 ≤ n ≤ N and the configuration just described provides an
example of z1, . . . , zN with |S| ≥ αN (as it follows from a brief computation) and no open arc
of length ϕ containing more than n of the numbers z1, . . . , zN .
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On the other hand, (1) and (2) can be far from sharp if n < N/2 and α < cos(ϕ/2), respec-
tively. For instance, straightforward averaging shows that there is an arc of length ϕ, containing
at least (ϕ/2π)N of z1, . . . , zN . This nearly trivial bound is better, than (2), if

α < 1− (2− ϕ/π)(1− cos(ϕ/2));

that is, when both ϕ and α are small. Below we establish an estimate which remains reasonably
sharp for small values of n and α and, in particular, is better than the trivial estimate for the
whole range of parameters.

Theorem 1. Let N and n be positive integers and let ϕ ∈ (0,π]. Suppose that the numbers
z1, . . . , zN ∈ U have the property that any open arc of U of length ϕ contains at most n of them.
Then, writing S := z1 + · · · + zN , we have

|S| ≤ n
sin(ϕN/2n)

sin(ϕ/2)
.

For the rest of the note, we write g(x) := sinx/x and denote by g−1 the function, inverse to
g on the interval 0 < x ≤ π. Notice, that g−1 is defined and monotonically decreasing on [0, 1).

Corollary 1. Let N be a positive integer and let ϕ ∈ (0,π]. Suppose that z1, . . . , zN ∈ U and
write S := z1 + · · · + zN . If |S| ≥ αN with α ∈ (0, 1], then there is an open arc of U of length
ϕ containing at least

ϕ/2

g−1(αg(ϕ/2))
N

of the numbers z1, . . . , zN .

To deduce Corollary 1 from Theorem 1 observe that if N,ϕ, z1, . . . , zN , S, and α are as in the
corollary, and if n is the largest number of points among z1, . . . , zN on an open arc of length

ϕ, then αN ≤ n
sin(ϕN/2n)

sin(ϕ/2)
by Theorem 1, whence α

sin(ϕ/2)

ϕ/2
≤ sin(ϕN/2n)

ϕN/2n
. Equivalently,

αg(ϕ/2) ≤ g(ϕN/2n), and the assertion follows by applying g−1 to both sides.

Note that the bound of Corollary 1 is attained if α = sin(dϕ/2)/(d sin(ϕ/2)), where 1 ≤ d ≤
2π/ϕ is an integer and N is divisible by d. For, set in this case n := N/d and consider a d-term
geometric progression with the ratio exp(iϕ), situated on U. Placing exactly n points at each
term of this progression, we obtain a system of N complex numbers such that no open arc of U
of length ϕ contains more than n = (ϕ/2)N/g−1(αg(ϕ/2)) of them, while their sum equals αN
in absolute value.

Finally, we notice that the bound of Corollary 1 is better than (2) for all α and ϕ such that
α ≤ cos(ϕ/2); we omit the (rather tedious) verification.

The remainder of the note is devoted to the proof of Theorem 1. We start with a lemma.

Lemma 1. Suppose that the function f ∈ L1[−π,π] attains values in the interval [0, 1]. If∫ π

−π f(θ) dθ = 2c (with a real c), then
∫ π

−π

f(θ) cos θ dθ ≤ 2 sin c.
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Proof. Let Ic denote the indicator function of the interval [−c, c]. Then

f(θ)(cos θ − cos c) ≤ Ic(θ)(cos θ − cos c)

for all θ ∈ [−π,π], and it follows that
∫ π

−π

f(θ) cos θ dθ =

∫ π

−π

f(θ)(cos θ − cos c) dθ + 2c cos c

≤
∫ c

−c

(cos θ − cos c) dθ + 2c cos c

= 2 sin c.

!
Remark. The estimate of Lemma 1 is attained for f = Ic. Thus, what the lemma actually
says is that for a given value of

∫ π

−π f(θ) dθ, the integral
∫ π

−π f(θ) cos θ dθ is maximized if f is
concentrated around 0 (where cos θ is maximal).

Proof of Theorem 1. Without loss of generality we can assume that S is real.

For θ ∈ [−π,π], let K(θ) denote the number of those indices j ∈ [1, N ] such that there is a
value of arg zj which is within less than ϕ/2 from θ; with a little abuse of notation, we can write

K(θ) := #{j ∈ [1, N ] : | arg zj − θ| < ϕ/2}.
Notice that K(θ) is piecewise continuous and attains values in [0, n]. Furthermore, it is readily
verified that ∫ π

−π

K(θ) dθ = ϕN,

and applying Lemma 1 to the function f(θ) := K(θ)/n we conclude that
∫ π

−π

K(θ) cos θ dθ ≤ 2n sin
ϕN

2n
.

To complete the proof we observe that the integral in the left-hand side is

%
( N∑

j=1

∫ arg zj+ϕ/2

arg zj−ϕ/2

exp(iθ) dθ
)

= %
( N∑

j=1

zj · 2 sin(ϕ/2)
)

= 2S sin(ϕ/2).

!
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