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Abstract

Given relatively prime positive integers a1, . . . , ak, let S denote the set of all linear com-
binations of a1, . . . , ak with nonnegative integral coefficients. The Frobenius problem is to
determine the largest integer g(S) which is not representable as such a linear combination.
A related question is to determine the set B(S) of integers x that are representable as dif-
ferences x = s1− a1 = · · · = sk − ak for some si ∈ S. The construction B(S) can be iterated
to obtain a chain of numerical semigroups. We compare this chain to the one obtained by
iterating the Lipman semigroup construction. In particular, we consider these chains for
generalized Suzuki semigroups.

1. Introduction

Let a1, . . . , ak be relatively prime positive integers. Then all sufficiently large integers are
representable as linear combinations of a1, . . . , ak with nonnegative integral coefficients. The
Frobenius problem is to determine the largest nonrepresentable integer. Here, we are in-
terested in a related problem. To describe this variant, we use the language of numerical
semigroups. For a general reference on numerical semigroups, see [1], [3], [4], or [5].

Throughout this paper, N denotes the set of positive integers and N0 := N∪ {0} denotes
the set of nonnegative integers. A numerical semigroup is an additive submonoid of N0 whose
complement in N0 is finite. Given a1, . . . , ak as above, the numerical semigroup generated
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by a1, . . . , ak is S = 〈a1, . . . , ak〉 where

〈a1, . . . , ak〉 :=

{
k∑

i=1

xiai : xi ∈ N0

}
.

Since there is no loss of generality in doing so, we assume that S is expressed in terms of a
minimal generating set; that is,

a1 < · · · < ak and ai /∈ 〈a1, . . . , ai−1, ai+1, . . . , ak〉
for all 1 ≤ i ≤ k. In this case, the integers a1, . . . , ak are called the generators of S, and S
is said to be k-generated. The Frobenius number of S, denoted g(S), is the largest integer
in N0 \ S. We refer to the book [11] where a complete account of the Frobenius problem
can be found. Since this paper only concerns numerical semigroups, we often use the term
semigroup for short.

In this paper, we consider two semigroups that can be constructed from a given one: the
dual and the Lipman semigroup. The dual of a numerical semigroup S is given by

B(S) := {x ∈ N0 : x + S \ {0} ⊆ S} .

One can check that B(S) is a numerical semigroup containing S. We notice that g(S) is the
largest element of B(S) \ S. The Lipman semigroup of S is defined to be

L(S) := 〈a1, a2 − a1, a3 − a1, . . . , ak − a1〉
where the integers a1, . . . , ak form a minimal generating set of S. Note that S ⊆ L(S).
Determining the dual of S is related to the Frobenius problem since g(S) is the largest
element of B(S) \ S.

The dual and Lipman constructions can be iterated as in [1] to obtain two chains of
numerical semigroups:

B0(S) ⊆ B1(S) ⊆ B2(S) ⊆ . . . ⊆ Bβ(S)(S) := N0

and
L0(S) ⊆ L1(S) ⊆ L2(S) ⊆ . . . ⊆ Lλ(S)(S) := N0.

Because B(S) ⊆ L(S), it is natural to ask which semigroups S satisfy

Bi(S) ⊆ Li(S) for all i ∈ N0. (1)

It was conjectured in [1] that (1) holds for all numerical semigroups S. While this was shown
to be false in [2], it does hold for several large classes of numerical semigroups, including
2-generated semigroups [2], those generated by generalized arithmetic progressions [9], and
3-generated telescopic semigroups [10]. Here, we show that (1) holds for generalized Suzuki
semigroups. This gives an infinite family of telescopic 4-generated semigroups for which (1)
holds.

It remains an open question to characterize those S for which Bi(S) ⊆ Li(S) for all
i ∈ N0; in particular, we do not know if (1) holds in the following cases: S is 3-generated; S
is symmetric; and S is telescopic. The smallest known counterexample to (1) is 4-generated
but is not symmetric.
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2. Generalized Suzuki semigroups

Given positive integers p and n, let

S(p, n) = 〈a, b, c, d〉

where
a = p2n+1,
b = p2n+1 + pn,
c = p2n+1 + pn+1, and
d = p2n+1 + pn+1 + 1.

If p = 2, then S(p, n) is the Weierstrass semigroup of the point at infinity on the curve X
defined by

yp2n+1 − y = xpn
(xp2n+1 − x)

over Fp2n+1 [6]. Because the automorphism group of X is a Suzuki group (see [7], [12], [13]),
S(p, n) is sometimes called a generalized Suzuki semigroup.

We now consider some basic properties of generalized Suzuki semigroups.

Definition 1 Given a numerical semigroup S with generators a1, . . . , ak (not necessarily in

increasing order), let di = gcd(a1, . . . , ai) and Si =
〈

a1
di

, . . . , ai
di

〉
for 1 ≤ i ≤ k. Then S is

said to be telescopic if and only if ai
di
∈ Si−1 for all i, 2 ≤ i ≤ k.

Proposition 2 For all positive integers p and n, S(p, n) is telescopic.

Proof. To see that a generalized Suzuki semigroup is telescopic, we must rearrange the
generators. In particular, we express S(p, n) as

S(p, n) =
〈
p2n+1, p2n+1 + pn+1, p2n+1 + pn, p2n+1 + pn+1 + 1

〉
.

Then
d1 = p2n+1, d2 = pn+1, d3 = pn, and d4 = 1.

It follows immediately that
a2
d2
∈ N0 = 〈1〉 = S1,

a3
d3

= pn+1 + 1 = (p− 1)pn + (pn + 1) ∈ 〈pn, pn + 1〉 = S2, and

a4
d4

= p2n+1 + pn+1 + 1 = pn (pn+1) + (pn+1 + 1) ∈ 〈pn+1, pn+1 + 1, pn+1 + p〉 = S3.

Therefore S(p, n) is telescopic.

Recall that a semigroup S is symmetric if and only if there is a bijection

φ : S ∩ {0, . . . , g} → N0 \ S
s *→ g − s

where g := g(S) denotes the Frobenius number of S.
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Lemma 3 [8, Lemma 6.5] If S = 〈a1, . . . , ak〉 is telescopic (where a1, . . . , ak may not be in
increasing order), then

1. the Frobenius number of S is g(S) =
∑k

i=1

(
di−1

di
− 1

)
ai where d0 = 0; and

2. S is symmetric.

Applying Proposition 3, one can see that the Frobenius number of S(p, n) is

g (S (p, n)) = p2n+1 (2pn + p− 2)− pn+1 − 1.

3. Chains of semigroups

We begin this section with a discussion of two chains of semigroups that can be formed from
a numerical semigroup S. To obtain the chain of duals, set B0(S) := S and define Bi(S) :=
B (Bi−1(S)) for all i ∈ N. To obtain the chain of Lipman semigroups, set L0(S) := S and
define Li(S) := L (Li−1(S)) for all i ∈ N. Each chain is finite since N0 \ S is finite. It is
also easy to verify that B1(S) ⊆ L1(S) since x ∈ B1(S) implies x + a1 ∈ S, where a1 is the
smallest nonzero element of S. This gives

B0(S) ⊆ B1(S) ⊆ B2(S) ⊆ . . . ⊆ Bβ(S)(S)
|| ∩ ||

L0(S) ⊆ L1(S) ⊆ L2(S) ⊆ . . . ⊆ Lλ(S)(S)

for any numerical semigroup S. In this section we will show that Bi (S(p, n)) ⊆ Li (S(p, n))
for all i ∈ N0. To do this, we first determine the chain of Lipman semigroups.

Lemma 4 If S = S(p, n), then

Li(S) = 〈pn, pn(p− i + 1) + 1〉

for 1 ≤ i ≤ p, and
Lp+1(S) = N0.

Proof. By definition, L1(S) = 〈p2n+1, pn, pn+1, pn+1 + 1〉 = 〈pn, pn+1 + 1〉. Viewing L1(S) as
L1(S) = 〈pn, pn(p − 1 + 1) + 1〉, it is easy to see that Li(S) = 〈pn, pn(p − i + 1) + 1〉 for
1 ≤ i ≤ p. Taking i = p + 1 gives Lp+1 = 〈pn, 1〉 = N.

In light of Lemma 4, to prove that Bi(S(p, n)) ⊆ Li(S(p, n)) for all i ∈ N0, it suffices to
show that Bi(S(p, n)) ⊆ Li(S(p, n)) for 2 ≤ i ≤ p. The following result describes Bi(S(p, n))
for i in this range.
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Lemma 5 If S = S(p, n) and g = g(S), then

Bi+1(S) \ Bi(S) =

{
g −

i∑

j=1

αj : αj ∈ {a, b, c, d}
}

for all i, 0 ≤ i < p.

Proof. Set Bi := Bi(S) for all i ∈ N0. It is known [1, Lemma I.1.8] that if a semigroup T is
symmetric then B(T ) = T ∪ {g(T )}. So, since S = B0 is telescopic (by Proposition 2) then
B0 is symmetric (by Lemma 3) and therefore B1 (B0) = B0 ∪ {g (B0)}. Thus, B1 \ S = {g},
and the result holds for i = 1. We now proceed by induction on i.

Assume Bi \ Bi−1 = {g − (α1 + · · · + αi−1) : αj ∈ {a, b, c, d} for 1 ≤ j ≤ i − 1}. Define
C := {g− (α1 + · · · + αi) : αj ∈ {a, b, c, d} for 1 ≤ j ≤ i}. We will show that Bi+1 \Bi = C.

First, we will prove that Bi+1 \Bi ⊆ C. Suppose x ∈ Bi+1 \Bi. This implies x+Bi ⊆ Bi

but x + Bi−1 +⊆ Bi−1. Hence, there exists y ∈ Bi−1 such that x + y ∈ Bi \ Bi−1. By the
induction hypothesis, x + y = g − (α1 + . . . + αi−1) with αj ∈ {a, b, c, d} for 1 ≤ j ≤ i− 1.

We claim that y ∈ {a, b, c, d}. We first show that y is a generator of Bi−1. Suppose the
contrary; that is, suppose y = s+t where s, t ∈ Bi−1\{0}. Then x+s+t = x+y = g−(α1+
· · ·+αi−1) and so x+s = g−(α1+· · ·+αi−1)−t. Since x ∈ Bi+1 and s ∈ Bi−1\{0} ⊆ Bi\{0},
we have that x + s ∈ Bi. As a consequence, x + s + (Bi−1 \ {0}) ⊆ Bi−1. It follows that
x + s + t ∈ Bi−1 because t ∈ Bi−1 \ {0}. Hence, x + y ∈ Bi−1, which is a contradiction as
x + y ∈ Bi \ Bi−1 from above. We now have that y is a generator of Bi−1 and so

y ∈ {a, b, c, d} ∪ {g − (α1 + · · · + αi−2) : αj ∈ {a, b, c, d} for 1 ≤ j ≤ i− 2}.

Suppose y = g − (β1 + · · · + βi−2) where βj ∈ {a, b, c, d} for all 1 ≤ j ≤ i − 2. Then
x = g−(α1 + · · · + αi−1)−g+(β1 + · · · + βi−2) and so x ≤ (i−2)d−(i−1)a = (i−2)(d−a)−a.
Since i ≤ p, we have that x ≤ (p − 2)(d − a) − a = −p2n+1 + pn+2 − 2pn+1 − 2 < 0 which
is a contradiction. This proves the claim that y ∈ {a, b, c, d}. Therefore, we have that
x = g − (α1 + . . . + αi−1)− y ∈ C, and so Bi+1 \ Bi ⊆ C.

Next we will show that C ⊆ Bi+1 \ Bi. By the induction hypothesis, C ∩Bi = ∅. Hence,
it suffices to show that C ⊆ Bi+1. To this end, we will show that x + y ∈ Bi for all x ∈ C
and y ∈ Bi \ {0}. We do this by showing that the sum of the smallest elements in C and
Bi \ {0} is greater than g (Bi). Note that the smallest element of C is g− id. We claim that
the smallest nonzero element of Bi is a.

Suppose there exists z ∈ Bi \ {0} such that z < a. By the induction hypothesis, this
yields

a > z ≥ g − (i− 1)d ≥ g − (p− 1)d ≥ p2n+1 + p2n+1 (2pn − 2)− pn+2 − p ≥ a,

and so a is the smallest nonzero element of Bi.
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Now, in order to determine the Frobenius number of Bi we use [1, Proposition I.1.11(a)]
stating that for any numerical semigroup T , g (B (T )) = g (T ) − µ (T ) where µ (T ) is the
multiplicity of T , that is, the least nonzero element in T . Thus,

g(Bi) = g − ia

since a is the smallest element of Bj other than 0 for all 1 ≤ j ≤ i.

Suppose now that x ∈ C and y ∈ Bi \ {0}. Then

x+y ≥ g− id+a = g− ia− i
(
pn+1 + 1

)
+p2n+1 ≥ g− ia+p2n+1−pn+2 +pn+1−p+1 > g− ia

since p2n+1 − pn+2 + pn+1 − p = p (pn (pn − p + 1)− 1) > 0; that is, x + y > g(Bi). Thus,
x ∈ Bi+1 and so C ⊆ Bi+1 \ Bi. Therefore,

Bi+1 \ Bi =

{
g −

i∑

j=1

αj : αj ∈ {a, b, c, d}
}

.

for all i, 0 ≤ i < p.

Theorem 6 If S = S(p, n), then
Bi(S) ⊆ Li(S)

for all i ≥ 0.

Proof. Since B0(S) = S = L0(S), B1(S) ⊆ L1(S), and Lp+1(S) = N0, it suffices to show that

Bi(S) ⊆ Li(S)

for all 2 ≤ i ≤ p. To do this, we will prove that

Bp(S) ⊆ L1(S).

It is known [11] that if a and b are relatively prime integers then g (〈a, b〉) = ab−a− b. Since
L1(S) = 〈pn, pn+1 + 1〉 by Lemma 4, we then have that the Frobenius number of L1(S) is

g(L1(S)) = p2n+1 − pn+1 − 1.

Let x ∈ Bp(S) \ {0}. By Lemma 5,

x ≥ g − (p− 1)d ≥ g (L1(S)) + p2n+1 (2pn − 2)− pn+2 + pn+1 − p + 1 > g (L1(S)) .

Therefore, x ∈ L1(S). It follows that for all 0 ≤ i ≤ p,

Bi(S) ⊆ Bp(S) ⊆ L1(S) ⊆ Li(S).
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