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Abstract

Let z1,...,zy be complex numbers, situated on the unit circle |z| = 1 so that any open arc
of length ¢ € (0,7 of the circle contains at most n of them. Write S := 2z + --- + zp.
Complementing our earlier result, we show that
sin(pN/2n)

sin(p/2)
Consequently, given that |S| > aN with a € (0,1], there exists an open arc of length ¢
containing at least

S| <n

2
_ v/ N
g9 (ag(e/2))
of the numbers zq,..., zy; here g(x) = sinx/x and g~
interval 0 < x < 7.

1'is the function, inverse to g on the

Let U := {z € C: |z| = 1} and suppose that for integers N > n > 1 and real ¢ € (0, 7], the
numbers z1, ..., zy € U have the property that any open arc of U of length ¢ contains at most n
of them. Extending a well-known lemma of Freiman [F62, Lemma 1], we showed in [L05] that,
writing S := 27 + - -+ + 2z, one has

|S| <2n — N 4 2(N —n) cos(y/2); (1)

thus, if |S| > aN with a € [0, 1], then there is an open arc of U of length ¢ containing at least
a+1—2cos(p/2) 2)

2(1 — cos(p/2))

of the numbers z1, ..., zy. Estimate (1) is sharp in the range N/2 < n < N: equality is attained,
for instance, if 2n — N of the numbers z1,..., 2y equal 1, and the remaining 2N — 2n of them
are evenly split between exp(i@/2) and its conjugate exp(—ip/2). Accordingly, the bound (2)
is sharp if @ > cos(¢/2). Indeed, if in this case n is the smallest integer, greater than or equal
to the expression in (2), then N/2 < n < N and the configuration just described provides an

example of z1,...,zy with |[S| > aN (as it follows from a brief computation) and no open arc
of length ¢ containing more than n of the numbers z1,..., zy.
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On the other hand, (1) and (2) can be far from sharp if n < N/2 and a < cos(y/2), respec-
tively. For instance, straightforward averaging shows that there is an arc of length ¢, containing
at least (¢/2m)N of z1,...,zx. This nearly trivial bound is better, than (2), if

a <1—(2—¢/m)(1 - cos(p/2));
that is, when both ¢ and « are small. Below we establish an estimate which remains reasonably

sharp for small values of n and « and, in particular, is better than the trivial estimate for the
whole range of parameters.

Theorem 1. Let N and n be positive integers and let ¢ € (0,m]. Suppose that the numbers
21,...,2n € U have the property that any open arc of U of length ¢ contains at most n of them.

Then, writing S := 21 + - - - + zn, we have
5] < sin.(gpN/Qn)
sin(p/2)

For the rest of the note, we write g(x) := sinz/x and denote by ¢! the function, inverse to
g on the interval 0 < x < 7. Notice, that g~! is defined and monotonically decreasing on [0,1).

Corollary 1. Let N be a positive integer and let p € (0,7]. Suppose that z1,...,zy € U and
write S :=z1 + -+ zy. If |S| > aN with a € (0, 1], then there is an open arc of U of length
@ containing at least

2
_ o/ N
97 (ag(e/2))
of the numbers zq, ..., zn.

To deduce Corollary 1 from Theorem 1 observe that if N, ¢, 21,..., zn,.5, and « are as in the
corollary, and if n is the largest number of points among z1,..., 2y on an open arc of length
i N/2 i 2 i N/2
@, then aN < n M by Theorem 1, whence « sin(e/2) < sin( N/ n) Equivalently,

sin(/2) ©/2 T oN/2n
ag(p/2) < g(pN/2n), and the assertion follows by applying g~' to both sides.

Note that the bound of Corollary 1 is attained if o = sin(dy/2)/(dsin(¢/2)), where 1 < d <
27/ is an integer and N is divisible by d. For, set in this case n := N/d and consider a d-term
geometric progression with the ratio exp(ip), situated on U. Placing exactly n points at each
term of this progression, we obtain a system of N complex numbers such that no open arc of U
of length ¢ contains more than n = (p/2)N/g~ (ag(p/2)) of them, while their sum equals alN
in absolute value.

Finally, we notice that the bound of Corollary 1 is better than (2) for all a and ¢ such that
a < cos(p/2); we omit the (rather tedious) verification.

The remainder of the note is devoted to the proof of Theorem 1. We start with a lemma.

Lemma 1. Suppose that the function f € L'[—m, 7] attains values in the interval [0,1]. If
f:r f(0)dl = 2¢ (with a real c), then

/ f(0) cosfdb < 2sinc.
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Proof. Let I. denote the indicator function of the interval [—c, ¢]. Then
f(0)(cos@ — cosc) < 1.(0)(cos — cosc)
for all # € [—m, ], and it follows that

/f(Q)cosGd@z/ f(0)(cosf — cosc)df + 2¢cosc

< / (cos @ — cosc) df + 2ccosc
= 2sinec.
U

Remark. The estimate of Lemma 1 is attained for f = I.. Thus, what the lemma actually
says is that for a given value of [ f(0)df, the integral 7 f(6)cos6df is maximized if f is
concentrated around 0 (where cos# is maximal).

Proof of Theorem 1. Without loss of generality we can assume that S is real.

For 0 € [—m, 7], let K(#) denote the number of those indices j € [1, N| such that there is a
value of arg z; which is within less than ¢/2 from 6; with a little abuse of notation, we can write

K(0) :=#{j € [1,N]: |argz; — 0] < ¢/2}.
Notice that K () is piecewise continuous and attains values in [0,n]. Furthermore, it is readily
verified that

/ K(0)df = ¢N,
and applying Lemma 1 to the function f(0) := K(0)/n we conclude that
T N
/ K(0)cosfdf < 2nsin %

To complete the proof we observe that the integral in the left-hand side is

?R(é/:rwﬁwﬂ exp(i6) d0> = %(ZN:ZJ : 28111((,0/2)) = 2Ssin(p/2).

rgzi—p/2 j=1
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