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Abstract
We study the size of the rth smallest part and the rth smallest distinct part in a
random integer partition. This extends the research on partitions with no small
parts of Nicolas and Sárközy.

– To the memory of Nicolaas Govert (Dick) de Bruijn

1. Introduction

Combinatorial objects can be decomposed into simpler objects called “prime,” “ir-
reducible,” or “connected” components. This is a combinatorial analogue of the
fact that integers decompose into products of primes. For example, permutations
decompose into cycles, integer partitions into parts, polynomials into irreducible
factors, and graphs into connected components.
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The distribution of the largest and smallest components in combinatorial struc-
tures has been studied for several objects. The distribution of the largest compo-
nent objects for several combinatorial problems has been studied, for example, by
Stepanov [19] (see also Gourdon [12]). Gourdon expressed his results in terms of
a generalization of the Dickman function [6]. This function underlies the study of
numbers smaller than or equal to n with no primes larger than m; see also [3, 20].

The distributions of the smallest components for several combinatorial objects
including permutations and polynomials over finite fields have also been related to
number theory [16]. In this case, the results are expressed in terms of a general-
ization of the Buchstab function [5]; this function underlies the study of numbers
smaller than or equal to n with no primes smaller than m; see also [2, 20].

In this paper we focus on integer partitions and study the size of their smallest
parts. Some of the main contributions to the study of random integer partitions
are due to Fristedt [11] and to Freiman and Pitman [10]. For the concrete problem
of smallest parts that we focus on here, previous results are in [7, 15]. Our main
results are asymptotic probability estimates for the size of the rth smallest part
(Theorem 1) and the rth smallest distinct part (Theorem 2).

2. Integer Partitions with Restricted Parts

In this paper we consider integer partitions. In particular, we are interested in
integer partitions where some parts appear a restricted number of times. For exam-
ple, partitions with no parts smaller than m have a restricted pattern where parts
1, 2, . . . ,m� 1 cannot appear.

In general, let A = {a1, a2, . . .} be a set of positive integers. We let pA(n) be the
number of solutions of

n = l1a1 + l2a2 + · · · + lmam, li � 0,

where there are l1 + · · · + lm components in this partition.
It is well-known thatX

n�0

pA(n)xn =
Y
i�0

1
1� xai

= G(x).

Moreover if qA(n) denotes the number of partitions of n with distinct parts thenX
n�0

qA(n)xn =
Y
i�0

(1 + xai) .

The saddle point technique [4, 9] to estimate pA(n) starts with an application of
Cauchy’s theorem stating

pA(n) =
1

2⇡i

Z
C

G(x)
xn+1

dx
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where C is any oriented counterclockwise contour encircling the origin. One chooses
the contour to be the circle |x| = e��, where � = �(n) is defined as the solution of

d
�
x�n�1G(x)

�
dx

= 0,

or
n =

X
j�1

aj

e�aj � 1
.

For qA(n) the analogous procedure gives

n =
X
j�1

aj

e�aj + 1
.

The asymptotic behaviour of pA(n) has been studied by Richmond [18] under the
following assumptions: (1) if any finite subset of A is deleted, then the remaining
sequence has gcd equal to one, and (2) the following limit exists

lim
j!1

ln aj

ln j
.

Let

A2(n) = A2 =
X
j�1

a2
je

�aj

(e�aj � 1)2
.

The following result is contained in Theorem 1.1 of [18]

pA(n) = (2⇡A2)
�1/2 exp

0
@�n�

1X
j=1

�
ln
�
1� e��aj

��1A (1 + O(�)).

In the following we use

S =

2
4Y

j2J

jS(j)

3
5

to denote a pattern and pS(n) to denote the number of partitions of n which have
exactly S(j) parts of size j for each j 2 J (each j /2 J may appear any number of
times). For a pattern S satisfying

X
j2J

j = o(n1/2), |J | = o(n1/4) and
X
j2J

jS(j) = o
⇣
n1/2

⌘
, (1)

it was shown in [8] that

pS(n) ⇠ p(n)
Y
j2J

⇡jp
6n

. (2)
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We are interested in the rth smallest part size of a random partition. In this case
the relevant sequence is A = {m,m + 1, . . .}; that is, partitions with no parts of
size smaller than m. Dixmier and Nicholas [7] and Nicolas and Sárközy [15] defined
r(n,m) to be the number of partitions of n such that each part is bigger than or equal
to m. They obtain an asymptotic formula for r(n,m), where 1  m  c1n/ log7k n,
for any k � 3. When m = o(n1/3), their formula simplifies to

r(n,m) ⇠ p(n)
✓

C

2
p

n

◆m�1

(m� 1)! exp
✓
�1

4

✓
2C +

1
2C

◆
m2

p
n

◆
, (3)

where C = ⇡
p

2/3, and we have the well-known [1] estimate for the total number
of partitions

p(n) ⇠ 1
4n
p

3
exp

�
C
p

n
�
.

(We observe that the formula for r(n,m) on page 232 of [15] has a missing factor
2�m+1 that is correctly included in [7].)

We note that the formula in Equation (3) coincides with Nicolas and Sárközy’s
formula when m = o(n1/4). Indeed in this case, their formula simplifies to

r(n,m) ⇠ p(n)
✓

C

2
p

n

◆m�1

(m� 1)!. (4)

It seems possible to relax the range for the pattern S; however, as in [15], the
asymptotic expression is more complicated and will contain a parameter which is
defined by the saddle point equation.

3. The Size of the rth Smallest Part

The result of Dixmier and Nicolas [7] and of Nicolas and Sárközy [15] shows that
the probability that the smallest part of a random partition of n has size at least
m, when m = o(n1/3), is given by

r(n,m)
p(n)

⇠
✓

C

2
p

n

◆m�1

(m� 1)! exp
✓
�1

4

✓
2C +

1
2C

◆
m2

p
n

◆
.

We can use Equation (3) to derive the probability that the rth smallest part of a
random partition of n has size at least m.

In the following, p[r](n,m) is the number of partitions of n such that the size of
its rth smallest part is at least m. Let X [r]

n denote the size of the rth smallest part
in a random partition of size n.
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Theorem 1. The probability that the rth smallest part of a random partition of n
has size at least m = o(n1/3) satisfies

P (X [r]
n > m) =

p[r](n,m)
p(n)

(5)

⇠
✓

m + r � 2
r � 1

◆
(m� 1)!

✓
C

2
p

n

◆m�1

exp
✓
�1

4

✓
2C +

1
2C

◆
m2

p
n

◆
.

Proof. First we observe that p(n � j) ⇠ p(n) for 0  j < m, where m = o(n1/3).
Considering the relation between the second smallest part and the first smallest
part leads to

p[2](n,m) = p[1](n,m) +
m�1X
j=1

p[1](n� j,m)

⇠
m�1X
j=0

p(n� j)
✓

C

2
p

n� j

◆m�1

(m� 1)! exp
✓
�1

4

✓
2C +

1
2C

◆
m2

p
n� j

◆

⇠ p(n)
✓

C

2
p

n

◆m�1

(m� 1)! exp

 
�
�
2C + 1

2C

�
m2

4
p

n

!
m�1X
j=0

 
1p

1� j/n

!m�1

⇠ mp[1](n,m),

where we used the fact that in the range 0  j  m = o(
p

n),
 

1p
1� j/n

!m�1

⇠ 1.

The above argument can be extended to general r. Let pr(n,m) be the number of
partitions of n containing exactly r�1 parts (allowing repetition) in {1, 2, . . . ,m�1}.
Then we have p[r](n,m) = p[r�1](n,m) + pr(n,m).

Let S(1), . . . , S(m� 1) be a sequence of non-negative integers satisfying S(1) +
S(2)+· · ·+S(m�1) = r�1. There are

�m+r�3
r�1

�
such sequences. We have, provided

that
P

j jS(j) = o(
p

n),

pr(n,m) =
X
S

p[1](n�
X

j

jS(j),m) ⇠
✓

m + r � 3
r � 1

◆
p[1](n,m).

The condition
P

j jS(j) = o(
p

n) clearly holds when r is a constant and m is in the
range of the theorem. Indeed, r can be a function of n such that r = O(log n).

Now using induction on r, we obtain p[r](n,m) ⇠ fr(m)p[1](n,m), where fr(m)
satisfies the following recursion

fr(m) = fr�1(m) +
✓

m + r � 3
r � 1

◆
, f1(m) = 1.
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We have the solution
fr(m) =

✓
m + r � 2

r � 1

◆
,

and hence

p[r](n,m) ⇠
✓

m + r � 2
r � 1

◆
p[1](n,m)

⇠
✓

m + r � 2
r � 1

◆
(m� 1)!

✓
C

2
p

n

◆m�1

exp
✓
�1

4

✓
2C +

1
2C

◆
m2

p
n

◆
p(n),

and Equation (5) follows.
We observe that fr(m) ⇠ mr�1/(r � 1)! as m!1 for any fixed r.

Fristedt [11] lets Xk(�) be the number of parts of the partition � that equal k,
k = 1, 2, . . .. Thus, kXk(�) is the contribution of the part k to the sum of the
parts of �, that is, kXk(�) = lkk in our notation. Theorem 2.1 in [11] states that if
k = o(n1/2) then

lim
n!1

Pn

✓
⇡p
6n

knXkn  v

◆
= 1� e�v.

Here Pn denotes the distribution of the kth part. Since d(1�e�v)
dv = e�v we have

that e�v is the probability that the kth part is v. ThereforeZ 1
0

e�vdv = 1

is the expected value of the kth part of a partition of n for k = o(n1/2).

4. The Size of the rth Smallest Part in Partitions with Distinct Parts

In this section we consider partitions with distinct parts. Let q[r](n,m) be the
number of partitions of n with distinct parts such that the size of the rth smallest
part is at least m. Also, let Y [r]

n denote the size of the rth smallest part in a random
partition with distinct parts.

Freiman and Pitman [10] obtained an asymptotic formula for q[1](n,m) when
m = o(n log�9 n). When m = o(n1/3), their formula simplifies to

q[1](n,m) = 2�m�13�1/4n�3/4 exp
✓

⇡

✓
(n/3)1/2 +

m(m� 1)
8

(3n)�1/2

◆◆
. (6)

Hardy and Ramanujan [13] and Hua [14] give the following estimate for q(n), the
number of partitions of n into distinct parts

q(n) ⇠ 1
2231/4n3/4

exp
⇣
⇡
⇣
(n/3)1/2

⌘⌘
,
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and so in the range m = o(n1/3) we get

q[1](n,m) ⇠ 1
2m�1

exp
✓

⇡
m(m� 1)

8
(3n)�1/2

◆
q(n). (7)

We give next the main result of this section.

Theorem 2. The probability that the rth smallest part in a random partition with
n into distinct parts has size at least m = o(n1/3) satisfies

P (Y [r]
n > m) =

q[r](n,m)
q(n)

⇠ 1
2m�1

mr�1

(r � 1)!
exp

✓
⇡

m(m� 1)
8

(3n)�1/2

◆
. (8)

Proof. We start by considering

q[2](n,m) =
m�1X
j=0

q[1](n� j,m)

⇠ 1
2m+131/4

m�1X
j=0

(n� j)�3/4 exp
✓

⇡

✓
((n� j)/3)1/2 +

m(m� 1)
8(3(n� j))1/2

◆◆

⇠ mq[1](n,m).

Using a similar argument to that in the proof of Theorem 1, and observing that all
parts are distinct here, we obtain

q[r](n,m) ⇠ gr(m)q[1](n,m),

where gr(m) satisfies the following recursion

gr(m) = gr�1(m) +
✓

m� 1
r � 1

◆
, g1(m) = 1.

We observe that gr(m) does not have a sum-free closed form expression (easily
verified using Gosper’s algorithm [17]). We also note

gr(m) = 1 +
✓

m� 1
1

◆
+ · · · +

✓
m� 1
r � 1

◆
,

and gr(m) ⇠ mr�1/(r�1)! as m!1 for any fixed r. Therefore, putting all pieces
together, we obtain Equation (8).
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Bordeaux 12 (2000), 227–254.

[16] D. Panario and B. Richmond, Smallest components in decomposable structures: exp-log class,
Algorithmica 29 (2001), 205–226.
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