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Abstract

The aim of this survey is to discuss multidimensional continued fraction and Eu-
clidean algorithms from the viewpoint of numeration systems, substitutions, and
the symbolic dynamical systems they generate. We will mainly focus on two types
of multidimensional algorithms, namely, unimodular Markovian ones which include
the most classical ones like, e.g., the Jacobi-Perron algorithm, and algorithms issued
from lattice reduction. We will discuss these algorithms motivated by the study of
substitutive dynamical systems, symbolic dynamical systems with low complexity
function, and discrete geometry.

1. Introduction

The aim of this survey is to discuss multidimensional continued fraction and Eu-
clidean algorithms from the viewpoint of numeration systems, substitutions, and
the symbolic dynamical systems they generate. Let us note first that continued
fraction algorithms enter in a natural way in the framework of numeration, when
considering numeration in a wide sense as the art of representation of numbers (in-
tegers, rational, real, complex numbers, vectors, etc.). This is also closely related
to the viewpoint of numeration dynamics, developed by M. Keane, and of arith-
metic dynamics, such as described in the survey [129]: arithmetic dynamics deals
with arithmetic expansions and codings of dynamical systems that preserve their
arithmetic structure.

Let us give now a flavor of what is meant here by substitutive viewpoint on con-
tinued fractions. A substitution is a simple and basic object in word combinatorics
and in symbolic dynamics (i.e., the study of discrete dynamical systems obtained
by working with infinite sequences of symbols endowed with the shift). A substi-
tution is a non-erasing morphism of the free monoid: it replaces letters by words.
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For more on substitutions and the symbolic dynamical systems they generate, see
[112, 111]. As an example of the interactions between Euclid’s algorithm and sub-
stitutions, let us focus on the family of Sturmian sequences (see also Section 3.1).
Sturmian sequences are infinite words with values in a two-letter alphabet that are
obtained as codings of irrational rotations acting on T = R/Z with respect to a
particular two-set partition of the one-dimensional torus T. For a thorough de-
scription of Sturmian sequences, see [25] and Chap. 6 in [111]. Sturmian sequences
can be perfectly understood thanks to some representation involving substitutions
and Euclid’s algorithm: by expanding « as a continued fraction, we represent it as
an infinite product of square matrices of size two with nonnegative integer entries;
each of these matrices can be seen as the abelianized matrix of a substitution, with
the action of a substitution being considered as a combinatorial interpretation of a
step (additive or multiplicative) of Euclid’s algorithm. A Sturmian sequence is then
proved to be generated as an infinite composition of these substitutions. This com-
position is governed by the Ostrowski numeration which uses as a numeration scale
the convergents of a given real number a € (0, 1), such as described, e.g., in [32].
The Sturmian framework is a salient example of the relations between numeration,
continued fractions and dynamics. We will use it as a guideline and as a motivation
for a possible generalization throughout this survey.

More generally, the connection between word combinatorics and multidimen-
sional continued fractions is particularly striking within the so-called S-adic frame-
work. A sequence is said to be S-adic if it is generated by an infinite composition
of a finite number of substitutions. This covers various families of infinite words
with a rich dynamical behavior such as Sturmian sequences. In order to understand
the geometric and symbolic nature of the dynamical systems they generate, we
are mainly interested in the two following problems: first, finding geometric inter-
pretations of these systems, and secondly, developing multidimensional continued
fraction algorithms that rule their S-adic expansion. This belongs to the so-called
Rauzy program, such as detailed in the survey [31]. This program can be sketched
as follows: find generalizations of the interaction between Sturmian sequences and
rotations which would naturally generate (simultaneous) approximation algorithms.
As an example, see [116] where a continued fraction expansion associated with inter-
val exchanges is discussed. Our approach is complementary to that of [31]. Instead
of discussing continued fraction algorithms that are issued from the study of some
classic families of infinite words allowing to perform Rauzy’s program, we try to
bring some elements of answer to the following question: which types of general-
izations of continued fraction algorithms can be of some use in symbolic dynamics
and in discrete geometry?

We have no claim to being exhaustive in our exposition of generalizations of
Euclidean and continued fraction algorithms. We have chosen to spotlight here
representative aspects of the theory in connection with substitutions and numeration
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systems. For historical aspects, the reader is referred to the classic references [24,
137, 34]. For ergodic aspects, see [125, 127].

Let us sketch the contents of this survey paper. Section 2 includes basic intro-
ductory material on substitutions, symbolic dynamical systems, and the question of
their geometric representation. Section 3 aims at introducing first motivations for
the introduction of suitable generalized Euclidean’s algorithms, namely the study
of discrete lines and the S-adic approach. Multidimensional continued fractions are
discussed in Section 4 in full generality. We detail the case of unimodular Marko-
vian algorithms in Section 5 and the case of algorithms based on lattice reduction
in Section 6. This paper ends with a discussion on possible applications of these
algorithms to symbolic dynamics and discrete geometry.

2. Substitutive Dynamical Systems

2.1. Substitutions on Words and Symbolic Dynamical Systems

We consider a finite set of letters A, called alphabet. A (finite) word is an element
of the free monoid A* generated by A. A substitution o over the alphabet A is
a non-erasing endomorphism of the free monoid A* (non-erasing means that the
image of any letter is not equal to the empty word but contains at least one letter).
For i € A and for w € A*, let |w|; stand for the number of occurrences of the letter
i in the word w. Let d stand for the cardinality of A. The map

1: A* — Nd, w — (|w|17 |w|27' o ,|'lU|d)

is called the abelianization map. This map is also referred to as the Parikh mapping.
Let o be a substitution. Its incidence matriz (also called abelianized matriz) M, =
(M), <; j<q is defined as the square matrix with entries m; ; = |o(j)|; for all 4, j.
We say that o is unimodular if det(M,) = £1. A substitution is said primitive if
there exists a power of its incidence matrix whose entries are all positive.

Let S denote the following map defined on A", called the (one-sided) shift:

S((Un)nen) = (Unt1)nen- (1)

We endow the set AN with the the following metrics: for z,y € AN
d(z,y) = (1 +inf{k > 0; zy # yr}) "

It is a compact space. Two sequences are close to each other if their first terms
coincide.

Let us see now how to associate with a substitution a symbolic dynamical system,
defined as a closed shift invariant subset of AY. Let ¢ be a primitive substitution
over A. Let u € AN be such that o (u) = u for some k > 1. Such an infinite word
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exists by the primitivity of o. Indeed, there exist a letter a and a positive integer k
such that 0% (a) begins with a; consider as a first letter of u this letter a, and take as
u the limit lim,, ., 0*"(a). Let W be the positive orbit closure of the sequence u
under the action of the shift S, i.e., the closure of the set O(u) = {S™(u) | n > 0}.
The substitutive symbolic dynamical system (X,,S) generated by o is defined as
X, := O(u). One easily checks by primitivity that (X,,.S) does not depend on the
choice of the infinite sequence u fixed by some power of ¢. For more details, see
[112].

For analogue notions of substitutions and associated dynamical systems defined

on tilings and point sets, acting as inflation/subdivision rules, see the surveys [134,
118, 110].

2.2. Geometric Representations

One fundamental question concerning substitutive dynamical systems (X, .S) deals
with the possibility of giving to them a geometric representation. By geometric rep-
resentation, one considers here dynamical systems of a geometric nature that are
either topologically or measure-theoretically isomorphic to (X,,.S). In particular,
one looks for conditions under which it is possible to give a geometric represen-
tation of a substitutive dynamical system as a translation on the torus, or on a
locally compact abelian group. This latter question can be reformulated in spectral
terms: which are the substitutions whose associated dynamical system has discrete
spectrum? For more details, see, e.g., [143, 111, 112]. Note that measure-theoretic
discrete spectrum and topological discrete spectrum are proved to be equivalent for
primitive substitutive dynamical systems [66].

A substitution is said Pisot irreducible if the characteristic polynomial of its
incidence matrix is the minimal polynomial of a Pisot number, that is, an algebraic
integer § whose conjugates (distinct from 3) have modulus smaller than 1. Tt is
widely believed that Pisot irreducible substitutions have purely discrete spectrum.
For more details, see, e.g., [111], Chap. 7 and [22]. See also in the same vein [119]
whose main concern is Pisot automorphisms of the torus (instead of substitutions).
Consider as a first example the Fibonacci substitution o: a +— ab, b +— a; (X,,S)
is measure-theoretically isomorphic to (R/Z,RLQ@). For more details see, e.g.,

Chapter 5 in [111]. Furthermore, two-letter Pisot substitutions are known to have
discrete spectrum [21, 65, 67]. See also [22, 29, 72] for recent results on Pisot
substitutive dynamical systems.

One strategy for providing geometric representations has been developed by
Rauzy and can be considered as a part of Rauzy’s program mentioned in the intro-
duction. This approach has been developed in the case of the Tribonacci substitu-
tion o : 1 +— 12, 2 — 13, 3 — 1 in [113]. It is a primitive, unimodular and Pisot
irreducible substitution. Its characteristic polynomial is X3 — X2 — X — 1 and its
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dominant eigenvalue § > 1 is a Pisot number.

Theorem 1 ([113]) Let o be the Tribonacci substitution o: 1+ 12, 2+ 13,3 —
1. Let Rg: T? - T2, x — x + (1/8,1/8%). The symbolic dynamical system (X, S)
is measure-theoretically isomorphic to the toral translation (T2, Rg).

The proof uses the fact that the Tribonacci sequence o°°(1) = lim, o 0™ (1)
codes the orbit of the point 0 under the action of the translation Rz with respect to
a particular partition of T2. In order to get this partition, one constructs a so-called
Rauzy fractal as follows, according to [113]. One first represents (uy,)nen = 0°°(1)
as a broken line via the abelianization map 1. The vertices of this broken line belong
to Z3 and are of the form 1(ug---u,) for n € N. We then project the vertices of
this broken line according to the eigenspaces of the incidence matrix M, , that is,
along its expanding line onto its contracting plane. The corresponding projection
is denoted by m.. The Rauzy fractal associated with o is then obtained by taking
the closure of this set of points, i.e., as

Ro :={meol(ug---u,) | n e N}

We then divide R, into the three pieces defined for i = 1,2,3 as

Ro(t) :={meol(ug---up) | up =1, n € N}.

Theorem 1 can be reformulated as follows: the Rauzy fractal R, is a fundamental
domain of T? and 0°°(1) codes the orbit of the point 0 under the action of the trans-
lation R with respect to the particular partition (R, (%));=1,2,3 of the fundamental
domain R, of T2.

Rauzy fractals were first introduced in [113] in the case of the Tribonacci sub-
stitution, and then in [138], in the case of the S-numeration associated with the
Tribonacci number. Rauzy fractals can more generally be associated with Pisot sub-
stitutions (see [101, 102, 133, 15, 37, 38, 22, 72, 130, 131] and the surveys [29, 111]),
as well as with Pisot 8-shifts under the name of central tiles (see [6, 7, 8]).

Let us make several comments concerning Theorem 1. First, a statement gen-
eralizing Theorem 1 is conjectured to hold for any Pisot irreducible substitution;
note that the corresponding parameters would be algebraic, since they are given by
eigenvalues and eigenvectors of the incidence matrix of the substitution. Secondly,
the broken line obtained by applying the abelianization map 1 to the prefixes of an
infinite word u fixed by o can be considered as a discrete line; hence, having a gener-
alization of Theorem 1 can be of some interest from a discrete geometry viewpoint.
Thirdly, the symbolic coding provided by w and ¢ allows one to recover arithmetic
information concerning the toral translation Rg associated with o, as illustrated in
[115, 2]. In particular, the subtiles R, (i) of the Rauzy fractal are bounded remain-
der sets for Rg. We recall that a subset A of T¢ with (Lebesgue) measure u(A) is
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said to be a bounded remainder set for the translation R, : 2 — z + a (o € T?) if
there exists C' > 0 such that, for all N, |Card{0 <n < N |na € A}—Nu(A)| <C.
For a detailed discussion on the possible choice of atoms in the partition in Theorem
1, see [31].

2.3. Numeration and Substitutions: The Dumont-Thomas Numeration
System

In order to get suitable geometric representations of dynamical systems, there exists
a natural numeration system that plays a nontrivial role, namely, the Dumont-
Thomas numeration system introduced in [46, 47]. For more details on the relations
with Rauzy fractals, see [37, 38, 29, 20]. Given a primitive substitution ¢ and an
infinite word u that satisfies o(u) = w, this numeration provides a representation of
prefixes of u, based on the greedy algorithm.

Let us try to get a flavor of the way this numeration system works. Let u =
(tn)nen be such that o(u) = u. The idea is to decompose prefixes ug - - - uny—_1 of u
into concatenations of images by powers of ¢ of a finite number of words belonging
to some set D,. The powers of o will play the role of a basis in a classical number
system, and the set D, can be seen as a set of digits. Since o(u) = u, there exists
L such that

o(uo---ur—1) <ug--un—1 < olug---ur),

that is, o(ug - - - up—1) is a prefix of ug - - - uy—1 (with maybe equality), and ug - - - un—1
is a proper prefix of o(ug - --uy). There thus exists a proper prefix p of o(ur) such
that ug---un—_1 = o(ug---ur—1)p with o(ur) = pun s. By iterating this decom-
position, one obtains for every N

Kfl(

Up -+ UN-1 :UK(pK)CT pK—l)"'U(pl)po,

where the p; belong to the finite set of words D, made of the proper prefixes of the
images of the letters by o.

To obtain a numeration system on natural integers one takes the lengths of these
words, i.e., N = |ug - un_1| = |05 (pr)| + |05 (pr—1)|+ -+ |o(p1)| +|po|. This
numeration also extends to real numbers by providing generalized radix expansions
of positive real numbers, with digits belonging to a finite subset of the number field
Q(p), where 3 is the Perron—Frobenius eigenvalue of o, i.e., the dominant eigenvalue
of the incidence of the primitive substitution o.

As an example, one checks that every prefix w of the Tribonacci word u can be
uniquely expanded as w = 0™ (p,)o™ Y (pn_1) - - - po, where the words p; are equal
to the empty word or to the letter 1. It is easily seen that one never gets three
digits equal to 1 in a row. If o is a constant length substitution of length ¢, then
one recovers the g-adic numeration. If o is a B-substitution for a Parry number g,
then one recovers the S-numeration. For more details, see [46, 47].
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3. How to Reach Nonalgebraic Parameters

We now have set up all the elements required for the study of substitutive dynamical
systems: in order to get geometric representations, one introduces arithmetic tools
such as Dumont-Thomas numeration that allows a thorough description of their
associated Rauzy fractal. Nevertheless, so far we have only considered iterations
of a single substitution. We have seen in Section 2.2 that this yields arithmetic
results concerning algebraic parameters: these parameters are expressed in terms
of eigenvectors and eigenvalues of the incidence matrix of the substitution. We now
want to be able to reach nonalgebraic parameters. In particular, we would like to
be able to define Rauzy fractals for any toral translation on the torus T¢, for d > 1,
in order to get a statement generalizing Theorem 1. Our motivations run from
dynamical systems, through arithmetics, to discrete geometry, this would allow us
to associate with any direction a broken line. Indeed, Rauzy fractals do not only
produce geometric representations of substitutive dynamical systems, but have also
very interesting Diophantine applications. We refer to [71, 1] for representative
examples.

3.1. Numbers, Sequences, and Lattices: Dynamical Representation of
Discrete Lines

There is a situation where we can reach nonalgebraic parameters, namely, for trans-
lations on the one-dimensional torus. Instead of working with infinite words gen-
erated by the iteration of a substitution, we consider Sturmian sequences. From
a discrete geometry viewpoint, Sturmian sequences are codings of standard arith-
metic discrete lines via the Freeman code according to the terminology of [117].
More precisely, a Sturmian sequence s,,, is a coding over a two-letter alphabet of
the orbit of the point p of the one-dimensional torus T! under the action of the irra-
tional rotation R, : 2 — = + « (compare with Theorem 1). Let « be an irrational
number in (0,1). Let 0 < o< 1land 0 < p < 1. Let R, : T' — T! be the rotation
of angle a. We first introduce two partitions of T! as follows:

I, = [0,1—0&), I, = [1 _a’l)’ 71 = (0,1—@], 72 =(1 _aa1]§
we then define respectively the two following infinite words by

_ [V ifRIp) €L,
Zor =1 2 if R2(p) € I,
3 _ 1 if Rg(p) ETl,
“P T 2 if R (p) € Ia.

Moreover, Sturmian sequences have a very simple combinatorial description.
Sturmian sequences are exactly those one-sided infinite sequences with complex-
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ity p(n) =n+ 1, i.e., having n + 1 factors of length n for every n (see [103, 43]). A
very detailed description of these results can be found in [25]; see also [111].

As a consequence, Sturmian sequences admit one isolated letter, i.e., 00 and 11
cannot both be factors of a given Sturmian sequence: they have 3 factors of length
2. More precisely, let u € {0,1}" be a Sturmian sequence of slope o Exactly one
of the words i (i € {0,1}) is a factor of u. Hence, there is a unique sequence u’
such that u = S®(o;(u')), where b = 0 if u does not begin in i and b = 1 otherwise
(recall that S stands for the shift, see (1)), and

09: 0—0, 0g: 1—10, 01: 00— 01, o1: 1+ 1.

Another way of recovering this “desubstitution” process is to perform an induction,
that is, to work with the first return map of the rotation R, on a suitable subinterval
of the unit interval. For more details, see [32, 31]. What is particularly interesting
here is that one checks that the sequence u’ is again a Sturmian sequence, but with a
different angle /. Indeed, the substitutions o; can be seen as transformations acting
on bases of the lattice Z? via their incidence matrix. Since a Sturmian sequence
is a coding of a discrete line in the lattice Z2, v/ is again a coding of a discrete
line but in a different lattice. By reiterating this process, one thus deduces that a
Sturmian sequence u can be written as an infinite composition of a finite number of
substitutions. If one is only interested in a description of the symbolic dynamical
system that u generates, (that is, to the set of its factors), then one checks that it
coincides with the symbolic dynamical system generated by the infinite sequence

im0t oo (0).
Such a representation is called an S-adic expansion.

The incidence matrices of the substitutions oy, for i = 0 and 1, are equal to [} 1]
and [1 9], respectively. They correspond to the matrices that perform the additive
steps of Euclid’s algorithm (a,b) — (a1,b1) = (a — b,b), ie, [§] = [§1][51].
The action of Euclid’s algorithm is translated here in symbolic terms as the action
of substitutions, with the digits a, being the partial quotients in the continued
fraction expansion of the angle a. We thus have realized the action of the set of
square invertible matrices with nonnegative entries on the bases of the lattice Z?2
as a noncommutative action by substitutions: we associate with a square invertible
integer matrix M in a noncanonical way a substitution whose incidence matrix is
M.

If one wants a description of the sequence wu itself, the expansion involves not
only regular continued fractions but also Ostrowski numeration system (see Section
3.2 below), as well as the set of substitutions

00:0—0, gp: 1—10, 01: 0—01, 61:1+—1

op: 00, 04: 1+—01, 07: 010, o7: 1 — 1.
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We thus get

u = nli}rj_loo(al)gl*cl o 0’81 o (0/)‘112762 ogf20-:-0 (UI)ZZ;C" o o'fL"_l(O)7
where the coefficients ¢,, are produced by Ostrowski numeration system, introduced
in the next section. For more details, see [32] and Chap. 6 in [111].
More generally, for results on the connections between continued fractions and
Sturmian sequences, and in particular, applications of the mirror formula (i.e.,
i = [an; @n-1," -+ ,a1]) in word combinatorics, see the survey [3].

3.2. Ostrowski’s Numeration System

Ostrowski numeration system is based on the numeration scale given by the sequence
of denominators in the continued fraction expansion of a given real number (see
[106]). It is a generalization of the Zeckendorf representation [144] (which involves
Fibonacci numbers and the golden ratio). Let o € (0,1) be an irrational number.
Let a = [0;a1,a2,...,an,...] be its continued fraction expansion with convergents
Dn/qn- Every integer N can be expanded uniquely in the form N = 22”:1 brqi_1,
where the b;’s are nonnegative integers, 0 < by < a; — 1, 0 < b < ay for k > 2,
and bk =0 if bk+1 = Qk+41-

Ostrowski’s representation of integers can be extended to real numbers. The
base is given by the sequence (6,,)n>0, where 6, = ¢ & — p,. Every real number
—a < 8 < 1— « can be expanded uniquely in the form § = 22_201 ¢k _1, where
the ¢x’s are nonnegative integers, 0 < c¢; <a; — 1,0 < ¢, < ag for k > 2, ¢, =0 if
Cik+1 = ak+1, and ¢ # ay for infinitely many odd integers.

For more on the connections between Sturmian sequences and Ostrowski numera-
tion, see [26], Chap. 6 in [111], and also [14] which is devoted to the so-called scenery
flow. According to [136, 73, 70, 74, 142], the digits in Ostrowski’s numeration are
produced by introducing a skew product of the continued fraction transformation,
which allows their metrical study, performed in [70, 74]. We will come back to this
in Section 5.2. Note that the odometer associated with Ostrowski’s numeration
(in the sense of [60]) is metrically isomorphic to a rotation on T! (see for instance
[48, 142] and more recently [19] and the references therein). This result can be
considered as a generalization of Theorem 1.

3.3. S-Adic Expansions and Multidimensional Continued Fraction
Expansions

We have seen that a Sturmian sequence can be written as an infinite composition
of a finite number of substitutions (called S-adic expansion) and that its S-adic
expansion can be described thanks to the continued fraction expansion of its slope.
S-adic sequences generalize in a natural way substitutive sequences. The aim of
this section is to sustain the idea that they are the right framework for trying to get
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suitable codings of toral translations in the flavor of Theorem 1, with the sequence of
coefficients in the S-adic expansion being produced by a multidimensional continued
fraction algorithm.

We expect furthermore such infinite sequences coding toral translations to have
an at most linear number of factors of a given length (they are said to be of linear
complezity). Indeed, each substitution in the S-adic expansion is considered as a
step in a multidimensional continued fraction algorithm. Usually, the corresponding
substitutions have integer transvection or permutation matrices as incidence matrix.
We recall that a transvection matrizis a matrix M of the form M = Id+AE;;, where
Id stands for the identity matrix, 1 < 4,5 < d, i # j, A € R, and Ej; is the square
matrix having all entries equal to 0 and the entry of index (i, j) equal to 1. It is said
positive if A > 0 and it is said to be an integer transvection if A € Z. Such matrices
often preserve a linear growth for the complexity function. Furthermore, we would
like to recover from the dynamical and combinatorial properties of these infinite
sequences, arithmetical information on the parameters underlying translation on
the torus. This will be easier if these coding sequences have low complexity, in
terms of numbers of factors.

There exist several well-studied families of words that could produce codings of
translations of the torus, but they all have quadratic complexity. For instance,
billiard words are defined as codings of trajectories of billiards in a cube; they are
shown to have quadratic complexity (see [16, 23]). Let us quote also [42] where
a construction method is considered which produces step by step a broken line
whose vertices belong to Z? that approximates a given direction by choosing at
each step the closest point. It is proved in [42] that such a broken line can be
obtained by selecting integer points by shifting a polygonal window along the line.
The complexity is here again quadratic. In both cases one is unable to associate
with these infinite sequences a suitable continued fraction algorithm or an S-adic
representation.

Expecting codings with linear complexity implies that the atoms of the partition
that we are looking for when trying to generalize Theorem 1 are not just boxes
of T?. Let us sustain this assertion with the Sturmian case. Another way of de-
scribing the desubstitution process allowing to recover the S-adic expansion of a
Sturmian sequence is based on the notion of induction. According to [51, 114] if
the induced map (i.e., the first return map) of a translation on a set A is still a
translation, then this set A is a bounded remainder set. The lengths of the inter-
vals that are bounded remainder sets for the translation R,: z — x + «a with
a € R of T! are known to be in the set oZ + Z [82]. Intervals I, and I;, i = 1,2,
according to which Sturmian sequences of angle o code R, are thus bounded re-
mainder sets. This seems to indicate that, in the more elementary generalizations
of the Sturmian/rotation interaction, the atoms of a coding of a translation should
be preferably chosen as bounded remainder sets; this would allow one to reiterate
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the desubstitution/induction process. Hence they cannot be boxes in T%: indeed,
there are no nontrivial rectangles which are bounded remainder sets for ergodic
translations on the torus [98]. Furthermore, codings of translations with respect
to boxes do not have linear complexity [135]. In order to get suitable atoms for
the partition, we thus need to get specific constructions in the flavor of the one ob-
tained for the Rauzy fractal in the Tribonacci case: we are looking for infinite words
whose abelianized prefixes provide good integer approximations of a line in R4+!
which will give us a translation in T¢ after some projectivization process. This will
be the object of the next sections to discuss existing algorithms for simultaneous
approximation.

Several combinatorial questions can be formulated in an efficient way in this S-
adic/continued fraction framework. Given an S-adic sequence, one can ask whether
this sequence is substitutive, that is, whether it is a letter-to-letter projection of
a fixed point of a substitution. Substitutive Sturmian sequences correspond to
quadratic angles (for more details, see, e.g., [32]). This result can be considered as
a version of Galois’ theorem for continued fraction expansions.

Convergence issues (and Diophantine approximation properties) for a multidi-
mensional continued fractions algorithm underlying a family of infinite words corre-
spond to the question of convergence toward frequencies of factors, which can also
be expressed in measure-theoretic terms (in particular if one has unique ergodicity).
The study of S-adic words thus leads to numerous questions that are of a combi-
natorial, arithmetic or else dynamical nature. Among them, the so-called S-adic
conjecture aims at finding a characterization of infinite words having linear com-
plexity in S-adic terms. For more details, see Chapter 11 in [111]. Note that infinite
words having an at most linear number of factors of a given length are known to
be S-adic, if they are furthermore assumed to be minimal [52]. For more on S-adic
sequences, see, e.g., [49, 50] and Chapter 11 in [111].

We have seen that S-adic expansions and multidimensional continued fraction al-
gorithms are strongly related. More generally, generalizations of Euclid’s algorithm
intervene in a natural way in several problems issued from word combinatorics. As
an example, let us quote Fine and Wilf’s theorem. This theorem gives a condition
on the length of the periods a finite word can have. More precisely, if w is a word
having periods p and ¢ with length greater than or equal to p+ ¢ —ged(p, ¢), then w
has period ged(p, ¢). Assume now p and ¢ coprime. The family of words with length
p+ q — 2 that are p and ¢ periodic is particularly interesting. Such extremal words
(with respect to Fine and Wilf’s theorem) are known to be particular factors of
Sturmian sequences, and their study involves Euclid’s algorithm. For more details,
see [25] and the references therein. There exist two natural types of generalizations
of Fine and Wilf’s theorem, either by extending the size of the alphabet [40], or by
considering multidimensional words [132]. Extremal words for these generalizations
can also be described in terms of multidimensional continued fraction algorithms.
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In particular, in the former case, an algorithm in the flavor of the fully subtrac-
tive algorithm (see [127] and Section 5) allows the construction of extremal words
140, 139].

4. Multidimensional Continued Fractions

4.1. Simultaneous Approximations

Continued fractions are known to provide best approximations of a given real num-
ber in (0,1) (see, e.g., [83]). The question is now to find similar algorithms yielding
simultaneous rational approximations with same denominator, and of good quality,
of d-uples of positive real numbers . Consider in particular the dimension d = 2
case. Given a pair of real numbers (o, az) € (0,1)2, one looks for three sequences
of nonnegative integers (Pn, Gn, Tn)nen such that

limpn/Qn = alvhmrn/Qn = Qa,

with a good quality of rational approximation of (aj,as). Dual problems consist
in looking for small values of linear forms and small linear relations, and in detect-
ing rational dependencies. Usual norms that are considered are the sup and the
Euclidean norm.

Geometrically, this corresponds to look for approximations of a line in R**! by
points in Z%*!, or in a dual way of a hyperplane in R%t! by points in Z4*+!. In
arithmetic and dynamical terms, the underlying dynamical systems will be in the
first case a translation on the torus

Ro: T4 S T 2 = (21,...,2401) — z + (a1, ..., aqq1),
or a Z4 1 action of T!
(my,- ,maq1).(x,y) = miog + - + Map10d41.

It remains to make more precise what is meant here by “good” quality of rational
approximation. This notion first depends on a choice of a norm. Given a norm || ||
on R?, the quality of the approximation is measured by

alllanalll = Elllgn(on, ..., aa)ll

= q%min{H(Qnm — D1y qnaa — pa)|| | (p1,...,pa) € Zd}-

Secondly, the quality of approximation can be measured with respect to Dirich-
let’s theorem, i.e., |||ga||| has to be compared with ¢~1/?. Let us recall Dirichlet’s
theorem, which corresponds to the choice of the sup norm, and which is obtained
as a direct application of the pigeonhole principle (see, e.g., [63]).
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Theorem 2 (Dirichlet’s theorem) For any (a1, -+ ,aq) € R? and any Q, there
exists a positive integer g with ¢ < Q? and integers p; such that
= pil < —=.
max, lgos —pil < 5
One thus deduces immediately that the system of inequalities

Di

= -l < fori=1,2,...,d
q

gt
admits infinitely many integer solutions.

This exponent is optimal as shown in [108], see also [39, 120]. In particular, we
3

cannot hope to get a quality better than 0(g, 2) when a1, a2 belong to a real cubic
number field with 1, a1, as linearly independent over Q.

The proof of Dirichlet’s theorem provides the existence of “good” approxima-
tions. We thus can make an exhaustive search but this is not an efficient algorith-
mic method. We do not know one algorithm giving the best quality in general.
Algorithms based on lattice reduction theory will be discussed in Section 6: they
combine efficiency and quality.

We focus in the present paper on simultaneous approximations but similar results
can be discussed by involving in a dual way minimization of linear forms, and more
generally of several linear forms (in particular for the algorithms of Section 6).

4.2. Noncanonicity of Higher-dimensional Continued Fractions
Algorithms

The aim of this section is to present several facts sustaining the claim that there is
no canonical multidimensional continued fraction algorithm.

Regular continued fractions rely on Euclid’s algorithm: starting with two num-
bers, one subtracts the smallest from the largest. If we start with at least three
numbers, it is not clear to decide which operation has to be performed on these num-
bers in order to get something analogous to Euclid’s algorithm, hence the diversity
and multiplicity of existing generalizations. See Section 5 for an illustration.

Moreover, most of the one-dimensional continued fraction algorithms are closely
related to the regular one. See for instance [85] which relies on the method of sin-
gularization; this method can be used to understand the relations between several
one-dimensional continued fractions algorithms. This is mainly due to the alge-
braic structure of SL(2,N). For d > 2, let SL(d,N) denote the set of matrices
of determinant 1 with nonnegative integer coefficients. This set endowed with the
multiplication is a monoid, whose identity element is the identity matrix I;. Recall
that if p,, /¢, stands for the nth convergent of a given real number « in its regular
continued fraction expansion, the so-called unimodularity property holds, namely

Pn+1 Gn+1 n
det = (-1 2
© [pn qn] =) @)
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and the beginning of the continued fraction expansion of o can be recovered from the
unique decomposition of (—1)™ [P+ 2] in the free monoid SL(2,N). Indeed, the
algebraic structure of SL(2,N) is particularly simple: SL(2,N) is a free and finitely
generated monoid; it admits as generators [1 9], [§ 1]; any matrix in SL(2,N) ad-
mits a unique decomposition in terms of these two matrices. This decomposition
is a matricial translation of Euclid’s algorithm and it corresponds to the continued
fraction expansion.

For d = 3, the situation is completely different. First, SL(3,N) is not free

anymore, as shown by the following even permutation matrices whose third power

is equal to the identity: {((1} é g} , {g % é} . But the main difference comes from the

fact that SL(3,N) is not finitely generated. Consider indeed the family of matrices

1 0 n
M, =11 n—1 0
1 1 n—1

According to Chap. 12 in [111] these matrices are undecomposable for n > 3,
i.e., they are not equal to an even permutation matrix, and, for any pair of matrices
A, B in SL(3,N) such that M,, = AB, A or B is an even permutation matrix. Note
that even permutation matrices are exactly the matrices that admit an inverse in
SL(3,N).

Lastly, a rational number p/q is said to be a best approxzimation of the real number
a if every p' /¢ with 1 < ¢ < q, p/q # p'/q satisfies

lgoe —p| < |¢'a—p'].

Convergents in the continued fraction expansion of a and best approximations are
known to coincide [39, 83]. Nevertheless, this notion is not so satisfying in higher
dimension for defining continued fractions since first it depends on the norm [91],
and second, we lose the unimodularity property (2). For more details, see [91, 92].
More precisely, let o be an irrational number, || || be a given norm in R% and ||| |||
stand for the distance to the nearest integer. The sequence of best approximations
of a with respect to the norm || || is defined as the increasing sequence of nonnegative
integers (qn)nen that satisfies

llgn(ar, - ea)lll <lllglar,--- s ca)ll|

for any g with 1 < ¢ < ¢,. The existence of an infinite sequence of best approxima-
tions can be derived in a classic way from Dirichlet’s theorem or from Minkowski’s
first theorem (see, e.g., [34]). Best approximations are shown to fail to be uni-
modular in [92] from which the following is quoted: “The absence of an exact
higher-dimensional analogue for the continued fraction algorithm is reflected in the
failure of property (i) in all higher dimensions. [...] higher-dimensional analogues of
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the continued fraction algorithm must include other approximations than just the
best simultaneous approximations with respect to a fixed norm ||||.” Property (i)
refers to the unimodularity property (2). More precisely, consider the square matrix
M, of size d + 1 whose rows are given by successive best approximations vectors,

ie.,
Vi
Vn+1
M, =

Vntd
where v,, = (pgn)7 e ,pfin),qn) is the best approximation integer vector with last
entry ¢, that provides |||gn(a1,- - ,aq)|||- Let D, stand for the determinant of
this matrix. It is proved in [92] that for any norm in dimension d > 2, there exists
a € R with dimg|1, o, - - - , g) = d+1, such that for any positive integer N, there
exists n for which D,, = Dy,41 = -+ = Dy ny = 0. Arbitrarily large determinants

can even occur in dimension d = 2 with the sup norm.

All these reasons indicate that there is no canonical generalization of continued
fractions to higher dimensions. Several approaches are possible that we describe
below, by focusing on unimodular algorithms, that is, on algorithms satisfying the
unimodularity property (2). We will not consider here multidimensional continued
fractions based on Klein polyhedra and sails such as developed in [9, 88, 84, 10].
For more on the subject and its history, see, e.g., [89, 90] and the references in [81].

4.3. Unimodular Algorithms

We follow here the formalism introduced in [96] which allows enough generality to
cover most classical unimodular types of algorithms, such as discussed in [137, 34,
127]. These algorithms belong mainly to two classes of algorithms, the Markovian
ones (“without memory”), discussed in Section 5, and the algorithms based on
reduction algorithms, that will be reviewed in Section 6.

According to [96], a d-dimensional unimodular continued fraction algorithm asso-
ciated with a = (a,--- ,aq) € R? produces a sequence of matrices (A™), ey with
values in GL(d+1,Z) as well as an initial matrix P(®) in GL(d+1,Z). Matrices A
play the role of partial quotients. We then consider the matrices of GL(d + 1,Z)
defined for all n as

O REES o
P .— Aln) ... A1) p(0) — ...
(n n n
pd-i-)Ll o 'pEl-&-)l,d q((1+)1

Matrices P(™ play the role of convergent matrices.
Usually an algorithm producing the sequence of matrices (A("))neN can be de-
fined in dynamical terms. Let X C R? and X; € X. Elements of X; are called
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terminal. A d-dimensional continued fraction map over X isamap T : X — X
such that T'(X;) C X, and, for any o € X, there is A(a) € GL(d, Z) satisfying:

a=A(a)T(a).

The associated continued fraction algorithm consists in iteratively applying the map
T on a vector a« € X. This yields the following sequence of matrices, called the
continued fraction expansion of o: (A(T"(«)))n>1. This expansion is said to be
finite if there is n such that T"(«) € X, infinite otherwise.

An algorithm is said to be additive if all the matrices belong to a finite set. An
algorithm is said to be positive if all the matrices are nonnegative. An algorithm is
said to be Markovian if the map T is piecewise continuous; usually it is piecewisely
an homography. Algorithms described in Section 5 are examples of Markovian
algorithms, contrarily to the algorithms of Section 6. Markovian algorithms are
also said to be “without memory”. Indeed, the (n+ 1)th step of the algorithm only
depends on the map T and on the value 7" («).

The rows of the convergent matrices are meant to provide simultaneous approx-

imations, i.e., one considers
(n) (n)

Pja Pj.d
Choye )
4q; a;
The integers qgn) play the role of nth convergents, and the vector (pgll), e ,pyg, q]("))

is called an nth convergent vector.

In more geometric terms, this can be expressed as follows. One wants to ap-
proximate a given vectorial line directed by the nonzero vector £ = ({1, ,£441)
in R4*1! by a sequence (b("))neN of integer lattice bases of Z4t1. The lattice bases
generate cones (that are usually nested) that “tend” toward the line directed by
£. One recovers simultaneous rational approximations by setting «; = ¢; /€441 for
i=1,---,d. Usually, one way to go from a € R? to £ € R¥*! consists in setting
L4417 = 1, and working with entries ¢; € [0,1]¢ for 1 < i < d, or in working with the
simplex Zf;l ¢; =1, with ¢; > 0 for all ¢. In [34] the algorithms are designed in
such a way that for every n, £ belongs to the positive cone generated by the vectors
b, i=1,...,d+1, ie., in

{ > ab™ N>0 Vi=1,--,d+1}.

1<i<d+1

We then expect that this sequence of bases of lattices that is produced converges
toward the line generated by ¢. Not all the existing algorithms enter this framework.
See the discussion in [58] for instance. Furthermore, [34] adds extra assumptions
on the allowed operations on the bases at each step n; they are of elementary types
(they correspond to integer transvections): for every n there exist i # j (with 4,5
depending on n) and ¢, € N such that
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+1 +1 ,

b" ) = b{™ 4 ¢, b, b = b for k # i. (3)
This restriction is not a severe one and most of the algorithms discussed in the
present survey enter this framework, by allowing also permutation rules between
the vectors. Algorithms for which the choice of the coefficients i,j and ¢; only
depend on the cofactors of ¢ with respect to b("™)| i.e., the integers al(-n) such that

= afB )b,

are called vectorial in [34]. They are Markovian algorithms.

As underlined in [34], “All continued fraction algorithms which have been pro-
posed since the beginning (Jacobi, 1868), and up to about 1970 belong to this class.
[...]. A great disadvantage is that the expansions of vectorial algorithms often con-
verge too slowly or not at all.” Nevertheless they are easier to study from an ergodic
viewpoint for instance. In particular, the existence of an ergodic absolutely con-
tinuous invariant measure allows to understand the way the digits are distributed.
They enter the category of fibred systems developed in [125].

Additive vs. multiplicative steps. There are two types of steps that can be
performed, small ones or maximal ones. Let us take as an illustration Euclid’s algo-
rithm: starting from two nonnegative numbers a and b, one subtracts the smallest
one from the largest one. If one performs only one subtraction at each step, one
obtains the so-called additive version of Euclid’s algorithm. If one performs in one
step as much subtractions as possible (i.e., if 0 < b < a, a is replaced by a — [a/b]b),
one gets a multiplicative algorithm. In dynamical terms, one considers either the
Gauss map (z — {1/2}) or the Farey map (z — 2 for 0 < 2 < 1/2, and z — =%
for 1/2 < z < 1). Note that the Gauss map is known to have a finite ergodic
invariant measure, which is not the case of the Farey map. The terminology di-
vision vs. subtractive algorithm is also used: see, e.g., [34] where an algorithm is
said to be subtractive if ¢, = 1 in (3), and additive if ¢, is chosen as the maximal
possible number allowing the line to stay within the positive cone generated by the
convergent vectors bgn), fori=1,---,d. Additive and multiplicative versions for a
same type of rule can lead to very distinct behaviors. See for instance the example
of Selmer’s algorithm quoted in [34] which is shown not to be able to be accelerated
in a multiplicative form: the rule is to subtract the smallest nonzero entry from the
largest one; in case of equality, we take the entry with smallest index; one checks
that any triple of coprime positive integers leads to (1,1, 1); start from (5, 4, 2); one
checks that no multiplicative rule allows one to reach (1,1,1) from (5,4,2). This
comes from the fact that the group of matrices generated by positive transvections
and permutations is not commutative.

Convergence. There are mainly two types of convergence. The convergence is said
to be weak if the convergent vectors tend in angle toward the approximated line
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directed by £, and strong if they tend in distance toward this line. One can also
consider uniform convergence if one works with all the convergent vectors; otherwise,
one only considers the convergent vector realizing the smallest distance. For more
details, see [34, 127, 87]. In particular, as soon as one has weak convergence, a
continued fraction algorithm allows one to approximate real vectors by sequences of
rational vectors. Topological convergence corresponds to the fact that the natural
partition of the underlying dynamical system is a generator. For a comparison of
these notions of convergence for multidimensional continued fraction algorithms,
see [87] with special focus on the notion of topological convergence. Note that for
a unimodular multidimensional continued fraction algorithm, if the coordinates of
¢ are rationally dependent®, then the convergence cannot be uniformly strong. See
for instance [127], Lemma 30 in Chap. 14. This allows to disprove for instance the
strong convergence of Jacobi-Perron algorithm.

What is expected? We are given (a,---,a4) € RY which produces a sequence
of bases (b("))neN of Z%*and thus sequences of convergent vectors that yield si-
multaneous rational approximations. From an arithmetic viewpoint, a multidimen-
sional continued fraction algorithm is expected to detect linear relations between
1,01, -+ ,aq, to give algebraic characterizations of periodic expansions, to have
“good” properties of convergence, and to provide “good” rational approximations.
Furthermore, one could hope to determine thanks to such an algorithm fundamental
units (e.g., of a cubic number field), and to solve Diophantine equations. From a
dynamical viewpoint, we also would like to have reasonable ergodic properties (con-
cerning ergodic invariant measures, realizations of the natural extension, entropy,
Lyapounov exponents, etc.), to be able to control the almost everywhere behavior
like the a.e. speed of convergence, the distribution of the digits, to understand
the “depth” and the number of executions of the algorithm if the parameters are
rational, and to be able to perform a dynamical analysis according to the scheme
discussed in [141].

Computational complexity. In [94] various computational complexity results
concerning simultaneous Diophantine approximation problems are considered. When
the dimension d is fixed, algorithms are given which find a good approximation ¢
with 1 < g < N for a given N with respect to a specified accuracy, or which find
all best approximations in [1,---, N] in polynomial-time. Note that the following
problem of decision is proved to be NP-hard: we are given a vector a € Q% a
positive integer N and an accuracy s1/ss; is there an integer @ with 1 < Q < N
such that |||Qa||| < s1/s27 (the distance to the nearest integer is expressed here
with respect to the sup norm). Furthermore, Lagarias suggests in [94] that “the
problem of locating best (sup norm) simultaneous approximations is harder than

1Ed.: A previous version had the typo where this word was independent. Dependent is the
correct word according to the author.
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that of locating good simultaneous approximations”. See also in the same flavor
[64] concerning the problem of finding integer relations, and [18].

5. Markovian Continued Fraction Algorithms: A Zoo of Algorithms

5.1. General Description

We focus here on unimodular Markovian multidimensional continued fraction algo-
rithms, according to the terminology introduced in Section 4.3. We recall the most
classical ones which have lead to well-studied multi-dimensional continued fraction
algorithms such as discussed in [34, 127]. In order to stress the simple rules that
govern them, we express them in dimension d + 1 = 3. We thus start with parame-
ters (u1,us, us) € Ri’_. We have to decide which number has to be subtracted, and
with respect to which number it has to be done. Usually numbers uq, us, u3 are
sorted in increasing (or decreasing) order. We stress the subtraction rule but it is
usually preceded and followed by a sorting operation.

o Jacobi-Perron: let 0 < ui,us < ug; one subtracts the first entry as often as
we can from the other two ones

u u
(u1, ug, us) — (ug — [=Jur, ug — [—Ju, up);
ul U1

e Brun: we subtract the second largest entry from the largest one; for instance,
if0<wu < ug < us,

(u1,uz,u3) — (u1,uz, uz — uz);

e Poincaré: we subtract the second largest entry from the largest one, and the
smallest entry from the second largest one; for instance, if 0 < u; < us < ug

(U1,U2,U3) = (U1,U2 — U1,U3 — Uz);

e Selmer: we subtract the smallest positive entry from the largest one; for
instance, if 0 < uy < us < ug

(u1,uz,u3) — (u1,uz,uz — ur);

o Fully subtractive: we subtract the smallest positive entry from all the largest
ones; for instance, if 0 < uy < us < ug

(U1,U2,U3) = (U1,U2 — U1,U3 — U1)~
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5.2. Some Comparison Elements

The convergence and the ergodic properties of these algorithms can vary even within
these simple rules which a priorilook similar. Apply for instance Poincaré algorithm
Tp to (1/¢%1/¢,100) where 1/p* +1/p = 1 and 1/ > 0. The kth iteration of
Poincaré algorithm produces

k
TE(1/9%,1/,100) = (1/0"42,1/0"H,100 = Y "1/,
i=0
The value of 100 — Zizl 1/¢" is always larger than the values taken by the first two
ccordinates of TE(1/p?,1/p,100) for any k. Hence, there is no “mixing” between
the three coordinates when applying Poincaré on these initial values, and

Jim T5(1/¢%,1/¢,100) # (0,0,0).

For more details, see [105] for Poincaré algorithm. Similar intriguing issues occur in
the study of the fully subtractive algorithm; they have been considered in [100, 86].

For a description of the ergodic properties of these algorithms, see [127]. See
[17] which shows in a very efficient way how to determine the invariant measure
thanks to the natural extension. For a thorough study of the Lyapounov exponents
of the Jacobi-Perron algorithm (which also applies to Brun algorithm), see [35, 36].
In particular, the a.e. exponential (strong) convergence of Brun [57, 99, 122] and
Jacobi-Perron algorithm [36] (see also [95, 126]) holds: there exists 6 > 0 s.t. for
a.e. (a, ), there exists ng = no(e, B) s.t. for all n > ng

1 1
|a_pn/Qn|<mv |6_rn/Q’rL|<ﬁa
qn qn

where py,, qn, 7, are given by Brun (resp. Jacobi-Perron) algorithm.

Jacobi-Perron algorithm vs. Ostrowski algorithm. The linear form of Jacobi-
Perron algorithm is defined on X = {(u1, u2,us3) € R3|0 < uy,us < uz} by

(uy,uz,us) — (ug — |ug/ug Juy,us — |us/ug Jug, uy).

If we set
Q1 = ’LL1/U37 Qg = 'LLQ/'U/?”

we recover its projective version defined on (0,1) x (0,1) as

(o) = (2= |2 ) = - | 2 |) = arsan). /e,

ai a1 ]’ o ai

Let us compare it with the Ostrowski’s mapping

(a1, 2) = ({1/a1}, {az/a1}).
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Ostrowski’s mapping can not be considered as a multidimensional continued frac-
tion algorithm, as, e.g., illustrated by its ergodic study (see [73, 70, 74]). This al-
gorithm is indeed a skew product of the Gauss map: the first coordinate is exactly
the Gauss map and expands «; in continued fraction, whereas its second coordinate
produces the digits of the Ostrowski expansion of as with respect to the continued
fraction expansion of a;.

Jacobi-Perron algorithm vs. Brun algorithm. Note that Brun algorithm is
also called modified Jacobi-Perron algorithm: the modified Jacobi-Perron algorithm
introduced by E. V. Podsypanin in [109] is a two-point extension of Brun algorithm.
Both algorithms (Brun and Jacobi-Perron) are known to have an invariant ergodic
probability measure equivalent to the Lebesgue measure (see for instance [124] and
[127]). However, this measure is not known explicitly for Jacobi-Perron (the density
of the measure is shown to be a piecewise analytical function in [35]), whereas it
is known explicitly for Brun [17, 57]. Let us stress the difference between Brun
and Jacobi-Perron’s rule such as defined in Section 5.1. Brun algorithm is a space-
ordering algorithm according to the terminology introduced in [62]. (Note that it
is called ordered Jacobi-Perron in [61].) Furthermore, each step of Brun algorithm
produces only one partial quotient. This helps in computing the natural extension
and the invariant measure of Brun algorithm (see, e.g., [17]). Contrary to Brun
algorithm, the role played by u; and us is not determined by a comparison between
both parameters in Jacobi-Perron case; this might explain the fact that an explicit
expression of the natural extension of this algorithm is still not known. Neverthe-
less, the framework of S-expansions and the so-called techniques of Insertion and
Singularization (see [69]) allow one to relate both algorithms as shown in [121]; see
also [123].

6. Lattice Reduction Algorithms and Effective Simultaneous Rational
Approximations

Lattice reduction methods induce a second particularly fruitful way of exhibiting
good simultaneous approximations or small values for linear forms. Algorithms
based on lattice reduction theory are based on the following idea: lattice reduction
algorithms do not produce a priori the smallest vector of a lattice but a reasonably
small vector, that is, a vector that is small enough for guarantying Diophantine
approximation properties that can be compared with Dirichlet’s quality up to an
approximation factor exponential in the dimension. We thus can consider these
algorithms as providing effective versions of Dirichlet’s theorem, yielding a satisfying
compromise between efficient computation and sharpness of the obtained bounds,
that is, between algorithmic issues and Diophantine quality.

Lattice reduction is based on the following elementary basis transformations:
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they can be described in terms of size reduction (the vector b; of the basis (by, ...,
bgt1) is replaced by b; — Ab; with 1 < j < i), and of exchange steps, also called
swaps (one exchanges b; and b;;1). These operations are decided with respect to
the Gram-Schmitdt orthogonalization of the basis b. See [64] for an interesting
discussion on the connections between the approximation algorithms given in [54]
(see also [53]) and [97]. See also [53]. For more on the way lattice reduction provides
best approximations of a real number, see p. 226 and p. 267 of [104], and for a
survey on the overall strategy for getting constructive type results in Diophantine
approximation based on LLL, see p. 222 of [104]. Nevertheless, note that even in
dimension 2, when using Gauss algorithm whose efficiency has been largely proved,
one has “little control on the convergent which is returned; in particular, this is not
the largest convergent with denominator less than 24/C/3”, how quoted in [104]
(p-226 Example 1); the bound 24/C/3 comes from Theorem 7, Chap. 6 of [104].

Let us sketch the basic strategy underlying the use of lattice reduction in this
framework. We follow here the seminal paper [97]. This yields a very fruitful
compromise between the quality of approximation (a good approximation is deduced
from a small vector) and the efficiency (this small vector is obtained in polynomial
time). We are given (aq,--- ,aq) € R? that one wants to approximate. One works
here again in a d + 1-dimensional space, but we will introduce a one-parameter
family of lattices (A¢)i>0 with parameter ¢ tending to 0. Let ¢ be a positive real
number, and let A; be the lattice generated by the columns of the matrix

1 0 -« 0 -m
0 1 - 0 —as
M= |or e e
0 0 - 1 -—ag
0 -+ -+ 0 t

Note that det(M;) = t, hence, the lattice A; changes at each step of the algorithm.
Let us stress the fact that this strategy differs from the one discussed in Section 5
where one worked with bases of the fixed lattice Z4+1.

We will take ¢ small, the parameter @) of Dirichlet’s theorem being connected to
t as follows: Q = T

One of the main features of the LLL algorithm is that it produces in polynomial
time a nonzero vector b = (by,...bg11) of the lattice A; such that

Hb||2 < 2d/4 det(Mt)l/(d+1) _ 2d/4t1/(d+1). (4)

Note that the geometry of numbers, and more precisely Minkowski’s first theorem,
guaranties the existence of a “small” nonzero vector x € Ay, i.e., such that

x| < V/(d+1)(d+5)/4 (vol(A )/ D = \/(d+ 1)(d +5) /4t (5)

Let (€;)i=1,....a+1 stand for the canonical basis of 74+ There exist integers
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P1y---,Pd>q such that

b =pie; +pres+ -+ paeq +q(—oer — - — ageq +teqiq)
=(p1 —qar)er + -+ (pg — qag)eq + qteqy1.

One deduces from (4) that
Vi=1,...,d, |pi—a;q| < 9d/441/(d+1)

and 14
gt < 2V e ym < 21—
qt/d
We deduce that for all ¢
9(d+1)/4

lpi — aigq| < T

with
lq| < 24/4¢=4/(d+D) — 9d/4yd.

The quality of approximation is the quality that is expected (with respect to
Dirichlet’s theorem) up to a multiplicative factor 2(d+1)/4 which depends exponen-
tially of the dimension. We could have used (5) which would have given a different
multiplicative factor but the same quality (ql/ 4). Nevertheless, the interest of a lat-
tice reduction algorithm such as LLL is that the small vector that is used is found
in polynomial time.

The question now is to be able to devise a continued fraction algorithm from this.
One has a priori to recompute everything from the beginning when one changes ¢.
For a dynamical version, see [53, 54, 93, 94, 78, 79, 80, 33|. Let us quote in particular
[96] based on the Minkowski lattice reduction and on the notion of lexicographically
Minkowski reduced basis. This is not effective and produces best approximations
(which are known to be NP-hard to locate in an interval [94]). This study is extended
in [59].

7. Back to Substitutions

Let us come back to the connections between the multidimensional continued frac-
tion algorithms discussed in the previous sections and substitutions.
7.1. Cubic Number Fields

The case of cubic numbers is a natural situation for this interaction to play a
significant role. Let us first start with results involving cubic numbers. It is shown
in [4] that the set of limit values for

1 1
{gllgenlll; a2 [llqazlll | ¢ > 0}
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is a discrete set of curves (hyperbolic curves or ellipses), and in particular a union of
homothetic ellipses centered at the origin, whenever (a1, as) form with 1 the basis
of a real cubic number field with Q(«z) having a complex embedding.

The particular case of (a1, as) having a purely periodic expansion of length 1
with respect to Brun algorithm, i.e., (a1, a2) = (o, a?) where « is the real root of
X3+ kX —1 for k > 0, is investigated in [71]. The nearest ellipse is shown to be
given by the convergents produced by Brun algorithm. This does not hold anymore
for periodic points with a longer period such as shown in [76]. These results are
obtained by introducing substitutions associated with Brun algorithm, according to
[75]. This result is connected with the following one quoted in [91] and obtained as a
direct consequence of [4, 5]: if 1, a1, a2 is a Q-basis of a non-totally real cubic field,
the best simultaneous approximations of (aq, ag) with respect to a given norm are a
subset of a finite number of third-order linear recurrences with constant coefficients
whose polynomial is given by the fundamental unit of Q(aq,as). This result is
made more precise by exhibiting a suitable Euclidean norm in [41]. See also in
the same flavor [68] which uses fractal geometry, numeration systems and Rauzy
fractals. Lastly, note that, when d = 2, the characteristic polynomial of the matrix
associated with a periodic expansion under Jacobi-Perron algorithm is irreducible
and its dominant eigenvalue is a Pisot number [45], see also [107]. Concerning Brun
algorithm, see [128].

7.2. Discrete Geometry and Generalized Substitutions

We have discussed in Section 3.1 the connections between Sturmian sequences,
discrete lines, substitutions and Euclid’s algorithm. Let us extend this discussion
to a higher-dimensional framework. Recall that our motivation is to get suitable
multidimensional continued fraction algorithms in discrete geometry for the study of
discrete planes and lines, as well as algorithms producing Rauzy fractals associated
with nonalgebraic parameters.

Consider a unimodular multidimensional continued fraction algorithm. The
strategy we propose consists in giving a combinatorial interpretation of the ma-
trices produced by such an algorithm by associating with them substitutions via
their incidence matrix. Our main tool is a formalism which associates a generalized
substitution of a geometric nature with a unimodular matrix, and which produces
approximations of the Rauzy fractal.

We have seen in Section 2.2 that given a Pisot substitution o, its Rauzy fractal
is defined as the closure of the image by the projection 7. (on the contracting plane
of the incidence matrix M, along its expanding direction) of the abelianized images
of the prefixes of an infinite word w that satisfies o(u) = u. Rauzy fractals have
also been proved to be attractors of some graph-directed iterated function system
(see, e.g., [15, 133, 72]). There exists a very useful formalism introduced in [15] that
provides an algebraic way to describe this equation with respect to the substitu-
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tion o, namely the notion of generalized substitution. Generalized substitutions can
be considered as multidimensional substitutions of non-constant length acting on
multidimensional words (see, e.g., [15]). This formalism due to Arnoux and Ito [15]
was inspired by the geometrical formalism of [75], whose aim was to provide explicit
Markov partitions for hyperbolic automorphisms of the torus associated with par-
ticular morphisms of the free group. They have already proved their efficiency in
the spectral study of Pisot substitutive dynamical systems [111] or else in discrete
geometry (see [12, 13, 11, 30, 55, 56, 27]). With any usual unimodular substitution
o can be associated a generalized substitution Ff (o) (recall that a substitution is
said to be unimodular if the determinant of its incidence matrix equals +1). The
generalized substitution Ej (o) is defined as the dual map of a natural geometric
realization of ¢. It maps facets of unit cubes onto unions of facets of unit cubes.
One of the key properties of generalized substitutions is that they map standard
arithmetic discrete planes onto standard arithmetic discrete planes according to [15,
55]. Arithmetic discrete planes are basic objects in discrete geometry. According to
the formalism derived from [117], they are defined as follows: let v € R, 1, w € R;

P, pyw) ={z €240 < (2,0) + p < w}.

The parameter p is called the translation parameter, and w is called the thickness.
If w = max;{|v;|} = ||v||oo, then P(v,p,w) is said naive. If w = . |v;| = [[v]]1,
then P (v, u,w) is said standard.

Let U be the union of the upper facets of the unit cube. It is proved in [15] that,
by renormalizing by M the projection 7. of the sets Ef(c)™(U) and by taking the
limit with respect to the Hausdorff metric, one recovers the Rauzy fractal associated
with o, i.e.,

lim MZn.(Ef(0))"(U) =R,.

n—-+oo
See Figure 1 for an illustration.

Furthermore, one checks that the vertices of U, as well as the vertices of its images
by a generalized substitution Ej (o) belong to any standard arithmetic discrete plane
with parameter ;4 = 0. Generalized substitutions thus provide a generation method
for arithmetic discrete planes with parameter ;= 0 for some algebraic parameters
v, as well as a way to define Rauzy fractals with irrational parameters. Indeed,
to generate nonalgebraic discrete planes, one expands a given v with respect to a
unimodular continued fraction algorithm such as Jacobi-Perron or Brun algorithm.
We then can translate the expansion produced by Brun algorithm as a product of
matrices in the formalism of generalized substitutions. A geometric version of Brun
multidimensional continued fraction algorithm acting on discrete planes is given in
[56, 27] in terms of generalized substitutions. If one wants to describe an arithmetic
discrete plane with nonzero parameter p, one then needs to involve a skew product
of Brun algorithm in order to also expand u: such a skew product will play the role
of Ostrowski’s skew product in the Sturmian case.
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Figure 1: Iterations of a generalized substitution on the upper facets of the unit
cube.

By using generalized substitutions associated with a given multidimensional con-
tinued fraction expansion, one thus can give an S-adic type of representation for
discrete planes. For more details, see, e.g., [12, 55, 56, 27]. This has applications to
the study of local configurations, for the generation of discrete planes [28], and for
the recognition of discrete planes: given a set of points in Z3, is it contained in an
arithmetic discrete plane [56]7 Lastly, let us quote the following problem concerning
the connectedness of discrete planes when the thickness decreases. The question is
to find the smallest thickness w for which the plane P (v, 1, w) is connected (either
edge connected or vertex connected). The case of rational parameters has been
solved in [77]. For the case of irrational parameters, see [44]. The method used in
both papers relies on the use of the fully subtractive algorithm.

Let us conclude with the following open question: how to associate a Rauzy
fractal with a nonperiodic Brun or a Jacobi-Perron expansion? If we know that
the a.e. exponential convergence of Brun algorithm gives us convergence toward a
Rauzy fractal, can we use a generalized Perron-Frobenius theorem to prove that its
subtiles will be disjoint in measure? What about the tiling properties?

Acknowledgements. The author would like to thank P. Arnoux, A. Broise and
the LAREDA project for many stimulating discussions, as well as the anonymous
referee and T. Jolivet for their careful reading and their valuable comments.

References

[1] B. Adamczewski, Ch. Frougny, A. Siegel, and W. Steiner. Rational numbers with purely
periodic beta-expansion. Bull. London Math. Soc., 42:538-552, 2010.



INTEGERS: 11B (2011) 27

2]

(3]

(5]

(6]

(7]

(8]

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

19]

20]

21]

Boris Adamczewski. Répartition des suites (na)nen et substitutions. Acta Arith., 112(1):1—
22, 2004.

Boris Adamczewski and Jean-Paul Allouche. Reversals and palindromes in continued frac-
tions. Theoret. Comput. Sci., 380(3):220-237, 2007.

William W. Adams. Simultaneous asymptotic diophantine approximations to a basis of a
real cubic number field. J. Number Theory, 1:179-194, 1969.

William W. Adams. Simultaneous diophantine approximations and cubic irrationals. Pacific
J. Math., 30:1-14, 1969.

S. Akiyama. Pisot numbers and greedy algorithm. In Number theory (Eger, 1996), pages
9-21. de Gruyter, 1998.

S. Akiyama. Self affine tilings and Pisot numeration systems. In K. Gydry and S. Kanemitsu,
editors, Number Theory and its Applications (Kyoto 1997), pages 7-17. Kluwer Acad. Publ.,
1999.

S. Akiyama. On the boundary of self affine tilings generated by Pisot numbers. J. Math.
Soc. Japan, 54(2):283-308, 2002.

V. I. Arnold. A-graded algebras and continued fractions. Comm. Pure Appl. Math.,
42(7):993-1000, 1989.

V. I. Arnold. Higher-dimensional continued fractions. Regul. Chaotic Dyn., 3(3):10-17,
1998.

P. Arnoux, V. Berthé, Th. Fernique, and D. Jamet. Functional stepped surfaces, flips and
generalized substitutions. Theoret. Comput. Sci., 380:251-267, 2007.

P. Arnoux, V. Berthé, and Sh. Ito. Discrete planes, Z2-actions, Jacobi-Perron algorithm
and substitutions. Ann. Inst. Fourier, 52:1001-1045, 2002.

P. Arnoux, V. Berthé, and A. Siegel. Two-dimensional iterated morphisms and discrete
planes. Theoret. Comput. Sci., 319:145-176, 2004.

P. Arnoux and A. M. Fischer. The scenery flow for geometric structures on the torus: the
linear setting. Chin. Ann. of Math., 22B(4):1-44, 2001.

P. Arnoux and S. Ito. Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon
Stevin, 8(2):181-207, 2001.

Pierre Arnoux, Christian Mauduit, Iekata Shiokawa, and Jun-Ichi Tamura. Complexity of
sequences defined by billiard in the cube. Bull. Soc. Math. France, 122(1):1-12, 1994.

Pierre Arnoux and Arnaldo Nogueira. Mesures de Gauss pour des algorithmes de fractions
continues multidimensionnelles. Ann. Sci. Ecole Norm. Sup., 26(6):645-664, 1993.

Lészl6 Babai, Bettina Just, and Friedhelm Meyer auf der Heide. On the limits of compu-
tations with the floor function. Inform. and Comput., 78(2):99-107, 1988.

G. Barat and P. Liardet. Dynamical systems originated in the Ostrowski alpha-expansion.
Ann. Univ. Sci. Budapest. Sect. Comput., 24:133-184, 2004.

Guy Barat, Valérie Berthé, Pierre Liardet, and Jorg Thuswaldner. Dynamical directions in
numeration. Ann. Inst. Fourier (Grenoble), 56(7):1987-2092, 2006.

M. Barge and B. Diamond. Coincidence for substitutions of Pisot type. Bull. Soc. Math.
France, 130:619-626, 2002.



INTEGERS: 11B (2011) 28

22]

23]

24]

(25]

[26]

27]

(28]

29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

37)

(38]

(39]

Marcy Barge and Jaroslaw Kwapisz. Geometric theory of unimodular Pisot substitutions.
Amer. J. Math., 128:1219-1282, 2006.

Yu. Baryshnikov. Complexity of trajectories in rectangular billiards. Commun. Math.
Phys., 174:43-56, 1995.

Leon Bernstein. The Jacobi- Perron algorithm—1Its theory and application. Springer-Verlag,
Berlin, 1971. Lecture Notes in Mathematics, Vol. 207.

J. Berstel and P. Séébold. Sturmian words. In M. Lothaire, editor, Algebraic Combinatorics
on Words, volume 90 of Encyclopedia of Mathematics and Its Applications, pages 45-110.
Cambridge University Press, 2002.

V. Berthé. Autour du systéme de numération d’Ostrowski. Bull. Belg. Math. Soc. Simon
Stevin, 8:209-239, 2001.

V. Berthé and Th. Fernique. Brun expansions of stepped surfaces. Discrete Mathematics,
311:521-543, 2011.

V. Berthé, A. Lacasse, G. Paquin, and X. Provengal. A study of Jacobi-Perron boundary
words for the generation of discrete planes. preprint, 2011.

V. Berthé and A. Siegel. Tilings associated with beta-numeration and substitutions. Inte-
gers, 5(3):A2, 46 pp. (electronic), 2005.

Valérie Berthé. Discrete geometry and symbolic dynamics. Passare, Mikael (ed.), Complex
analysis and digital geometry. Proceedings from the Kiselmanfest, Uppsala, Sweden, May
2006 on the occasion of Christer Kiselman’s retirement. Uppsala: Univ. Uppsala. 81-110
(2009)., 20009.

Valérie Berthé, Sébastien Ferenczi, and Luca Q. Zamboni. Interactions between dynamics,
arithmetics and combinatorics: the good, the bad, and the ugly. In Algebraic and topological
dynamics, volume 385 of Contemp. Math., pages 333-364. Amer. Math. Soc., Providence,
RI, 2005.

Valérie Berthé, Charles Holton, and Luca Q. Zamboni. Initial powers of Sturmian sequences.
Acta Arith., 122:315-347, 2006.

W. Bosma and I. Smeets. Finding simultaneous diophantine approximations with prescribed
quality. arziv.org/pdf/1001.4455 (2010).

A. J. Brentjes. Multidimensional continued fraction algorithms. Mathematisch Centrum,
Amsterdam, 1981.

Anne Broise. Fractions continues multidimensionnelles et lois stables. Bull. Soc. Math.
France, 124(1):97-139, 1996.

A. Broise-Alamichel and Y. Guivarc’h. Exposants caractéristiques de ’algorithme de Jacobi-
Perron et de la transformation associée. Ann. Inst. Fourier (Grenoble), 51(3):565-686,
2001.

V. Canterini and A. Siegel. Automate des préfixes-suffixes associé a une substitution prim-
itive. J. Théor. Nombres Bordeauz, 13(2):353-369, 2001.

V. Canterini and A. Siegel. Geometric representation of substitutions of Pisot type. Trans.
Amer. Math. Soc., 353(12):5121-5144, 2001.

J. W. S. Cassels. An introduction to Diophantine approzimation. Hafner Publishing Co.,
New York, 1972. Facsimile reprint of the 1957 edition, Cambridge Tracts in Mathematics
and Mathematical Physics, No. 45.



INTEGERS: 11B (2011) 29

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57)

[58]

M. Gabriella Castelli, Filippo Mignosi, and Antonio Restivo. Fine and Wilf’s theorem for
three periods and a generalization of Sturmian words. Theoret. Comput. Sci., 218(1):83-94,
1999. WORDS (Rouen, 1997).

Nicolas Chevallier. Best simultaneous Diophantine approximations of some cubic algebraic
numbers. J. Théor. Nombres Bordeauz, 14(2):403-414, 2002.

Nicolas Chevallier. Coding of a translation of the two-dimensional torus. Monatsh. Math.,
157:101-130, 2009.

Ethan M. Coven and G. A. Hedlund. Sequences with minimal block growth. Math. Systems
Theory, 7:138-153, 1973.

Eric Domenjoud, Damien Jamet, and Jean-Luc Toutant. On the connecting thickness of
arithmetical discrete planes. In DGCI, pages 362-372, 2009.

E. Dubois, A. Farhane, and R. Paysant-Le Roux. The Jacobi-Perron algorithm and Pisot
numbers. Acta Arithmetica, 111:269-275, 2004.

J.-M. Dumont and A. Thomas. Systéemes de numération et fonctions fractales relatifs aux
substitutions. Theoret. Comput. Sci., 65(2):153-169, 1989.

J.-M. Dumont and A. Thomas. Digital sum moments and substitutions. Acta Arith.,
64:205-225, 1993.

Y. Dupain and Vera T. Sés. On the one-sided boundedness of discrepancy-function of the
sequence {na}. Acta Arith., 37:363-374, 1980.

Fabien Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift
factors. Ergodic Theory Dynam. Systems, 20:1061-1078, 2000.

Fabien Durand. Corrigendum and addendum to: “Linearly recurrent subshifts have a finite
number of non-periodic subshift factors” [Ergodic Theory Dynam. Systems 20 (2000), no.
4, 1061-1078;. Ergodic Theory Dynam. Systems, 23:663—669, 2003.

S. Ferenczi. Bounded remainder sets. Acta Arith., 61:319-326, 1992.

S. Ferenczi. Rank and symbolic complexity. Ergodic Theory Dynam. Systems, 16:663-682,
1996.

H. R. P. Ferguson and R. W. Forcade. Generalization of the Euclidean algorithm for real
numbers to all dimensions higher than two. Bull. Amer. Math. Soc. (N.S.), 1(6):912-914,
1979.

Helaman R. P. Ferguson. A noninductive GL(n, Z) algorithm that constructs integral linear
relations for n Z-linearly dependent real numbers. J. Algorithms, 8(1):131-145, 1987.

Th. Fernique. Multidimensional Sturmian sequences and generalized substitutions. Int. J.
Found. Comput. Sci., 17:575-600, 2006.

T. Fernique. Generation and recognition of digital planes using multi-dimensional continued
fractions. Pattern Recognition, 42:2229-2238, 2009.

T. Fujita, S. Ito, M. Keane, and M. Ohtsuki. On almost everywhere exponential conver-
gence of the modified Jacobi-Perron algorithm: a corrected proof. Ergodic Theory Dynam.
Systems, 16(6):1345-1352, 1996.

David J. Grabiner. Farey nets and multidimensional continued fractions. Monatsh. Math.,
114(1):35-61, 1992.



INTEGERS: 11B (2011) 30

[59]

[60]

[61]

(62]

(63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

David J. Grabiner and Jeffrey C. Lagarias. Cutting sequences for geodesic flow on the
modular surface and continued fractions. Monatsh. Math., 133(4):295-339, 2001.

Peter J. Grabner, Pierre Liardet, and Robert F. Tichy. Odometers and systems of numer-
ation. Acta Arith., 70(2):103-123, 1995.

D. M. Hardcastle and K. Khanin. On almost everywhere strong convergence of multi-
dimensional continued fraction algorithms. Ergodic Theory Dynam. Systems, 20(6):1711—
1733, 2000.

D. M. Hardcastle and K. Khanin. Continued fractions and the d-dimensional Gauss trans-
formation. Comm. Math. Phys., 215(3):487-515, 2001.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford Science
Publications, 1979.

J. Hastad, B. Just, J. C. Lagarias, and C.-P. Schnorr. Polynomial time algorithms for
finding integer relations among real numbers. STAM J. Comput., 18(5):859-881, 1989.

M. Hollander and B. Solomyak. Two-symbol Pisot substitutions have pure discrete spec-
trum. Ergodic Theory Dynam. Systems, 23:533-540, 2003.

B. Host. Valeurs propres des systémes dynamiques définis par des substitutions de longueur
variable. Ergodic Theory Dynam. Systems, 6(4):529-540, 1986.

B. Host. Représentation géométrique des substitutions sur 2 lettres. Unpublished
manuscript, 1992.

P. Hubert and A. Messaoudi. Best simultaneous Diophantine approximations of Pisot
numbers and Rauzy fractals. Acta Arith., 124(1):1-15, 2006.

M. Tosifescu and C. Kraaikamp. Metrical theory of continued fractions. Dordrecht Kluwer
Academic Publishers, 2002.

S. Ito. Some skew product transformations associated with continued fractions and their
invariant measures. Tokyo J. Math., 9:115-133, 1986.

S. Tto, J. Fujii, H. Higashino, and S.-I. Yasutomi. On simultaneous approximation to (c, o)
with a3 4+ ka — 1 = 0. J. Number Theory, 99(2):255-283, 2003.

S. Ito and H. Rao. Atomic surfaces, tilings and coincidences I. Irreducible case. Israel J.
Math., 153:129-156, 2006.

Sh. Ito and H. Nakada. On natural extensions of transformations related to Diophantine
approximations. In Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and
Kyoto, 1984), pages 185-207. World Sci. Publishing, Singapore, 1985.

Sh. Ito and H. Nakada. Approximations of real numbers by the sequence {na} and their
metrical theory. Acta Math. Hungar., 52(1-2):91-100, 1988.

Shunji Ito and Makoto Ohtsuki. Modified Jacobi-Perron algorithm and generating Markov
partitions for special hyperbolic toral automorphisms. Tokyo J. Math., 16(2):441-472, 1993.

Shunji Ito and Shin-ichi Yasutomi. On simultaneous Diophantine approximation to periodic
points related to modified Jacobi-Perron algorithm. In Probability and number theory—
Kanazawa 2005, volume 49 of Adv. Stud. Pure Math., pages 171-184. Math. Soc. Japan,
Tokyo, 2007.

Damien Jamet and Jean-Luc Toutant. Minimal arithmetic thickness connecting discrete
planes. Discrete Applied Mathematics, 157(3):500-509, 2009.



INTEGERS: 11B (2011) 31

78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87)

(88]

(89]

[90]

[91]

[92]

93]

(94]

[95]

[96]

Bettina Just. Integer relations among algebraic numbers. In Mathematical foundations of
computer science 1989 (Porgbka-Kozubnik, 1989), volume 379 of Lecture Notes in Comput.
Sci., pages 314-320. Springer, Berlin, 1989.

Bettina Just. Integer relations among algebraic numbers. Math. Comp., 54(189):467-477,
1990.

Bettina Just. Generalizing the continued fraction algorithm to arbitrary dimensions. STAM
J. Comput., 21(5):909-926, 1992.

O. N. Karpenkov. Constructing multidimensional periodic continued fractions in the sense
of Klein. Math. Comp., 78(267):1687-1711, 2009.

H. Kesten. On a conjecture of Erdds and Sziisz related to uniform distribution mod 1. Acta
Arith., 12:193-212, 1966/1967.

A. Ya. Khintchine. Continued fractions. Translated by Peter Wynn. P. Noordhoff Ltd.,
Groningen, 1963.

Elena Korkina. La périodicité des fractions continues multidimensionnelles. C. R. Acad.
Sci. Paris Sér. I Math., 319(8):777-780, 1994.

Cor Kraaikamp. A new class of continued fraction expansions. Acta Arith., 57(1):1-39,
1991.

Cor Kraaikamp and Ronald Meester. Ergodic properties of a dynamical system arising from
percolation theory. Ergodic Theory Dynam. Systems, 15:653-661, 1995.

Cor Kraaikamp and Ronald Meester. Convergence of continued fraction type algorithms
and generators. Monatsh. Math., 125(1):1-14, 1998.

Gilles Lachaud. Polyedre d’Arnol’d et voile d’un céne simplicial: analogues du théoréme
de Lagrange. C. R. Acad. Sci. Paris Sér. I Math., 317(8):711-716, 1993.

Gilles Lachaud. Klein polygons and geometric diagrams. In Number theory (Tiruchirapalli,
1996), volume 210 of Contemp. Math., pages 365-372. Amer. Math. Soc., Providence, RI,
1998.

Gilles Lachaud. Sails and Klein polyhedra. In Number theory (Tiruchirapalli, 1996), volume
210 of Contemp. Math., pages 373-385. Amer. Math. Soc., Providence, RI, 1998.

J. C. Lagarias. Best simultaneous Diophantine approximations. I. Growth rates of best
approximation denominators. Trans. Amer. Math. Soc., 272:545-554, 1982.

J. C. Lagarias. Best simultaneous Diophantine approximations. II. Behavior of consecutive
best approximations. Pacific J. Math., 102:61-88, 1982.

J. C. Lagarias. The computational complexity of simultaneous Diophantine approximation
problems. In 28rd annual symposium on foundations of computer science (Chicago, Ill.,
1982), pages 32-39. IEEE, New York, 1982.

J. C. Lagarias. The computational complexity of simultaneous Diophantine approximation
problems. SIAM J. Comput., 14(1):196-209, 1985.

J. C. Lagarias. The quality of the Diophantine approximations found by the Jacobi-Perron
algorithm and related algorithms. Monatsh. Math., 115(4):299-328, 1993.

J. C. Lagarias. Geodesic multidimensional continued fractions. Proc. London Math. Soc.
(3), 69:464-488, 1994.



INTEGERS: 11B (2011) 32

[97]

(98]
(99]

[100]

[101]

[102]

[103)

[104]

[105)

[106]

[107)

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515-534, 1982.

P. Liardet. Regularities of distribution. Compositio Mathematica, 61:267-293, 1987.

Ronald Meester. A simple proof of the exponential convergence of the modified Jacobi-
Perron algorithm. Ergodic Theory Dynam. Systems, 19(4):1077-1083, 1999.

Ronald W. J. Meester and Tomasz Nowicki. Infinite clusters and critical values in two-
dimensional circle percolation. Israel J. Math., 68:63-81, 1989.

A. Messaoudi. Propriétés arithmétiques et dynamiques du fractal de Rauzy. J. Théor.
Nombres Bordeauz, 10(1):135-162, 1998.

A. Messaoudi. Frontiere du fractal de Rauzy et systéme de numération complexe. Acta
Arith., 95(3):195-224, 2000.

Marston Morse and Gustav A. Hedlund. Symbolic dynamics II. Sturmian trajectories.
Amer. J. Math., 62:1-42, 1940.

Phong Q. Nguyen and Brigitte Vallée. (ed.) The LLL algorithm. Survey and applications.
Information Security and Cryptography. Dordrecht: Springer, 2010.

A. Nogueira. The three-dimensional Poincaré continued fraction algorithm. Israel J. Math.,
90(1-3):373-401, 1995.

A. Ostrowsky. Bemerkungen zur Theorie der Diophantischen Approximationen I, II. Abh.
Math. Sem. Hamburg, 1:77-98 and 250-251, 1922.

R. Paysant-Le Roux and E. Dubois. Une application des nombres de Pisot I’algorithme de
Jacobi-Perron. Monatshefte fir Mathematik, 98:145—-155, 1984.

O. Perron. Uber diophantische approximationen. Math. Annalen, 83:77-84, 1921.

E. V. Podsypanin. A generalization of the continued fraction algorithm that is related to the
Viggo Brun algorithm. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),
67:184-194, 227, 1977. Studies in number theory (LOMI), 4.

Nathalie Priebe-Franck. A primer on substitution tilings of euclidean space. Ezpositiones
Mathematicae, 26:295-326, 2008.

N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics, volume 1794
of Lecture Notes in Mathematics. Springer Verlag, 2002. Ed. by V. Berthé and S. Ferenczi
and C. Mauduit and A. Siegel.

Martine Queffélec. Substitution dynamical systems—spectral analysis, volume 1294 of Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 2010.

G. Rauzy. Nombres algébriques et substitutions. Bull. Soc. Math. France, 110(2):147-178,
1982.

G. Rauzy. Ensembles & restes bornés. In Seminar on number theory, 1985-1984 (Talence,
1983/1984), pages Exp. No. 24, 12. Univ. Bordeaux I, Talence, 1984.

G. Rauzy. Sequences defined by iterated morphisms. In Sequences (Naples/Positano, 1988),
pages 275-286. Springer, New York, 1990.

Gérard Rauzy. Une généralisation du développement en fraction continue. In Séminaire
Delange-Pisot-Poitou, 1976/77, Théorie des nombres, Fasc. 1, pages Exp. No. 15, 16.
Paris, 1977.



INTEGERS: 11B (2011) 33

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

J.-P. Reveilles. Géométrie discréte, calcul en nombres entiers et algorithmique. Thése de
Doctorat, Université Louis Pasteur, Strasbourg, 1991.

E. A. Robinson, Jr. Symbolic dynamics and tilings of R%. In Symbolic dynamics and its
applications, volume 60 of Proc. Sympos. Appl. Math., Amer. Math. Soc. Providence, RI,
pages 81-119, 2004.

K. Schmidt. Algebraic coding of expansive group automorphisms and two-sided beta-shifts.
Monatsh. Math., 129:37—61, 2000.

W. S. Schmidt. Diophantine Approzimation, volume 785 of Lecture Notes in Mathematics.
Springer Verlag, 1996.

B. Schratzberger. On the singularization of the two-dimensional Jacobi-Perron algorithm.
Exp. Math., 16(4):441-454, 2007.

B. R. Schratzberger. The quality of approximation of brun?s algorithm in three dimensions.
Monatshefte fr Mathematik, 134:143—-157, 2001.

B. R. Schratzberger. A conversion algorithm based on the technique of singularization.
Theor. Comput. Sci., 391(1-2):138-149, 2008.

F. Schweiger. On the invariant measure for Jacobi-Perron algorithm. Math. Pannon.,
1(2):91-106, 1990.

F. Schweiger. Ergodic theory of fibred systems and metric number theory. Oxford Science
Publications. The Clarendon Press Oxford University Press, New York, 1995.

F. Schweiger. The exponent of convergence for the 2-dimensional Jacobi-Perron algorithm.
In W. G. Nowak and J. Schoissengeier, editors, Proceedings of the Conference on Analytic
and Elementary Number Theory (Vienna), pages 207213, 1996.

F. Schweiger. Multidimensional continued fractions. Oxford Science Publications. Oxford
University Press, Oxford, 2000.

Fritz Schweiger. A note on Lyapunov theory for Brun algorithm. In Hans Peter Schlickewei,
Klaus Schmidt, and Robert F. Tichy, editors, Diophantine Approximation, volume 16 of
Developments in Mathematics, pages 371-379. Springer Vienna, 2008.

N. Sidorov. Arithmetic dynamics. In S. Bezuglyi et al., editor, Topics in dynamics and
ergodic theory, volume 310 of Lond. Math. Soc. Lect. Note Ser., pages 145-189. Cambridge
University Press, 2003.

A. Siegel. Représentation des systémes dynamiques substitutifs non unimodulaires. Ergodic
Theory Dynam. Systems, 23(4):1247-1273, 2003.

A. Siegel. Pure discrete spectrum dynamical system and periodic tiling associated with a
substitution. Ann. Inst. Fourier, 54(2):288-299, 2004.

R. J. Simpson and R. Tijdeman. Multi-dimensional versions of a theorem of Fine and Wilf
and a formula of Sylvester. Proc. Amer. Math. Soc., 131(6):1661-1671 (electronic), 2003.

V. F. Sirvent and Y. Wang. Self-affine tiling via substitution dynamical systems and Rauzy
fractals. Pacific J. Math., 206(2):465-485, 2002.

B. Solomyak. Dynamics of self-similar tilings. Ergodic Theory Dynam. Systems, 17:695-738,
1997.

C. Steineder. Subword complexity and projection bodies. Advances in Mathematics,
217:2377-2400, 2008.



INTEGERS: 11B (2011) 34

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

M. Stewart. Irregularities of uniform distribution. Acta Math. Acad. Scient. Hung., 37:185—
221, 1981.

G. Szekeres. Multidimensional continued fractions. Ann. Univ. Sci. Budapest. E6tvds Sect.
Math., 13:113-140 (1971), 1970.

W. Thurston. Groups, tilings and finite state automata. AMS Colloquium Lecture Notes,
1989.

R. Tijdeman and L. Q. Zamboni. Fine and Wilf words for any periods. II. Theoret. Comput.
Sci., 410(30-32):3027-3034, 2009.

Robert Tijdeman and Luca Q. Zamboni. Characterizations of words with many periods.
Integers, 9:A27, 333-342, 2009.

Brigitte Vallée. Euclidean dynamics. Discrete Contin. Dyn. Syst., 15(1):281-352, 2006.

A. Vershik and N. Sidorov. Arithmetic expansions associated with the rotation of a circle
and continued fractions. St. Petersburg Math. J., 5(6):1121-1136, 1994.

Peter Walters. An introduction to ergodic theory. Springer-Verlag, New York, 1982.

E. Zeckendorf. Représentation des nombres naturels par une somme de nombres de Fi-
bonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liége, 41:179-182, 1972.



