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Abstract

This paper has three major parts: (1) A search algorithm is presented for finding mod
2 identities involving certain sums of products of the the familiar quintuple product in one
variable, called balanced Q2 identities. The method involves row reduction of large matrices
whose columns contain the mod series coefficients of the Q2 terms. The fact that the search
is finite is based on an invariant conjecture. These mod 2 identities are lifted to integer
equations by forcing the appropriate signs. All such tentative Q2 identities can be written
as T 2 identities, where T is the familiar triple product of Jacobi. (2) A proof algorithm
is presented, where the truth of a tentative T 2 identity is ascertained by expressing that
identity as a linear combination of several (true) identities obtained by correctly choosing
the values in a fundamental six parameter formula. (3) A massive implementation of both
the search algorithm and the proof algorithm is discussed, including data, statistics, pitfalls,
and an elaboration of some of the new identities found, including several infinite parametric
families of four term Q2 identities.

–Dedicated to our friend Ron Graham

1. Introduction

The present paper is the culmination of a 25 year investigation of identities involving
infinite series and products. During this period we1 have written ten papers about our
findings and the elementary methods we use. We briefly outline some of the highlights of
this work.

In 1980 we began a systematic search [5] for Ramanujan pairs, which we define to be pairs
of infinite increasing sequences of positive integers, {ai}, {bj}, satisfying

1the second two authors and the late Irving Gerst.
1
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∞∏

i=1

1

1− xai
=

∞∑

j=1

bj

(1− x) · · · (1− xj)
.

This is essentially the definition given by George Andrews [1], whose purpose was to gen-
eralize the two well-known Rogers-Ramanujan identities, which are Ramanujan pairs with
ai ≡ 1, 4 (mod 5), bj = j2 and with ai ≡ 2, 3 (mod 5), bj = j(j + 1). Using a computer
search we found two infinite classes of Ramanujan pairs, both known to Euler, and eight
sporadic pairs, including the two identities of Rogers and Ramanujan. On examination we
discovered that two of these eight identities had simple power series expansions modulo 2 [5,
p. 732, Table 1]:

(1.1)
∏

n≡±1,±2,±5,
±6,±8,±9

mod 20

1

1− xn
≡

∞∑

n=1

(xn(5n−3)/2 + xn(5n+3)/2) (mod 2)

and

(1.2)
∏

n≡±2,±3,±4,
±5,±6,±7

mod 20

1

1− xn
≡

∞∑

n=1

(xn(5n−1)/2 + xn(5n+1)/2) (mod 2).

Since the left sides of these two congruences are generating functions of the number of
partitions whose “modular” parts come from their indexing sets, we immediately obtain
parity results for such partitions. Thus, while no one has found a simple description of the
parity of the partition function p(n), parity results can easily be obtained for such restricted
partition functions. (See also [6], [8], and [10].)

We next began a search for identities similar to the two above. The search was done
in both directions. One way, we looked at mod 2 series expansions whose form was like
those on the right sides of (1.1) and (1.2) and attempted to factor them into recognizable
products of linear factors whose index set consisted of residues modulo some integer m (called
modular-part products). In the other direction, we computed the mod 2 series expansion of
various modular-part products and identified those for which the exponents in the series
were quadratically spaced, as in (1.1).

It often turned out that the mod 2 congruences could be lifted to actual equations over the
integers when the signs in the linear factors were chosen judiciously. The following example
[7, p. 301] is typical of this phenomenon: the congruence

(1.3)
∏

n$≡5
mod 10

(1− xn) ≡
∞∑

n=0

(xn(n+1) + x5n(n+1)+1) (mod 2)

lifts to the equation

(1.4)
∏

n≡0,±3
mod 10

(1− xn)
∏

n≡±1,±2,±4
mod 10

(1 + xn) =
∞∑

n=0

(xn(n+1) + x5n(n+1)+1).
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An observant reader will have noticed that the left side of (1.3) is an ordinary product
rather than a reciprocal product like the one in (1.1). We explain how to transform a regular
modular-part product into a reciprocal modular-part product mod 2 in [8], where parity
matters are discussed at length. Using the methods of that paper, the product in (1.3) can
be expressed as the reciprocal modular-part product

(1.5)
∏

n$≡5
mod 10

(1− xn) ≡
∏

n≡±1,±3
mod 10

1

1− xn
(mod 2).

Combining (1.3) and (1.5) gives parity results for the number of partitions whose parts are
±1,±3 (mod 10).

Our investigations, past and present, have several themes:
(1) we are interested in equations expressing infinite products as infinte sums;
(2) many of the series have interesting partition interpretations;
(3) the series expansions are viewed mod 2;
(4) the products are modular-part products;
(5) the sums have quadratically spaced exponents;
(6) mod 2 congruences often lift to equations over the integers.

This work leads naturally to the one-variable triple product of Jacobi, which satisfies all
five of the above requirements,

T (k, l) =
∏

n≡0,±(k−l)
mod 2k

(1− xn) =
∞∑

−∞
xks2+ls,

and the one-variable quintuple product

Q(m, k) =
∏

n≡0,±k
mod m

(1− xn)
∏

n≡±(m−2k)
mod 2m

(1− xn) =
∞∑

−∞
x

n(3n+1)m
2

(
x−3nk − x(3n+1)k

)
.

We found that many of the equations we wished to prove in various of our papers could be
transformed into equations where each side consists of a sum of products of two T functions
of the form xαT (k1, ∗)T (k2, ∗), where the pair of values (k1, k2) is the same for each term in
the equation. These balanced T 2 identities, as we called them, became more a central focus
in what we were doing.

As a way of manufacturing T 2 identities, we found a general expansion formula [3, Th. 2]
which under certain conditions expresses a power of x times the product of two T functions
as a sum of powers of x times such products. Bruce Berndt pointed out that this expansion
generalizes a formula for such a product by Schröter. The formula, expressed in Ramanujan’s
f(a, b) notation can be found in [2, p. 73]. Berndt and Yesilyurt have recently employed this
formula to provide elementary proofs of several of Ramanujan’s “forty identities” [3].

In [11] we gave a fundamental 6-parameter formula, which generates balanced T 2 identities.
This fundamental formula was used to give a new proof of the familiar Ramanujan identity



4 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A02

H(x)G(x11) − x2G(x)H(x11) = 1, where G(x) =
∞∏

n=0
[(1− x5n+1)(1− x5n+4)]−1 and H(x) =

∞∏
n=0

[(1 − x5n+2)(1 − x5n+3)]−1, after we had first transformed the Ramanujan identity into

a balanced T 2 equation, a general requirement to be able to use this formula in making a
proof.

In [12, (1.4)] we took a combinatorial approach to proving a balanced T 2 identity by first
writing each term as a double sum, viz.,

xαT (k1, l1)T (k2, l2) =
∑

(i,j)∈Z2

xk1i2+k2j2+l1+l2j+α.

In this form the T 2 identity asserts that a power of x in some double sum on the left side of
the identity, generated at a point (i, j) in the indexing plane Z2 for that sum, must be paired
with the same power of x in some double sum on the right side of the identity, generated at
a point (i′, j′) in the indexing plane Z2 for that sum.

What we found from this rewriting were three rather remarkable results, the first two of
which remain unproved: (1) The powers of x in a particular double sum on the left, which
appear in a particular double sum on the right, are generated at index points (i, j) which
lie on affine lattices in the indexing plane of the double sum on the left; (2) The quadratic
exponents in the double sums of a T 2 identity form a family having a certain invariant; (3)
A second proof of the 6-parameter formula generating balanced T 2 identities can be given,
using the lattices and affine maps between them [13].

The first of these three results does not play a direct part in the algorithms of this paper.
However, the second result is a conjecture on which the search algorithm is based and the
Fundamental Formula in (3) is the heart of the proving algorithm.

In 1991 we began the study of balanced Q2 identities with the publication of the identity

(1.6) Q(8, 3)Q(56, 7) + x3Q(8, 1)Q(56, 21) = Q(8, 2)Q(56, 14)

in [9, (16)]. Since that time we have published two other trinomial identities, viz.,

(1.7) Q(14, 3)Q(70, 5) + x3Q(14, 1)Q(70, 25) = Q(14, 5)Q(70, 15)

in [11, (4.8)] and

(1.8) Q(7, 3)Q(35, 5) + x3Q(7, 2)Q(35, 15) = Q(7, 1)Q(35, 10)

in [12, (3.1)].

Proofs of (1.6) and (1.7) were given in [11, Theorem 3] and [11, Theorem 4] respectively,
while a proof of (1.8) appeared in [12, Theorem 4]. These three proofs used the proof
method involving the fundamental T 2 formula discussed in Section 5 of this paper, although
in these proofs, we gave only results essential to the proofs, omitting a description of the
underlying computational techniques that were used to produce those results. Using the
Search Algorithm presented in the present paper, we found two other three-term identities:
equations (8.2) and (8.3).
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Initially we knew only a few balanced Q2 identities and, because of the complicated nature
of the general term of the series for Q, we thought there might not be many of them,
especially with a large number of terms. This is no longer our opinion, since now we have
a systematic way of finding them, a way that has produced nearly 100,000 such identities,
some with a huge number of terms. In fact, we now know parametric families with four
terms in them (Sec. 8), although as yet we don’t know if there are more than just the five
trinomials referred to above.

It is our purpose in this paper to give an account of both the search method we use to
find balanced Q2 identities and the proof method we use to prove them. In Sections 4 and
6 respectively, we illustrate the use of these two methods by finding and proving a minimal
spanning set of Q2 identities that, like (1.7), are balanced at (14, 70).

In Section 7 we describe a huge computer search for Q2 identities balanced at (m1,m2),
where 5 ≤ m1 ≤ 100, m1 ≤ m2 ≤ 1000, and give some statistics about various aspects of the
search. We present information about what we found and how well our methods actually
worked. In particular these data confirm our experience that Q2 identities most often occur
when m1 divides m2. The paper concludes with a presentation of some parametric families
of four-term identities.

We should point out that we think the methods given in this paper may well be more
important than actual results. In fact, the value of a particular Q2 identity may be quite
a bit smaller when it is one of a hundred thousand such identities than when it is only one
among five such identities. Put differently, a seashell found on the top of a moutaitn is more
valuable than one found among thousands on a beach.

In summary, our interest has been to show how we used mod 2 power series to find identities
and how we used our proof method to show these identities are true.

2. Preliminaries

Recall from [11, p. 83] that the series for the triple product T (k, l) is given by

(2.1) T (k, l) = T (k, l; x)
def
=

∞∑

−∞
xks2+ls.

Also, from [9, p. 780], we have the reduction formulas for T (k, l):

(2.2) T (k,−l) = T (k, l) and T (k, l) = xk−lT (k, 2k − l),

which allow us to put T (k, l) into reduced form, 0 ≤ l ≤ k. We say a T 2 identity is balanced
at a pair of positive half-integers (k1, k2) if each of its terms has the form

(2.3) xα T (k1, l1)T (k2, l2),

where l1 + k1, l2 + k2, α ∈ Z and α ≥ 0 (See [11, p. 83]).
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Next, recall from [12, p. 1284] that the series for the quintuple product is given by

(2.4) Q(m,n) = Q(m,n; x)
def
=

∞∑

−∞
xs(3s+1)m/2

(
x−3sn − x(3s+1)n

)
.

We also have reduction formulas for Q(m,n) [4, (13) and (14)]: If m ∈ Z+ and n ∈ Z, then

(2.5) Q(m,−n) = −x−nQ(m,n)

and

(2.6) Q(m,n) = x2m−3nQ(m,n−m).

From [11, (4.2)], there is a simple formula connecting Q to T , viz.,

(2.7) Q(m,n) = T

(
3m

2
,
m

2
− 3n

)
− xnT

(
3m

2
,
m

2
+ 3n

)
.

Using (2.5) and (2.6), we can put Q(m,n) into reduced form, 0 ≤ n ≤ m

2
. We say a Q2

identity is balanced at a pair of positive integers (m1,m2) if each of its terms has the form

(2.8) xα Q(m1, n1)Q(m2, n2),

where n1, n2, α ∈ Z and α ≥ 0 (See [9, p. 785]).

In this paper we will not consider identities involving the three other T and Q functions
[4, Definitions 1 and 3], except in 7(c). We will assume in general that the T ’s and Q’s in
an identity are in reduced form and that the largest possible power of x has been divided
through an identity so the powers of x are non-negative and at least two terms have α = 0.

We often omit the word balanced to avoid excessive use of this word and say a T 2 (or Q2)
identity is reducible if it can be expressed as the sum of two or more T 2 (or Q2) identities.
Otherwise, we say it is irreducible.

3. Searching

In this section we give an algorithm for finding Q2 identities that are balanced at a partic-
ular (m1,m2). In order to make the search finite and efficient, we require that all terms of
an identity have the same invariant value, called IQ. The scheme of the search is to expand
these Q2 terms into a power series mod 2 up to a sufficiently large degree and then use
Gaussian elimination to find a basis for the set of all mod 2 identities. We then attempt to
lift each mod 2 identity to an actual identity with ±1 coefficients.
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(a) Invariant Conjecture.

We begin with some material that deals with T 2 identities. In [13, (1.4)], a term of a T 2

identity balanced at (k1, k2) was written as the double sum

(3.1) xαT (k1, l1)T (k2, l2) =
∑

(i,j)∈Z2

xk1i2+k2j2+l1i+l2j+α.

For the exponent polynomial k1x2 +k2y2 + l1x+ l2y +α, define the invariant function IT by

(3.2) IT = IT (k1, k2, l1, l2,α)
def
= k1l

2
2 + k2l

2
1 − 4k1k2α.

From the discussion in [13, Sec. 5], we derive the following conjectured necessary condition
that the terms of a T 2 identity should satisfy.

Conjecture IT : In a balanced, irreducible T 2 identity, the value IT is the same for each
term of the identity.

We can extend this conjecture to a similar one for Q2 identities. Let the function IQ be
defined for a term xα Q(m1, n1)Q(m2, n2) by

(3.3) IQ = IQ(m1,m2, n1, n2,α)
def
=

3

8

[
m1(m2 − 6n2)

2 + m2(m1 − 6n1)
2
]
− 9m1m2α.

According to the Remarks in Sec. 2, m1,m2 are positive integers, the pair of integers (n1, n2)

is in
[
0,

m1

2

]
×

[
0,

m2

2

]
, and α ≥ 0. Then Conjecture IT implies that the following conjecture

is a necessary condition that the terms of a Q2 identity should satisfy.

Conjecture IQ: In a balanced, irreducible Q2 identity, the value IQ is the same for each
term of the identity.

To see this, observe first that (2.7) gives the formula

(3.4) xα Q(m1, n1)Q(m2, n2) = xα

[
T

(
3m1

2
,
m1

2
− 3n1

)
− xn1T

(
3m1

2
,
m1

2
+ 3n1

)]
·

[
T

(
3m2

2
,
m2

2
− 3n2

)
− xn2T

(
3m2

2
,
m2

2
+ 3n2

)]
,

which, when multiplied out, associates a sum of four T 2 terms with each Q2 term. In
this way, a Q2 identity balanced at (m1,m2) is transformed into a T 2 identity balanced at
(

3m1

2
,
3m2

2

)
. The value IT for the four T 2 terms is IQ as stated in (3.3), which establishes

that Conjecture IQ is implied by Conjecture IT . Conjecture IQ is central to the Search
Algorithm, because it makes the search for identities balanced at a given (m1,m2) finite.
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(b) The Search Algorithm.

Step 1. [Initialization] Choose m1,m2 ∈ Z+, where 5 ≤ m1 ≤ m2. Choose a large value
for the parameter L. The value L = 10, 000 is adequate for small values of m1 and m2.

Step 2. [Construct families of triples] For each pair of integers (n1, n2) ∈
(
0,

m1

2

)
×

(
0,

m2

2

)
, use (3.3) to compute the three values

I0 = IQ(m1,m2, n1, n2, 0), α =

⌊
I0

9m1m2

⌋
, and I = I0 − 9m1m2α.

Include the triple (α, n1, n2) in a family CI of previously found triples with the same value
of I.

Step 3. [Process each family CI] For each family CI found in Step 2 that contains at
least two triples with the same value of α, carry out the remaining Steps 4 – 12 of this
algorithm.

Step 4. [Construct a bit string for each member of CI] Find the set of integer-
coefficient Maclaurin expansions of the Q2 products (2.8) associated with each triple in CI .
Reduce each of these expansions mod 2 and make the first L coefficients into a bit string.

To carry out this step efficiently, first write the triple as the (mod 2) sum of four T 2 terms
as in (3.4). Using (3.1), each of these bit strings can be built by adding a 1 mod 2 into an
initialized string of L zeros at position t = k1i2+k2j2+l1i+l2j+α for each pair (i, j) ∈ Z×Z
for which t < L. Adding these four bit strings together mod 2 gives the desired bit string.

Step 5. [Form the coefficient matrix] Form the L×n matrix A that has the respective
bit strings constructed in Step 4 as its columns. Here n is the number of triples in CI .

Step 6. [Row reduction] Put matrix A into row-reduced, echelon form mod 2. Let B be
the set of basis vectors of the null space of A. If B is empty, return to Step 4.

Step 7. [Joint reduction] Transform basis B in Step 6 into a basis B̂ of S via a sequence
of bases B0 = B, B1, · · · , Bj, Bj+1, · · · , B̂. To derive Bj+1 from Bj, j ≥ 0, first re-order the
vectors in Bj (getting the set B̄j) so that the number of 1’s in successive vectors in B̄j forms
a non-decreasing sequence. Then compute the mod 2 sums of the first vector v1 in B̄j with
each vector that follows it, the second vector v2 in B̄j with each vector that follows it, and
so on, until a sum vr + vr+k, is found which has fewer 1’s in it than the vector vr+k itself.
This sum then replaces vr+k in B̄j giving the next basis Bj+1. Eventually, when no such

sum is found, the process ends, and the final set of vectors arrived at is the desired basis B̂.

Step 8. [List the potential mod 2 identities] For each vector v ∈ B̂, collect into a set
Tv the ith triples of the family CI for each i for which the ith position in v is a 1. The
mod 2 sum of the series expansion of xαQ(m1, n1)Q(m2, n2) for each triple (α, n1, n2) in Tv,
truncated at degree L, is zero, and thus Tv represents a potential mod 2 identity in which
the series are extended to infinity.
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Step 9. [Eliminate linear identities] If the first components or second components of
all the vectors of a Tv are the same when m1 < m2, then discard Tv. If m1 = m2 eliminate
all Tv where there is a value n such that all triples in Tv have n as either the first or second
component.

Step 10. [Ignore non-primitive identities] If in a Tv surviving Step 9 the greatest
common divisor d of m1, m2, and every n1, n2 ranging over all the triples of this particular
Tv is greater than 1, then discard this Tv.

Step 11. [Start series at degree 0] In each Tv surviving Step 10, subtract the smallest
value of α in the triples from the α value in each triple.

Step 12. [Lift to Z] Let N be a conveniently large integer. Process each Tv surviving Step
11 by the following steps:

(i) For each triple in Tv, construct an N -dimensional vector of integers whose components
are the first N coefficients of the Maclaurin expansion of the Q2 term associated with this
triple. Construct a matrix K with these vectors as its rows.

(ii) Assign a plus sign to row 1. Then repeat the following steps until all rows of K are
zero:

Examine the non-zero entries in row 1 of K until an entry k1c is found whose
absolute value equals the sum of the absolute values of the other entries in
column c. If k1c > 0, then add to (resp. subtract from) row 1 the rows of K
that have a negative (resp. positive) entry in colum c. If k1c < 0, then do
the opposite. After a row is combined with row 1, zero out that row in K
and attach a plus or minus sign to its row number if the row was respectively
added to or subtracted from row 1.

(iii) Output the set of row numbers with attached signs as a Q2 identity, the terms with
the same sign being being placed on their respective side of an equals sign.

(c) Comments on the Search Algorithm.

Step 1. We state that m1 ≥ 5, because there are no values n1 when m1 = 1, 2 and only one
value, n1 = 1, when m1 = 3, 4. In the latter case, each term in any identity produced has a
common Q(m1, 1) that is removed by Step 9.

Choosing L too small will not lose any true identities (because any true identity holds mod
xL) but may introduce some bogus identities.

Step 2. The intervals in this step imply the algorithm finds Q’s in their reduced form.
These intervals are also open because at the endpoints the value of a Q factor is zero (cf. [4,
(15)]).

Also, each invariant I0 falls in the interval [ 0, 3m 3
2 ). We choose the value of α, however,

so that I is in [0, 9m1m2). There is no loss in doing this because an identity with invariant
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I0 = I + 9m1m2α will also appear as an identity with invariant I, with the exception that
the identity with invariant I will have a factor of xα that cancels out of each term.

Moreover note that the Invariant Conjecture makes the search finite. Without it, there is
no upper bound on the value of α.

Finally, the values of I0 (and hence I) need not be integers. They may be half-integers or
quarter-integers.

Step 3. Each triple in a CI is associated with its product (2.8), a possible term in a Q2

identity balanced at (m1,m2); and since (n1, n2) ∈
(
0,

m1

2

)
×

(
0,

m2

2

)
, the value α is the

minimum exponent occurring in the power series representation of xα Q(m1, n1)Q(m2, n2).
Consequently, any identity among these reduced triples in CI must contain two terms with
the same α.

Step 4. It is useful to note for a reduced T (k, l) with 0 ≤ l ≤ k, the quadratic exponent
function v(n) = kn2+ln is a monotone increasing sequence v(0) ≤ v(−1) ≤ v(1) ≤ v(−2) ≤
v(2) ≤ · · · .

Step 6. The idea here is to look for dependencies among the Q2 terms in the family by
finding dependencies among the first L terms of their series. It is clear that the sum or
difference of two Q2 identities balanced at (m1,m2) will be another Q2 identity of the same
kind.

Step 7. The Bi’s produced in this step are clearly all bases of S. The basis B̂ contains
vectors with a reduced number of 1’s in them, so the identities associated with them have
fewer terms. The vectors in B̂ also have fewer 1’s in common with each other, so their
associated identities have fewer terms in common with each other. Further, the sequence of
basis transformations as well as the basis B̂ are not necessarily unique. These depend on
the sorting algorithm. This step can be skipped if all that is desired is a basis from which
all mod 2 identities can be constructed.

Step 8. Each vector v ∈ B̂ has at least two 1’s in it.

Step 9. When this algorithm was first programmed and run, we had no idea how many
tentative Q2 identities might be produced. We were hardly prepared, however, for the
deluge of identities that came pouring out. An inspection of the results showed that almost
all of them were trinomials each of whose terms had a common, non-zero factor Q. When
this factor was divided through the identity, the resulting Q identity was linear, and so could
be ignored.

As it happens, each three-term linear identity that was found in this way was an instance
of the following balanced two-parameter family (see [4, (35)]): For m ∈ Z+ and n ∈ Z, we
have

(3.5) Q(3m,n) = Q(3m,m− n)− xnQ(3m,m + n).
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This linear family provides us with an opportunity to test Conjecture IT . If we multiply
such an identity through by Q(r, s) for any r ∈ Z+ and s ∈ Z, then Conjecture IT should
hold for each of the balanced Q2 identities. That it does is readily verified.

Step 10. An identity with smaller values exists by sending xd → x.

Step 11. This step changes the invariant value when the smallest value of α is positive.

Step 12. It should be pointed out in the final step of the algorithm that the procedure is
designed only to produce identities with coefficients that are ±1. As a result, many mod 2
series do not lift to an identity of this kind. (See Section 7c.)

At the end of this step, either a tentative identity is made or it is not, and either all triples
in the mod 2 identity are used or they are not. There are, therefore, four outcomes of interest
to us.

(1) If a tentative identity is made and all triples are used, we consider this successful and
proceed to the Proof Algorithm.

(2) If no identity is made but all triples are used, the mod 2 identity cannot be lifted to a
tentative integer identity using ±1 coefficients.

(3) If a tentative identity is made but not all triples in the mod 2 identity are used, then the
given mod 2 identity is reducible. In this case we use only the triples that make the identity
and ignore the other triples. (These other triples form a mod 2 identity and could also be
sent to Step 9 for processing, but we do not do this in our search.)

(4) If no identity is produced and not all triples are used, then there is no value k1c that
can be found in the current range of exponents. So we increase the number of exponents
and try again. In practice, the value of N was initially chosen to be 500. When this proved
insufficient, it was replaced by L = 10000.

Steps 4-8 and 12. These steps constitute an approach which may be used to search for
possible dependencies in a given set of power series with integer coefficients regardless of
their origin. For example, we may use these steps to search for tentative T 2 identities.

4. The Search Algorithm in Action ... an Example

To illustrate the Search Algorithm, we find all tentative Q2 identities balanced at (m1,m2) =
(14, 70). These are listed in Table 1 using the abbreviation

(4.1) (α, n1, n2)
def
= xαQ(m1, n1)Q(m2, n2).

The invariant value I in the first column indicates the family from which the identity came.
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Table 1. Q2 Identities Balanced at (14, 70)

# I Q2 Identity Balanced at (14, 70)

1 0 (0,3,5)+(3,1,25) = (0,5,15)

2 441 (0,2,13)+(1,5,8)+(10,4,33) = (0,3,12)+(1,1,18)+(3,6,3)

3 441 (0,3,2)+(1,5,22)+(3,2,27) = (0,6,17)+(1,4,23)+(7,1,32)

4 1449 (0,2,9)+(1,2,19)+(2,4,21) = (0,3,14)+(1,5,16)+(5,5,26)

5 1764 (0,3,9)+(3,5,1)+(7,5,29)+(8,1,31) = (0,1,11)+(1,3,19)

6 2205 (0,1,10)+(1,4,5)+(5,6,25)+(7,3,30) = (0,2,15)+(2,5,20)

7 2709 (0,1,14)+(1,3,4)+(3,3,24) = (0,4,11)+(3,6,21)+(8,4,31)

8 3969 (0,1,4)+(0,5,6)+(1,2,1)+(3,3,26) = (0,4,19)+(0,6,11)

9 3969 (0,4,9)+(6,2,29)+(9,6,31)+(11,5,34) = (0,3,16)+(3,1,24)

10 4221 (0,1,8)+(1,6,13)+(6,5,28) = (0,2,7)+(2,1,22)+(6,6,27)

11 6741 (0,4,7)+(2,2,23)+(9,2,33) = (0,5,12)+(2,5,2)+(5,3,28)

12 7056 (0,1,17)+(1,1,3)+(2,3,23) = (0,5,13)+(5,5,27)+(9,3,33)

13 7749 (0,1,6)+(1,2,21)+(3,6,1) = (0,5,14)+(7,6,29)+(10,1,34)

14 8001 (0,3,18)+(1,4,3)+(5,1,28) = (0,4,17)+(1,6,7)+(8,3,32)

Step 1. Put m1 = 14 and m2 = 70.

Step 2. Compute the families of triples CI . It turns out there are 63 of these here.

Step 3. In this example, we will work through Steps 4 – 12 for the family C441, a family
containing the 12 triples listed in Table 2. The second and third identities in Table 1 come
from these.

Table 2. Q2 Terms for Family I = 441.

Ri(x) = (αi, n1i, n2i) = xαiQ(14, n1i)Q(70, n2i)

i αi n1i n2i

1 0 2 13
2 0 3 12
3 1 1 18
4 1 5 8
5 2 3 2
6 2 6 17

i αi n1i n2i

7 3 4 23
8 3 5 22
9 3 6 3
10 5 2 27
11 9 1 32
12 10 4 33
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Steps 4, 5, and 6. We need to compute the mod 2 coefficients of the series expansion of
each term Ri, to be placed in the ith column of the series matrix A. For the first column of
A, using (3.4) and (2.1) we find that

R1(x) = Q(14, 2)Q(70, 13) ≡ 1 + x2 + x10 + x13 + x15 + x20 + x22 + x23 + · · · (mod 2).

Thus, the first column of A begins 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, while the next eleven columns
respectively contain the coefficients of the series R2, . . . , R12. The first 13 rows of A are
displayed below, followed by its mod 2 row-reduced form in which all rows after the twelfth
are zero.





1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 1 0 0 0





−→





1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0





(Computing the series to degree L is usually overkill, as in this example where only the first
thirteen rows are needed to row reduce it correctly.) By standard linear algebra techniques,
we find that the independent columns are 12 and 11, which yield the two 12-component
vector basis B =
{(1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1)T , (0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0)T} for the null space of A.

Step 7. Since the two vectors in B are already orthogonal, this step is unnecessary here.
Hence B = B̂.

Step 8. These give the two tentative mod 2 identities:

(4.2) R1 + R2 + R3 + R4 + R9 + R12 ≡ 0 (mod 2)

and

(4.3) R5 + R6 + R7 + R8 + R10 + R11 ≡ 0 (mod 2).

Step 9. Since neither of these mod 2 identities have the same value for all n1 or n2, neither
will be discarded as a linear identity.

Step 10. For (4.2), gcd(m1, n12) = gcd(14, 3) = 1, so it is primitive. For (4.3), gcd(m1, n15) =
1, so it is also primitive.
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Step 11. This step applies only to (4.3). Since all terms have αi ≥ 2, we divide all of its
terms by x2.

Step 12. For the purposes of this example, we consider only (4.2). This step to of the
algorithm transforms the mod 2 congruence (4.2) into an actual equation over the integers.
We first expand the six Q2 terms in (4.2) into power series using (3.4). Here we use only the
terms up to degree L. As it happens, the dependency between these series can be found using
only a small number of low-degree terms. Here the six series are listed below up to degree
40. Our problem is to place these on one or the other side of an equals sign so the resulting
series on the two sides agree up to degree L. (It is worth mentioning that the coefficients
of the series are all very small due in part to their having been generated by a quadratic
exponent.)

R1 = Q(14, 2)Q(70, 13) = 1− x2 − x10 − x13 + x15 + x20 + x22 + x23 − x33 − x35 − x36 + · · ·
R2 = Q(14, 3)Q(70, 12) = 1− x3 − x8 − x12 + x15 + x19 + x20 + x23 − x31 − x35 − x40 · · ·
R3 = xQ(14, 1)Q(70, 18) = x− x2 − x13 + x18 − x19 + x20 + x26 + x31 − x33 − x35 + · · ·
R4 = xQ(14, 5)Q(70, 8) = x− x5 − x6 − x9 + x13 + 2x14 − x22 + x30 − x38 + · · ·
R9 = x3Q(14, 6)Q(70, 3) = x3 − x5 − x6 + x8 − x9 + x12 + x13 − x16 + x35 − x38 + · · ·

R12 = x10Q(14, 4)Q(70, 33) = x10 − 2x14 − x16 + x18 + x20 + x26 − x30 + x36 − x40 + · · ·

We begin our search for an equation whose mod 2 reduction is (4.2) by choosing S = R1,
because its first nonzero term has the minimum exponent 0. Since R2 is the only other series
that begins with 1, we are forced to subtract R2 to “balance” the zero degree terms. So far

S = R1 −R2 = −x2 + x3 + x8 − x10 + x12 − x13 − x19 + x22 + x31 − x33 − x36 + x40 + · · ·
Next, the series for R3 is the only remaining series with a non-zero term −x2, forcing us to
subtract R3 from S:

S = R1−R2−R3 = −x + x3 + x8− x10 + x12− x18− x20 + x22− x26 + x35− x36 + x40 + · · ·
The leading term −x in S is now matched only in R4, forcing us to add series R4 to S:

S = R1 −R2 −R3 + R4 = x3 − x5 − x6 + x8 − x9 − x10 + x12 + x13 + 2x14 − x18 − x20 − x26

+x30 + x35 − x36 − x38 + x40 + · · ·

It is now clear from the terms x3 and −x10 that we must subtract R9 from S and then add
series R12, which ends up giving us a zero series out to degree L. (This can readily be checked
here to degree 40.)

We now have our first tentative Q2 identity:

(4.4) R1 + R4 + R12 = R2 + R3 + R9,

which is line 2 of Table 1. Similarly, if we use the lifting algorithm in Step 12 on the second
tentative mod 2 identity, we get

(4.5) R5 + R8 + R10 = R6 + R7 + R11,

which is line 3 of Table 1.
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5. Proving

The tentative Q2 identities (over Z) found by the search algorithm have been verified up
to degree L by a power series verification. It is reasonable, therefore, to expect they will be
found to be true by the method of this section.

The preliminary step in the proof method is to transform the tentative Q2 identity into
a tentative T 2 identity by replacing each Q2 term by a sum of four T 2 terms. The proof
algorithm then uses the following 6-parameter Fundamental T 2 Formula to produce a set of
(true) T 2 identities that, when multiplied by appropriate powers of x and summed, produces
the tentative T 2 identity. Put differently, identities generated from the Fundamental T 2

Formula “span” a space of identities, inside of which our tentative identity is shown to lie.

(a) The Fundamental T 2 Formula.

In a previous paper [11, Theorem 1] we introduced the following.

Theorem 5.1 (Fundamental T 2 Formula). Suppose that m, u, v ∈ Z+ and that e, f, k ∈ Q,
where uv < 2m. Then

(5.1)
∑

n∈Rm

xαnT (k1, l1n)T (k2, l2n) =
∑

n∈R′
m

xαnT (k1, l
′
1n)T (k2, l

′
2n),

where

αn =
2vk

m
n2 + 2en, k1 = uk, k2 = (2m− uv)vk,






l1n =
2uvk

m
n + ue + f

l2n = (2m− uv)
(2vk

m
n + e

)
− vf






l′1n =
2uvk

m
n + ue− f

l′2n = (2m− uv)
(2vk

m
n + e

)
+ vf,

and Rm and R′
m are any complete residue systems (mod m).

At present no formula is known that produces balanced Q2 identities in the way that
Theorem 5.1 produces balanced T 2 identities. Consequently, the first step in the proof
method is to use (3.4) to transform a tentative Q2 equation balanced at (m1,m2) into a
tentative T 2 equation balanced at (k1, k2) = (3

2m1,
3
2m2). The resulting T 2 equation is then

proved using a combination of identities produced by Theorem 5.1.

Before we can describe how all possible choices of the parameters in Theorem 5.1 can
efficiently be found, we give some technical lemmas about the parameters m,u, v, k, e, f .

Lemma 5.1. In Theorem 5.1, we have (i) um | 4vk1, (ii) m | 2vk1, and (iii) m | 2k2.

Proof. Since αn ∈ Z for all n, we have (i) α1+α−1 =
4vk

m
=

4vk1

um
∈ Z. Also, we know that ljn

must have the same half-parity as kj for all n and j = 1, 2.. Hence, (ii) l11− l10 =
2vk1

m
∈ Z

and (iii) l21 − l20 =
2k2

m
∈ Z. !
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Lemma 5.2. In Theorem 5.1, we have the five inclusions: e ∈ 1

4
Z,

2vk

m
+2e ∈ Z, f ∈ 1

2
Z,

ue + f + k1 ∈ Z, and (2m− uv)e + vf + k2 ∈ Z.

Proof. Since αn ∈ Z for all n, we have, α1 − α−1 = 4e ∈ Z and α1 =
2vk

m
+ 2e ∈ Z.

Furthermore, for all n and j =1,2, we know that ljn and l′jn, have the same half-parity as
kj, i. e., their sum and difference are integers. In particular, l11 − l′11 = 2f ∈ Z, l10 + k1 =
ue + f + k1 ∈ Z, and l′20 + k2 = (2m− uv)e + vf + k2 ∈ Z. !

Lemma 5.3. The identities obtained by using (e, f), (−e, f), (e,−f),

(
2vk

m
+ e, f

)
, and

(
2vk

m
− e, f

)
in Theorem 5.1 are all the same except for a possible factor of a power of x.

Proof. Replacing f by −f switches (l1n, l2n) and (l′1n, l
′
2n) in Theorem 5.1. The proof for

replacing e by −e requires the following relationships: l1n(−e, f) = −l′1,−n(e, f), l2n(−e, f) =
−l′2,−n(e, f), l′1n(−e, f) = −l1,−n(e, f), l′2n(−e, f) = −l2,−n(e, f), and αn(−e, f) = α−n(e, f).
The l values obtained for (−e, f) can be reduced using the rule at (2.2) which does not affect
the value of αn. Finally, −n can be replaced by n in summing over equivalent residue systems
(mod m).

Next we consider the case of replacing e by e+
2vk

m
. Doing this we see that αn

(
e +

2vk

m
, f

)
=

αn+1(e, f) − 2vk

m
, l(′)1n

(
e +

2vk

m
, f

)
= l(′)1,n+1(e, f), and l(′)2n

(
e +

2vk

m
, f

)
= l(′)2,n+1(e, f).

Hence the identities produced from these two points are the same with the exception that

the identity produced from

(
e +

2vk

m
, f

)
must be multiplied by x2vk/m. Replacing e with

−e in this last case completes the proof. !

Lemma 5.4. All terms in (5.1) have an invariant value IT which satisfies the equation

(5.2) k2u
2e2 + k1v

2f2 =
uvIT

2m
.

Proof. We prove this for the n = 0 term on the left side of (5.1) by routine reduction of

IT = k1l220 + k2l210 − 4k1k2α0 = uk[(2m− uv)e− vf ]2 + (2m− uv)vk(ue + f)2

= 2m[(2m− uv)kue2 + vkf2].

This implies
uvIT

2m
= (2m− uv)vku2e2 + ukv2f2 = k2u

2e2 + k1v
2f2.

The right-hand terms are produced by replacing f by−f which leaves the desired relationship
unchanged. The case for the nth left-hand term is left to the reader. !
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(b) The Proof Algorithm

Steps 2 and 3 of the following algorithm are written in pseudo-code, where sub-levels are
indicated by indentation.

Step 1. [Initialization] Input the tentative T 2 equation balanced at (k1, k2). Let Î be the
IT value of each term of this given equation, reduced modulo 4k1k2. Let α̂ = (IT − Î)/4k1k2.
Multiply the input identity by xα̂ and reduce each term using (2.2).

Step 2. [Find all global parameters] Find all the possible values of the integer para-
meters m,u, v and rational k in Theorem 5.1 which give the values k1, k2 using the following
algorithm written in pseudo-code.

for m = 1 to 2k2 such that m | 2k2

for u = 1 to 2m− 1

for v = 1 to

⌊
2m− 1

u

⌋

if mu | 4vk1, m | 2vk1, and uk2 = (2m− uv)vk1

then append

(
m,u, v, k =

k1

u

)
to the list of global parameters.

Step 3. [Find the local parameters e and f ] For each m,u, v, k produced in the previous
step, construct a list of triples (e, f,α) which produce an identity with the invariant IT .

for e = 0 to
vk

m
, where e ∈ 1

4
Z

for α = 0 to

⌊
k1 + k2

4

⌋
− 1

IT = Î + 4k1k2α

f =

√
IT

2mvk
− (2m− uv)ue2

v

if f ∈ 1

2
Z,

2vk

m
+ 2e ∈ Z, ue + f + k1 ∈ Z, and (2m− uv)e− vf + k2 ∈ Z

then append the triple (e, f,α) to the list of triples for m,u, v, k

Step 4. [List all T 2 terms with invariant Î ] For each (l1, l2) ∈ [0, k1] × [0, k2] with
li having the same half-parity as ki, i = 1, 2, compute the invariant I0 = IT (k1, k2, l1, l2, 0)

using (3.2). If I0 mod 4k1k2 is the same as Î , then append the triple

(⌊
I0

4k1k2

⌋
, l1, l2

)
to

the list R.

Step 5. [Construct a matrix with all identities encoded] Let n be the number of
triples found in R. We define M to be the m × n matrix whose rows have each different
identity arising from Theorem 5.1 encoded. (At the end of this step, m will be the number
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of different identities coming from Theorem 5.1.) To begin, let M be empty. For each
m,u, v, k from Step 2 and each (e, f,α) from Step 3 do the following.

Let v be a length-n vector of integers and let I be the identity produced from
m,u, v, k, e, f from Theorem 5.1. Multiply I by xα and reduce each term
using (2.2). (This ensures that each term in I is found in the list R.) Set the
ith entry in v to be the number of times the ith triple in R is found on the
left-hand side of I minus the number of times it is found on the right-hand
side of I. If either v or −v is a row in M then the identity produced from
m,u, v, k, e, f,α has already been found. Otherwise, add v as the next row of
M .

Step 6. [Put M into row-reduced, echelon form]

Step 7. [Prove the input identity] Let I0 be the T 2 identity exiting Step 1. As in
Step 5, let v be a length-n integer vector whose ith entry is the number of times the ith
triple in R is found on the left-hand side of I0 minus the number of times it is found on the
right-hand side of I0. Append v to the bottom of M and row reduce again. If the row rank
of M does not change, then I0 can be written as a linear combination of identities from the
Fundamental T 2 Formula, thus proving the identity.

(c) Comments on the Proof Algorithm.

Step 1. The input to this algorithm is not restricted to balanced T 2 identities arising
from the Q2 Search Algorithm. The method can be used to prove any tentative T 2 equation,
provided that (i) the equation is balanced and (ii) each term has the same invariant value IT .
In particular, this method was used to prove the familiar Ramanujan identity H(x)G(x11)−
x2G(x)H(x11) = 1,

where G(x) =
∞∏

n=0

1

(1− x5n+1)(1− x5n+4)
and H(x) =

∞∏

n=0

1

(1− x5n+2)(1− x5n+3)
,

once this equation had been rewritten as a balance T 2 identity. See [11, Section 3] for details.
Also, it is possible to have empty input, which would happen when all T 2 terms obtained by
the given Q2 identity cancel each other.

Finally we should note that the value of α̂ is zero when Step 11 of the Search Algorithm
does not apply. Otherwise this step undoes that step. Multiplying the identity by xα̂ adjusts
the invariant so that it lands in [0, 4k1k2).

Step 2. To make our search finite we use Lemma 5.1 (a). To eliminate impossibilities, we

use Lemma 5.1 (b) and (c) and the relation
k2

k1
=

(2m− uv)vk

uk
, or uk2 = (2m− uv)vk1.

Step 3. Lemma 5.3 shows that many points (e, f) produce the same identity. In fact, we
may assume both e and f are positive and the points (e, f) are periodic with respect to e

which have a period of
2vk

m
. (These points are also periodic with respect to f , but the proof
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is more difficult and unnecessary for our purposes.) This also shows that there are lines of

symmetry at e =
vk

m
+ t

2vk

m
for all t ∈ Z. Hence we may assume without loss of generality

that 0 ≤ f and 0 ≤ e ≤ vk

m
.

In the fourth line of the pseudocode we define f to be an ugly square root. This comes
directly from (5.2). One could alternatively let f cycle through all half integers starting at

zero and test if there is a value of α <

⌊
k1 + k2

4

⌋
and hence an invariant IT = Î + 4k1k2α

which satisfies (5.2). This upper bound on α, which comes from (3.2), makes this search
finite.

Finally the conditions that e ∈ 1

4
Z and those found in the fifth line of the pseudocode

come from Lemma 5.2.

Step 4. This is analogous to Step 2 of the Search Algorithm. We include the enpoints of
the intervals of l1 and l2 because T (k, 0) and T (k, k) are not identically zero.

Step 6. We do not see any immediate reason why the row-reduced version of M must have
all integer entries.

Step 7. If there are more than one tentative T 2 identity with the same (k1, k2), and invariant
(Î) that need to be proved, we suggest re-using matrix M after its initial row-reduction. In
this case, only Steps 1 and 7 are needed.

6. The Proof Algorithm in Action ... an Example

We illustrate the Proof Algorithm with (4.4). Applying formula (3.4) with m1 = 14 and
m2 = 70 to the six Q2 terms in (4.4) and reducing the resulting T 2 terms, we get

R1 = Q(14, 2)Q(70, 13) = S1 − S41 − S11 + S48

R4 = xQ(14, 5)Q(70, 8) = S6 − S36 − S25 + S44

R12 = x10Q(14, 4)Q(70, 33) = S37 − S45 − S46 + S52

R2 = Q(14, 3)Q(70, 12) = S2 − S40 − S15 + S49

R3 = xQ(14, 1)Q(70, 18) = S4 − S53 − S9 + S55

R9 = x3Q(14, 6)Q(70, 3) = S14 − S26 − S24 + S34

where the term Si is the ith entry in Table 4.

Proving (4.4) is thus equivalent to proving the T 2 identity

(6.1) S1 + S6 + S9 + S15 + S24 + S26 + S37 + S40 + S44 + S48 + S52 + S53

= S2 + S4 + S11 + S14 + S25 + S34 + S36 + S41 + S45 + S46 + S49 + S55.
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Step 1. Input equation (6.1). Note that IT = Î = 441 and so α̂ = 0.

Step 2. The eight choices for the global parameters (m,u, v, k) which give k1 = 21
and k2 = 105 are (3, 1, 1, 21), (3, 1, 5, 21), (6, 2, 1, 10.5), (6, 2, 5, 10.5), (7, 3, 3, 7),
(14, 6, 3, 3.5), (21, 4, 10, 5.25), and (21, 8, 4, 2.625).

Step 3. We illustrate this step with the global parameters (m,u, v, k) = (3, 1, 1, 21). Let e

range from 0 to
7

2
inclusive, α = 0 to 30, IT = 441 + 8820α, and f =

√
7

2
+ 70α− 5e2. The

criteria in the fifth line of the pseudocode require not only that e ∈ 1

2
Z, but also that e and

f have the same half-parity. There are thirty-three triples (e, f,α) for this (m,u, v, k).

Step 4. It turns out that there are sixty-six T 2 terms in the family with invariant 441.
These are listed in Table 3.

Table 3. Terms for family I = 441.

Si(x) = [αi, l1i, l2io] = xαiT (21, l1i)T (105, l2i)

i αi l1i l2i

1 0 1 4
2 0 2 1
3 1 0 21
4 1 4 19
5 1 7 14
6 1 8 11
7 1 9 6
8 2 2 29
9 2 10 19
10 2 11 16
11 2 13 4
12 3 5 34
13 3 8 31
14 3 11 26
15 3 16 1
16 4 2 41
17 4 6 39
18 4 9 36
19 4 15 24
20 4 17 16
21 4 18 9
22 5 1 46

i αi l1i l2i

23 5 16 29
24 5 17 26
25 5 20 11
26 6 11 44
27 7 3 54
28 7 13 46
29 7 16 41
30 7 19 34
31 7 20 31
32 8 7 56
33 8 14 49
34 8 17 44
35 9 4 61
36 9 8 59
37 10 5 64
38 10 10 61
39 10 18 51
40 12 2 71
41 13 1 74
42 13 12 69
43 13 15 66
44 13 20 59

i αi l1i l2i

45 14 5 76
46 14 19 64
47 15 4 79
48 15 13 74
49 15 16 71
50 16 6 81
51 16 10 79
52 18 19 76
53 19 4 89
54 19 11 86
55 20 10 89
56 21 1 94
57 21 17 86
58 22 3 96
59 22 14 91
60 22 21 84
61 23 13 94
62 25 8 101
63 25 12 99
64 26 5 104
65 29 20 101
66 30 19 104
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Table 4. Parameters of Identities.

# (m,u, v, k) e f α

1 (3, 1, 1, 21) 1
2

3
2 0

2 (3, 1, 1, 21) 1
2

17
2 1

3 (3, 1, 1, 21) 1
2

53
2 10

4 (3, 1, 1, 21) 1
2

67
2 16

5 (3, 1, 1, 21) 3
2

23
2 2

6 (3, 1, 1, 21) 3
2

33
2 4

7 (3, 1, 1, 21) 3
2

37
2 5

8 (3, 1, 1, 21) 3
2

47
2 8

9 (3, 1, 1, 21) 5
2

13
2 1

10 (3, 1, 1, 21) 5
2

27
2 3

11 (3, 1, 1, 21) 5
2

43
2 7

12 (3, 1, 1, 21) 5
2

57
2 12

13 (3, 1, 1, 21) 7
2

7
2 1

# (m,u, v, k) e f α

14 (6, 2, 1, 10.5) 1
4

3
2 0

15 (6, 2, 1, 10.5) 1
4

17
2 1

16 (6, 2, 1, 10.5) 3
4

23
2 2

17 (6, 2, 1, 10.5) 3
4

33
2 4

18 (6, 2, 1, 10.5) 5
4

13
2 1

19 (6, 2, 1, 10.5) 5
4

27
2 3

20 (7, 3, 3, 7) 1
2

1
2 0

21 (7, 3, 3, 7) 1
2

11
2 1

22 (7, 3, 3, 7) 1
2

19
2 3

23 (7, 3, 3, 7) 1
2

29
2 7

24 (7, 3, 3, 7) 3
2

9
2 1

25 (14, 6, 3, 5.25) 1
4

1
2 0

25 (14, 6, 3, 5.25) 1
4

11
2 1

Step 5. Altogether we find a total of 26 different identities this way. Table 4 lists the
parameters (m,u, v, k) along with the values of e, f, and α for these identities. Our resulting
M will thus be a 26 × 66 sparse matrix with small integer entries. The first identity is
S2 + S49 + S42 = S1 + S48 + S43. Hence, the first row of our matrix M contains all zeros
except for the entries in columns 2, 49, and 42 which contain 1 and the entries in columns
1, 48, and 43 which contain −1.

Step 6. After putting the matrix into row-reduced, echelon form, it has 16 rows, so there
are 16 identities in Table 4 which are linearly independent.

Step 7. We append a row with 1 in columns 1, 6, 9, ... and -1 in columns 2, 4, 11, ..., the
encoded equation (6.1). After performing another row-reduction, we see that the rank does
not change. Therefore not only is (6.1) a true identity, but also we proved (4.4). The same
happens with (4.5).

7. Search and Proof Results

We programmed the Search Algorithm of Section 3 and the Proof Algorithm of Section 5
as two C++ programs so that tentative integer identities found by the Search Program were
fed into the Proof Program for verification. In this section we give some of the extensive
data produced by the programs as well as some interesting statistics about certain classes
of identities and proofs of identities. We consider briefly the problems of why some mod 2
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identities do not lift to integer identities and why some the Proof Algorithm does not prove
all tentative integer identities.

(a) Statistical Data.

The Search Algorithm was run for all pairs (m1,m2), where 5 ≤ m1 ≤ 100 and m1 ≤ m2 ≤
1000. Of these 91056 pairs, we counted 208097572 families (CI in Step 3 of the algorithm), of
which 54729584 contained at least two triples with the same α. These latter could therefore
be processed in the remaining steps of the algorithm.

For each of these families we constructed the mod 2 Maclaurin expansion associated with
each triple, formed them into a matrix and performed the reduction as outlined in Steps 4 –
6. We used L = 10000, however, the largest value of L required was 418, which occurred at
(m1,m2) = (100, 900) and I = 391500. We then produced a basis of mod 2 identities, reduced
as outlined in Step 7 of the Search Algorithm. We did not look at all linear combinations
of these basis identities, which would have produced considerably more mod 2 identities.
Rather, we considered the mod 2 identities that came from these basis elements. In spite
of our efforts to reduce the amount of output, we were astonished to see that there were
123844352 mod 2 identities. On examination, 123709056 of these were discarded because
they were really linear identities as described in Step 9 of the Search Algorithm. All linear
identities had two or three terms.

Of the remaining (non-linear, mod 2) identities, 20172 were eliminated because they were
not primitive (Step 10), while a further 17708 did not lift to an identity with ±1 coefficients
(Step 12). And for two other tentative identities (one with 18 terms and the other with 21
terms), using N = 10000 proved insufficient as in Step 12, comment. We were finally left
with 97414 tentative identities that needed proofs.

When we transformed these Q2 identities into T 2 identities, we found that in 108 cases
all of the T 2-terms cancelled leaving a trivial identity. (All of these had four terms and are
covered by Theorem 8.2.) Of the rest, we were able to prove 95889 identities using the Proof
Algorithm, leaving a total of 1417 identities that could not be proved using our method. It
should be noted that 28090 of these successful proofs involved a special infinite family of
four-term identities identified in Theorem 8.1.

(b) Tables 5-9

We should point out that minor programming variations in implementing the steps of the
algorithm may well change some of the counts given in the following five tables. In particular,
adding a non-provable identity to one we can prove results in a non-provable identity so the
number of provable identities depends on the choice of the basis found in Step 7 of the Search
Algorithm.

In Table 5 we split all non-linear mod 2 identities (labelled Non-lin mod 2) by the number
of terms in the identity, and we look at the number of n-term identities that are non-primitive
(Not Prim), the number that do not lift to an integer identity (Not Lift), and the number
that lift to an integer identity (Integer). Using the Proof Program, we further divide the
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Table 5. Data on Identities classed by number of terms

# Terms
Non-
lin

mod 2

Not Prim Not Lift Integer No Pf Proof

2 125 113 12 0 0 0
3 1328 633 690 5 0 5
4 35235 5618 978 28639 0 28639
5 1345 597 610 138 0 138
6 11918 2446 359 9113 3 9110
7 4656 1282 953 2421 0 2421
8 20754 2642 573 17539 9 17530
9 4442 480 644 3318 4 3314
10 7459 1073 821 5565 14 5551
11 1370 371 710 289 4 285
12 9396 1733 922 6741 42 6699
13 1748 260 352 1136 0 1136
14 6124 635 1270 4219 6 4213
15 1235 91 1086 58 8 50
16 3540 403 793 2344 39 2305
17 400 24 263 113 0 113
18 3149 290 821 2037 26 2011
19 886 89 193 604 4 600
20 3185 361 649 2175 417 1758
21 1052 154 366 531 10 521
22 1663 142 570 951 42 909
23 322 56 73 193 5 188
24 3118 421 398 2299 105 2194
25 521 31 225 265 14 251
26 460 17 138 305 4 301
27 234 0 98 136 0 136
28 1070 89 380 601 216 385
29 154 0 44 110 2 108
30 925 75 233 617 29 588
31 138 0 62 76 0 76
32 604 4 158 442 53 389

33+ 6740 42 2264 4434 361 4073

Total 135296 20172 17708 97414 1417 95997

integer identities into two classes: those that do not have proofs (No Pf) and those that
have proofs (Proof), including the 108 trivial identities, using the Fundamental T 2 Formula
(Theorem 5.1). Note that the values in the column labelled Non-lin mod 2 are the sum of
the three columns Not Prim, Not Lift, and Integer, except for the two mod 2 identities we



24 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A02

Table 6. Data on Identities where m1 divides m2.

m1 # Inv Non-lin
mod 2

Integer Proof

5 4693 30 24 24
6 14693 7 0 0
7 4642 67 53 53
8 3957 79 75 75
9 7144 53 25 25
10 4489 158 111 111
11 4766 138 124 124
12 7385 71 36 36
13 5051 158 140 140
14 4793 247 178 178
15 4548 167 63 63
16 4377 339 263 263
17 5443 273 172 172
18 5543 268 174 174
19 5481 291 273 273
20 4432 514 405 405
21 3489 269 143 143
22 5335 506 390 390
23 5755 538 420 420
24 3709 292 158 158
25 5208 387 324 324
26 5485 571 449 449
27 2545 532 322 322
28 4716 991 773 773
29 5565 584 545 545
30 3652 554 319 319
31 5610 510 375 374
32 4846 893 616 616
33 2433 453 203 203
34 5689 714 484 484
35 4306 1053 865 865
36 2761 916 621 621
37 5184 510 507 503
38 5690 960 731 731
39 2060 500 273 273
40 4382 1620 1127 1127
41 4823 517 422 422
42 2754 701 379 379
43 4935 866 858 854
44 4664 1456 1143 1143
45 1820 1457 976 976
46 5156 1345 965 965
47 4418 931 814 811
48 2003 938 513 513
49 4133 1141 1002 1002
50 4909 1607 1195 1195
51 1680 564 296 296
52 4646 1631 1249 1249

m1 # Inv
Non-
lin

mod 2
Integer Proof

53 3901 766 754 739
54 2046 1689 1052 1052
55 3662 1917 1541 1541
56 3896 3053 2206 2206
57 1548 736 383 383
58 5174 1530 1157 1157
59 3600 1069 1061 1059
60 1795 1933 1248 1248
61 3734 951 948 933
62 4879 1668 1321 1318
63 1293 1730 1268 1268
64 3667 1873 1215 1215
65 3212 1163 794 794
66 2058 1080 671 671
67 3446 915 639 639
68 4032 2227 1790 1790
69 1368 617 292 292
70 4151 2840 2135 2135
71 3646 1632 1485 1470
72 1418 2652 1615 1615
73 3181 1781 1673 1671
74 4345 1706 1469 1457
75 1164 936 598 598
76 3951 2522 1991 1991
77 2643 2383 2006 2006
78 1632 1312 852 852
79 2893 1413 1251 1248
80 2968 3332 2065 2065
81 1047 2381 1801 1801
82 4074 1769 1389 1389
83 3042 913 913 913
84 1399 2002 1154 1154
85 2665 2171 1317 1317
86 3976 2667 2028 2025
87 1124 974 452 452
88 3286 3839 2544 2544
89 3018 1800 1000 1000
90 1593 4074 2541 2541
91 2409 3167 2018 2018
92 3080 4153 3258 3258
93 1013 1250 522 520
94 3637 2540 1885 1885
95 2481 4194 3924 3924
96 1165 2016 1072 1072
97 2701 1821 1627 1622
98 3584 2738 2042 2042
99 1053 3543 2773 2773
100 3058 3524 2767 2767

Total 360506 128329 94080 93991
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Table 7. Data on Identities where d = gcd(m1,m2) < m1

d # Inv
Non-
lin

mod 2
Integer Proof

1 38949971 0 0 0
2 7645585 0 0 0
3 3391283 0 0 0
4 1246995 16 0 0
5 682948 127 24 0
6 642455 6 0 0
7 327633 196 40 17
8 239985 180 123 83
9 174777 30 4 0
10 174880 138 52 0
11 131285 250 95 20
12 97402 56 2 0
13 84475 263 61 18
14 94272 296 151 98
15 34273 87 10 4
16 52811 489 366 200
17 42274 293 148 76
18 33248 202 63 44
19 41090 407 246 92
20 39825 319 221 86
21 14048 154 31 18
22 24346 309 199 63
23 21779 263 156 47
24 14291 229 88 66
25 18753 262 105 38

d # Inv
Non-
lin

mod 2
Integer Proof

26 14366 140 83 83
27 5864 53 5 5
28 11991 186 123 123
29 10831 57 57 55
30 8999 256 162 162
31 10814 110 43 30
32 11303 192 114 114
33 5657 147 21 21
34 5885 24 3 3
35 3923 166 82 82
36 2692 33 6 6
37 5055 31 26 20
38 5601 95 16 4
39 2114 119 39 39
40 4563 71 42 42
41 4571 35 32 24
42 2916 64 13 13
43 4893 29 18 0
44 4315 40 23 23
45 1656 144 35 35
46 5463 68 32 16
47 4395 32 26 0
48 1734 0 0 0
49 3945 157 102 102
50 4848 146 46 34

Total 54369078 6967 3334 2006

were unable to classify (see lines 18 and 21), and the values in the column labelled Integer
are the sum of the two columns labelled No Pf and Proof.

There appear to be more identities with an even number of terms than with an odd
number of terms. Again we note that the number of terms in an identity depends on the
choice of basis elements. The purpose of the joint reduction Step 7 of the Search Algorithm
was to make the total number of terms in the basis identities as small as possible. A
different implementation of this step could lead to different values in Table 5. The large
number of four-term identities, 28639, includes 28198 cases of two infinite families of four-
term identities, described in Section 8c. Similarly, we suspect that another infinite parametric
family accounts for the large number of eight-term identities in Table 5.
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Table 8. Data when m1 divides m2, r =
m2

m1

r
Non-
lin

mod 2
Integer Proof

1 631 252 252
2 6036 2999 2999
3 10019 7967 7957
4 36664 30203 30197
5 11448 9045 9045
6 600 340 336
7 14349 6383 6366
8 17322 13311 13311
9 528 410 404
10 3539 2425 2419
11 3259 2399 2393
12 3864 2919 2916
13 1359 1062 1048
14 695 154 146
15 1041 749 746
16 9842 8186 8180
17 355 223 223
18 26 0 0
19 278 209 209
20 1455 1044 1044
21 188 165 165

r
Non-
lin

mod 2
Integer Proof

22 125 53 53
23 59 47 47
24 95 77 77
25 2050 1686 1686
26 28 28 28
28 561 228 228
29 15 15 15
30 20 12 12
31 32 32 32
32 642 498 498
33 21 21 21
34 18 0 0
35 231 215 215
37 19 19 19
39 25 25 25
40 157 131 131
44 41 35 35
45 18 18 18
48 39 22 22
49 214 177 177
50 55 18 18

r
Non-
lin

mod 2
Integer Proof

52 28 20 20
55 68 48 48
56 27 21 21
60 11 9 9
64 106 79 79
68 9 9 9
75 6 2 2
80 17 15 15
85 16 16 16
91 18 18 18
98 8 0 0
100 21 12 12
112 4 4 4
121 8 7 7
125 9 9 9
128 5 5 5
169 1 1 1
196 2 1 1
200 2 2 2

Total 128329 94080 93991

Table 9. Frequency of identity space dimensions.

Dim # Inv
0 54687283
1 21592
2 6731
3 3412
4 2559
5 1382
6 1398
7 884
8 671
9 623
10 763

Dim # Inv
11 377
12 475
13 152
14 139
15 166
16 89
17 79
18 125
19 69
20 108
21 50

Dim # Inv
22 51
23 42
24 59
25 25
26 24
27 46
28 16
29 8
30 44
31 11
32 15

Dim # Inv
33 22
34 5
35 13
36 9
37 1
38 2
39 12
40 6
41 4
42 3
43 2

Dim # Inv
44 4
45 3
46 3
47 6
49 2
53 1
57 1
64 1
65 1
66 2
67 3

Dim # Inv
69 2
73 1
76 3
77 1
91 1
92 1
94 1
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It has been our experience over the years that Q2 identities balanced at (m1,m2) are most
likely to occur when m1 divides m2. Does the condition that m1 divides m2 increase the
chance of finding a Q2 identity? What happens if m1 and m2 overlap, but gcd(m1,m2) is
less than m1? What happens if m1 and m2 are relatively prime?

In order to answer these questions, we collected the data into two tables. In Table 6 we
display some abridged data for the pairs (m1,m2) such that m1 divides m2. We provide the
number of invariants (# Inv) that produced a family CI which could be processed as in
Step 3 of the Search Algorithm and the number of non-linear mod 2 identities produced.
We further show the number of these that lifted to an integer equation, and in turn, the
number of these we can prove using the Fundamental T 2 Formula. In Table 7 we deal with
the pairs (m1,m2) where m1 does not divide m2, indexed by d = gcd(m1,m2). It seems for
various reasons that the prime factors of m1 and m2 determine many features of the data
we obtained.

Observe in Table 7 that no integer identity exists when d is 1, 2, 3, or 4. In particular, when
d = 1, not one of the nearly 39 million invariant families leads to a single mod 2 identity,
other than the linear identities. We raise the question: Do any non-linear Q2 identities exist
when m1 and m2 are relatively prime? When gcd(m1,m2) ≥ 5, a comparison of Tables 6
and 7 reveal some marked differences, confirming our opinion that the condition m1 divides
m2 greatly increases the chances of finding and of proving a Q2 identity. Table 6 shows
that the 360506 possible invariant families produce 94080 possible integer identities, so that
when m1 divides m2, the probability that an invariant family leads to an integer identity is
approximately 26.1%, indicating that the Search Algorithm is successful in finding an actual
identity over one fourth of the time. Furthermore, the Proof Algorithm is able to prove
93991 of these 94080 integer identities produced by the Search Algorithm, or roughly 99.9%.

Table 7 shows that genuine integer identities are much scarcer when the gcd of m1 and
m2 lies strictly between 4 and m1. Out of 3135244 invariant families, the Search routine
succeeds in finding only 3334 integer identities, a success rate of one tenth of one percent.
Moreover, the Proof Algorithm finds a proof for only 60.1% of the them (2004 out of 3334).

Another observation of Table 6 is that it is often the case that the Proof Algorithm proves
every integer identity found by the Search Algorithm for a particular m1. Indeed the Proof
Algorithm is perfect up to m1 = 30 and overall, for 81 of the 96 values of m1 listed in Table
6. On the other hand, when d = gcd(m1,m2) is less than m1, an examination of Table 7
shows that the results run the gamut between always finding a proof for a particular value of
the gcd and striking out every time. The program proves all integer identities for 15 values
of d and fails to find any proof at all for 6 other values of d. Naturally we exclude those
values of d > 4 for which the Search Algorithm failed to find a single integer identity: d = 6
and 48.

Since the condition that m1 divides m2 seems so much of a criterion in finding and proving
identities, we decided to investigate these cases more thoroughly, by considering the ratio
m2

m1
. In Table 8 we consider only pairs (m1,m2) where m1 divides m2. The index for the table
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is the quotient r =
m2

m1
. Rows where all entries are zero have been deleted from this table.

Observe that we get a relatively larger number of identities, compared to the nearby rows,
when this ratio is a square not divisible by 3, in particular, for r = 4, 16, 25, 49, 64, 100,
and 121. On the other hand, there are no non-linear identities of any kind for the square
r = 36. Observe also that all potential identities have proofs when r ≥ 17.

Finally, one can ask about the distribution of the dimension of the space of non-linear
mod 2 identities found by the Search Algorithm for a given invariant. In table 9 we present
the number of invariants that yield a given dimension. The majority of invariant families
(over 54 million) do not produce any non-linear identities (dimension zero). As seen in Table
9, the majority of invariants which produce actual mod 2, non-linear identities result in a
basis with a fairly small dimension. We were a bit surprised, however, to discover that one
invariant led to a non-linear mod 2 identity space of dimension 94, therefore giving 294 mod
2 identities. This occurs when m1 = 96, m2 = 672, and I = 82944.

(c) The Lifting Problem

There were 17708 primitive non-linear mod 2 identities that did not lift to the integers.
However, since we use only ±1 coefficients in our integer identities, it is possible for a mod
2 identity, which does not lift in Step 12 of the Search Algorithm, to lift to a true identity
with coefficients other than ±1, or one with Q1, Q2 or Q3 in its terms [4, Definition 3], or
even a non-balanced identity. Of course, it may be possible that it does not lift to any of
these.

We were able, however, to find a proof for some of these recalcitrant tentative identities.
Here is an example of a three-term mod 2 identity which does not lift to a Q2 identity:

(7.1) Q(6, 1)Q(24, 6) + Q(6, 2)Q(24, 4) + xQ(6, 2)Q(24, 8) ≡ 0 (mod 2).

When we consider even multiples of other triples with the same invariant 324 as (7.1), we
find the balanced identity

(7.2) Q(6, 1)Q(24, 6) + xQ(6, 2)Q(24, 8) = Q(6, 2)Q(24, 4) + 2x2Q(6, 1)Q(24, 10).

That (7.2) is true can be seen by first introducing Q(24, 2) = Q(24, 6)− x2Q(24, 10), a case
of (3.5), into (7.2) and then noting that the resulting four-term identity is an instance of
(8.4) with r = 6, s = 1, and t = 2. Our algorithm, however, is not sophisticated enough to
find this identity.

It is interesting that (7.1) can be lifted to the balanced Q1Q0 identity

(7.3) Q1(6, 1)Q0(24, 6) = Q1(6, 2)Q0(24, 4) + xQ1(6, 2)Q0(24, 8).

To prove (7.3), convert it to a T1T0 identity using [4, Theorem 4] and then apply [4, Theorem
4] to the T1 terms. The resulting T 2

0 identity, balanced at (36, 36), can then be proved using
the Proof Algorithm as usual.

(d) Tentative Identities Without Proofs
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The Proof Program found there were 1417 out of 97414 tentative identities (approximately
1.5%) which could not be proved using the Fundamental T 2 Formula. A simple example is
the following six-term identity:

(7.4) Q(28, 1)Q(35, 5) + xQ(28, 9)Q(35, 10) + x3Q(28, 3)Q(35, 15) =

Q(28, 5)Q(35, 10) + x3Q(28, 13)Q(35, 5) + x5Q(28, 11)Q(35, 15).

To prove this identity, we recall from [4, Theorem 9] the linear Q identity,

(7.5) Q(m,n) = Q(4m,m− 2n)− xnQ(4m,m + 2n),

which is true for all m ∈ Z+ and n ∈ Z. Now group the pairs of terms of (7.4) with the
common factor Q(35, n2), n2 = 5, 10, 15, and factor out the respective Q(35, n2)’s. Then
apply (7.5) to each of the three Q(28, ∗) binomials. The resulting equation is (1.8). This
same technique proves the other two six-term (tentative) identities without proofs (see Table
5, line 6) using (1.6) and (1.7).

Out of the nine eight-term (tentative) identities without proofs (see Table 5, line 8), eight
collapse using (7.5) to the eight identities (8.16)–(8.21), (8.24), and (8.25). The remaining
tentative identity, balanced at (72, 90), may be transformed using (3.5) and (7.5) into a true
identity balanced at (18, 90).

Although this “contraction” technique proves many of the tentative identities which could
not be established using the Proof Algorithm, it does not prove them all. The simplest
example is the following tentative nine-term identity balanced at (m1,m2) = (38, 95) using
the notation (4.1):

(7.6)
(0, 7, 20) + (2, 13, 10) + (4, 1, 30)+(10, 17, 35) + (14, 11, 45)

= (0, 9, 15) + (2, 3, 5) + (4, 15, 25) + (9, 5, 40).

Interestingly, the Proof Algorithm proves none of the six tentative identities balanced at
(38, 95), and obviously the “contraction” method does not work if the number of terms is
odd.

8. New Q2 Identities

(a) Two-term mod 2 identities

There are 39325 two-term mod 2 identities; however all but 125 are linear and occur only
when m1 = m2. Not one of these 125 mod 2 identities lifts to an integer identity. Such
is the case when (m1,m2) = (5, 20). The triples (0, 1, 6) and (0, 2, 2) produce power series
which are not equal but are congruent mod 2. All 125 two-term mod 2 identities occur when
m2

m1
= 1, 2, or 4. This raises the question: Are there any genuine non-linear two-term Q2
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identities? The answer is no. We can show that if 0 < a, c <
m1

2
and 0 < b, d <

m2

2
, then

(8.1) Q(m1, a)Q(m2, b) = Q(m1, c)Q(m2, d)

if and only if a = c and b = d, or else a = d, b = d, and m1 = m2. The proof uses the
product form of each Q [12, p. 1284] and examines the several thousand ways the factors
on the two sides of (8.1) can be merged.

(b) Two More Three-term Identities

We found two new three-term identities:

(8.2) Q(5, 1)Q(40, 2) + x4Q(5, 1)Q(40, 18) = Q(5, 2)Q(40, 10).

(8.3) Q(5, 2)Q(40, 6) + x2Q(5, 2)Q(40, 14) = Q(5, 1)Q(40, 10)

The Proof Algorithm is able to verify both of these equations, making a total of five non-
linear primitive three-term Q2 identities in our search ranges.

Note that if we solve (8.2) and (8.3) for the ratio
Q(5, 1)

Q(5, 2)
, we get the equation

Q(40, 6) + x2Q(40, 14)

Q(40, 10)
=

Q(40, 10)

Q(40, 2) + x4Q(40, 18)
.

Cross-multiplying and sending x2 → x yields

(Q(20, 5))2 = Q(20, 3)Q(20, 1)+xQ(20, 7)Q(20, 1)+x2Q(20, 3)Q(20, 9)+x3Q(20, 7)Q(20, 9),

an identity balanced at (20, 20). (See Table 8, r = 1.) We find this identity interesting
because it is one (of a few) that contains a square Q.

(c) Four-term Identities

Among the identities we found in our search are several types of four-term identities which
we discuss next. The first is a two-parameter family of identities balanced at (m1, 4m1)
which was discovered from the search output because of its simple form. The two proofs
of this identity we give illustrate two methods of proof we can use, the second being much
more complicated than the first.

Theorem 8.1. If r ∈ Z+ and s, t ∈ Z, then

(8.4)
Q(r, s)Q(4r, r − 2t) + xsQ(r, t)Q(4r, r + 2s) =

Q(r, t)Q(4r, r − 2s) + xtQ(r, s)Q(4r, r + 2t).

The first proof rests on the commutativity of a product.

Proof 1. Using (7.5) twice, we find that

Q(m, s)
[
Q(4m,m− 2t)− xtQ(4m,m + 2t)

]
= Q(m, s)Q(m, t) =

Q(m, t) [Q(4m,m− 2s)− xsQ(4m,m + 2s)] .



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A02 31

Equation (8.4) follows immediately. !

The second proof uses the method described in Section 5 which is based on the Fundamental
T 2 Formula.

Proof 2. Define the following:

k1 =
3

2
r, k2 = 4k1 = 6r, σ± =

r

2
± 3s, and τ± =

r

2
± 3t.

Using our concise notation [α, l1, l2] = xαT (k1, l1)T (k2, l2) and (α, n1, n2) = xαQ(r, n1)Q(4r, n2),
we apply (3.4) to transform each of the four Q2 terms in (8.4) into four T 2 terms:

(0, s, r − 2t) =
[
0,σ−,−2τ−

]
(0, t, r − 2s) =

[
0, τ−,−2σ−

]

−xs
[
0,σ+,−2τ−

]
− xt

[
0, τ+,−2σ−

]

−xt
[
k1 − τ+,σ−, k2 − 2τ+

]
− xs

[
k1 − σ+, τ−, k2 − 2σ+

]

+xs+t
[
k1 − τ+,σ+, k2 − 2τ+

]
+ xs+t

[
k1 − σ+, τ+, k2 − 2σ+

]

(s, t, r + 2s) = xs
[
0, τ−,−2σ+

]
(t, s, r + 2t) = xt

[
0,σ−,−2τ+

]

−xs+t
[
0, τ+,−2σ+

]
− xs+t

[
0,σ+,−2τ+

]

−
[
k1 − σ−, τ−, k2 − 2σ−

]
−

[
k1 − τ−,σ−, k2 − 2τ−

]

+xt
[
k1 − σ−, τ+, k2 − 2σ−

]
+ xs

[
k1 − τ−,σ+, k2 − 2τ−

]

We now substitute these four expressions into equation (8.4) to get an identity containing all
16 of the above T 2 terms. This new identity may be broken into four groups, whose terms
are identified by the exponent on the x in front of the term. (Four of the above terms have
x0 before them, four have xs, four have xt, and the remaining four have xs+t.) Amazingly,
all four of these groups have the structure

(8.5) [0,σ,−2τ ] + [k1 − τ,σ, k2 − 2τ ] = [0, τ,−2σ] + [k1 − σ, τ, k2 − 2σ]

where σ is either σ+ or σ− and τ is either τ+ or τ−.

Next we use the first part of (2.2) to negate the l1 parts of the first and third terms of
(8.5) and then we use the second part of (2.2) to reduce the l1 part of the second and fourth
terms. These four reductions result in the identity
(8.6)
[0,−σ,−2τ ]+ [2k1 − σ − τ, 2k1 − σ, k2 − 2τ ] = [0,−τ,−2σ]+ [2k1 − σ − τ, 2k1 − τ, k2 − 2σ] .

We derive (8.6) from Theorem 5.1 using the global parameters m = 2, u = 1, v = 2, k = k1

and the residue systems Rm = R′
m = {0, 1}. From Theorem 5.1 we have

αn(e, f) = 2k1n
2 + 2en

l1,n(e, f) = 2k1n + e + f

l2,n(e, f) = k2n + 2e− 2f

l′1,n(e, f) = 2k1n + e− f

l′2,n(e, f) = k2n + 2e + 2f.

With these values, observe that (8.6) is precisely equation (5.1) with e + f = −σ and

e− f = −τ . Setting (e, f) =
(
−1

2(σ + τ),−1
2(σ − τ)

)
completes the proof. !
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Since the first proof shows that an infinite family of Q2 identities arises from a linear Q
identity, it is not surprising that another infinite family of four-term identities can be gotten
from the other known linear Q identity (3.5). In this case there are nine identities where
both m1 and m2 are multiples of 3. The following nine four-parameter identities cover all
trivial (four-term) identities discovered during the search.

Theorem 8.2. Let m1 = 3a and m2 = 3b for a, b ∈ Z+, and let c, d ∈ Z. If we de-
note (α, n1, n2) = xαQ(m1, n1)Q(m2, n2), then we have the following four-term Q2 identities
balanced at (m1,m2):

(0, a− c, d) + (d, c, b + d) = (0, c, b− d) + (c, a + c, d)(8.7)

(0, c, d) + (c, a + c, d) + (d, a− c, b + d) = (0, a− c, b− d)(8.8)

(0, a− c, d) + (c + d, a + c, b + d) = (0, c, d) + (c, a + c, b− d)(8.9)

(0, a− c, b− d) = (0, c, d) + (c, a + c, b− d) + (d, c, b + d)(8.10)

(0, c, b− d) + (c, a + c, b− d) = (0, a− c, d) + (d, a− c, b + d)(8.11)

(0, a− c, b− d) = (0, c, b− d) + (c, a + c, d) + (c + d, a + c, b + d)(8.12)

(0, c, d) + (d, a− c, b + d) = (0, c, b− d) + (c + d, a + c, b + d)(8.13)

(0, a− c, d) + (d, c, b + d) + (c + d, a + c, b + d) = (0, a− c, b− d)(8.14)

(c, a + c, d) + (d, a− c, b + d) = (c, a + c, b− d) + (d, c, b + d).(8.15)

Proof. Consider the following three rational functions for s ∈ Z+ and t ∈ Z:

F1(s, t) =
Q(3s, s− t)− xtQ(3s, s + t)

Q(3s, t)

F2(s, t) =
Q(3s, t) + xtQ(3s, s + t)

Q(3s, s− t)

F3(s, t) =
Q(3s, s− t)−Q(3s, t)

xtQ(3s, s + t)
.

Here we assume t is chosen so that the denominator of all Fi is non-zero. Using the linear
identity (3.5) we see that each of the three functions F1, F2, and F3 is equal to 1. For
i, j = 1, 2, 3, we obtain identity number i+3(j−1) in the list of identities in the theorem by
setting Fi(a, c) = Fj(b, d). (The cases where any denominator is zero are easily verified.) !

Expanding any identity (8.7) – (8.15) into a T 2 identity using (3.4) results in all T 2 terms
cancelling to leave the trivial identity.

There are many four-term identities which do not come from the previous two theorems.

For example, consider (m1,m2) = (8, 40). Since
m2

m1
= 5, not 4, Theorem 8.1 does not apply.

Furthermore, 3 divides neither m1 nor m2 so Theorem 8.2 does not apply here either. The Q2

search vprogram produced the six four term identities below (with invariants 252, 828, 1512,
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1692, 2088, and 2268, respectively). A proof of each of these equations can be constructed
using the Proof Algorithm in Section 5.

Q(8, 1)Q(40, 8) + xQ(8, 1)Q(40, 12) = Q(8, 2)Q(40, 7) + x4Q(8, 2)Q(40, 17)(8.16)

Q(8, 1)Q(40, 4) + xQ(8, 2)Q(40, 1) + x3Q(8, 1)Q(40, 16) = Q(8, 2)Q(40, 9)(8.17)

Q(8, 1)Q(40, 3) + xQ(8, 1)Q(40, 13) = Q(8, 3)Q(40, 7) + x4Q(8, 3)Q(40, 17)(8.18)

Q(8, 2)Q(40, 3) + xQ(8, 2)Q(40, 13) = Q(8, 3)Q(40, 8) + xQ(8, 3)Q(40, 12)(8.19)

Q(8, 1)Q(40, 11) + xQ(8, 3)Q(40, 1) = Q(8, 3)Q(40, 9) + x5Q(8, 1)Q(40, 19)(8.20)

Q(8, 2)Q(40, 11) = Q(8, 3)Q(40, 4) + x3Q(8, 3)Q(40, 16) + x5Q(8, 2)Q(40, 19)(8.21)

These identities seem to be related to rational functions in a way similar to the functions
F1–F3 used in the proof of Theorem 8.2. If we group together terms with common factors,
we see that the six equations neatly split into two groups. Equations (8.16), (8.18), and
(8.19) give

(8.22)
Q(40, 7) + x4Q(40, 17)

Q(8, 1)
=

Q(40, 8) + xQ(40, 12)

Q(8, 2)
=

Q(40, 3) + xQ(40, 13)

Q(8, 3)
,

while, equations (8.17),(8.20), and (8.21) produce

(8.23)
Q(40, 9)− xQ(40, 1)

Q(8, 1)
=

Q(40, 4) + x3Q(40, 16)

Q(8, 2)
=

Q(40, 11)− x5Q(40, 19)

Q(8, 3)
.

Not all four-term identities can be expressed in terms of fractions as in the the preceding
examples. In that regard, the following two are “isolated curiosities” ([14, p. 335]):
(8.24)

Q(10, 3)Q(110, 11) + x8Q(10, 2)Q(110, 44) = Q(10, 4)Q(110, 22) + x2Q(10, 1)Q(110, 33)

and
(8.25)

Q(16, 3)Q(112, 7) + x11Q(16, 5)Q(112, 49) = Q(16, 7)Q(112, 21) + x2Q(16, 1)Q(112, 35).

References

[1] G. Andrews. An incredible formula of Ramanujan. Aust. Math. Soc. Gazette, 6:80–89, 1979.
[2] B. Berndt. Ramanujan’s Notebooks, Part III. Springer-Verlag, New York, 1991.
[3] B. Berndt and H. Yesilyurt. Ramanujan’s forty identities for the rogers-ramanujan functions and linear

relations between them. preprint.
[4] R. Blecksmith and J. Brillhart. Linear quintuple-product identities. Math. Comp., 72:1019–1033, 2003.
[5] R. Blecksmith, J. Brillhart, and I. Gerst. A computer–assisted investigation of Ramanujan pairs. Math.

Comp., 46:731–749, 1986.
[6] R. Blecksmith, J. Brillhart, and I. Gerst. Parity results for certain partition functions and identities

similar to theta function identities. Math. Comp., 48:29–38, 1987.



34 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7(2) (2007), #A02

[7] R. Blecksmith, J. Brillhart, and I. Gerst. Some infinite product identities. Math. Comp., 51:301–314,
1988.

[8] R. Blecksmith, J. Brillhart, and I. Gerst. On the mod 2 reciprocation of infinite modular–part products
and the parity of certain partition functions. Math. Comp., 54:345–376, 1990.

[9] R. Blecksmith, J. Brillhart, and I. Gerst. On a certain (mod 2) identity and a method of proof by
expansion. Math. Comp., 56:775–794, 1991.

[10] R. Blecksmith, J. Brillhart, and I. Gerst. New proofs for two infinite product identities. Rocky Mountain
J. Math., 22:819–823, 1992.

[11] R. Blecksmith, J. Brillhart, and I. Gerst. A fundamental modular identity and some applications. Math.
Comp., 61:83–95, 1993.

[12] R. Blecksmith, J. Brillhart, and I. Gerst. A lattice proof of a modular identity. Rocky Mountain J.
Math., 26:1275–1287, 1996.

[13] R. Blecksmith, J. Brillhart, and I. Gerst. A constructive theory of triple and quintuple product identities
of the second degree. Math. Comp., 67:707–814, 1998.

[14] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford, 3rd edition, 1954.


