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Abstract

The theory of primitive BCH-codes is used to construct linear tms-nets. The codes
provide explicit descriptions of ordered orthogonal arrays of low depth. In most cases
a Gilbert-Varshamov theorem guarantees the existence of the net. In certain favorable
circumstances we obtain explicit descriptions of the nets.

1.Introduction

Equip the Ts-dimensional vector space over Fq with a basis Ω = Ω(T,s) of Ts elements,

partitioned into s blocks Bi, i = 1, . . . , s, where each block carries a total ordering

ωi
1 < ωi

2 < · · · < ωi
T .

In this way Ω is the union of s chains (the blocks). An ideal of Ω is a subset, which is

closed under predecessors.

The vector space with basis Ω becomes a metric space F
(T,s)
q in the following way:

write x = (xi,j) ∈ F
(T,s)
q as a matrix with T rows and s columns. The weight ρ(x) is

defined as the number of cells remaining after removing the leading zeroes in each column

of the matrix x, formally

ρ(x) =

s∑
j=1

T − max{i|x1j = x2j = · · · = xij = 0}

The distance is then d(x, y) = ρ(x− y). We studied the metric space F
(T,s)
q in [3] where

we called it the Niederreiter-Rosenbloom-Tsfasman space, short NRT-space.
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Observe that F
(1,s)
q is the familiar Hamming space of coding theory. An ordered

orthogonal array (short OOA) of strength k is a subspace (a code) C ⊆ F
(T,s)
q with

the property that the projection from C to any ideal of k cells of Ω(T,s) is onto.

Here are the basic parameters of an OOA again: it is q-ary if the underlying field is
Fq. The depth T and length s describe the ambient space, the dimension m = dim(C)

is the dimension as a vector space. The central parameter is the strength k.

The strength is a uniformity parameter. A main reason for the interest in OOA is

an application in numerical integration, where the qm elements of the OOA are mapped
to points in the s-dimensional unit cube. High strength guarantees that the resulting

point set gives a good approximation to the integral. The most important case in this
application is T = k. An q-ary OOA of strength and depth equal to k is also known as a

tms-net with parameters (m − k, m, s)q. Observe that the Department of Mathematics
of the University of Salzburg maintains a database of net parameters at http://mint.fh-

sbg.ac.at/

Projection shows that the existence of an OOA of depth T > 1 implies the existence

of an OOA of depth T −1, with all other parameters unchanged. Case T = 1 corresponds
to the well-researched area of error-correcting codes. An OOA of strength k in Hamming

space F
(1,s)
q simply is a linear orthogonal array of length s, dimension m and strength k,

the dual of a linear [s, s−m, k+1]q-code. It is therefore natural to construct tms-nets by
starting from dual codes (depth T = 1) and successively embedding OOA of depth T in

OOA of depth T +1 until depth k is reached. Here the term embedding means that an
OOA in depth T + 1 is constructed whose projection to depth T is the given OOA. Call

a dual code net-embeddable if it can be embedded in a depth k OOA. The resulting
net is then an (m − k, m, s)q-net.

The Gilbert-Varshamov bound from [3] is a sufficient condition for net embed-
dability.

Theorem 1 (GV-theorem). Let V
(T,s)
l be the number of elements in F

(T,s)
q of weight at

most l. Assume V
(T,s−1)
k−T < qm−T+1.

Then each depth T−1 OOA of strength k can be embedded in depth T (here the established

notation is used for the parameters).

Our mainstay will be a construction of OOA in depth 2. The theory of primitive cyclic

codes will be used to obtain interesting families of examples. Repeated application of
Theorem 1 guarantees the net-embeddability of these depth 2 OOA.
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2.Cyclic codes, blocks, generator matrices

Each OOA of dimension m is in particular an m-dimensional vector space over Fq and can

therefore be described by a basis. In depth 1 this leads to the well-known description of
an m-dimensional code of length s by a generator matrix H1, an (m, s)-matrix whose rows

form a basis of the OOA. Observe that H1 is a check matrix of the [s, s−m, k +1]q-code
obtained by dualization.

An even more natural description is in terms of projective geometry. Each column of
H1 can be interpreted as a point in the (m−1)-dimensional projective space PG(m−1, q).

In depth T we obtain T such matrices, H1, . . . , HT , and the geometric description is in
terms of Ts projective points, as follows.

Proposition 1. A q-ary linear m-dimensional OOA of strength k in F
(T,s)
q is equivalently

described as follows:

A family of vectors Xi(w) ∈ F
m
q , where i = 1, 2, . . . , T and w ∈ W, |W | = s, such that

the following holds:

Any subset K of at most k of the vectors Xi(w) is linearly independent provided Xi(w) ∈
K, i > 1 implies Xi−1(w) ∈ K.

The closure condition Xi(w) ∈ K −→ Xi−1(w) ∈ K of Proposition1 reflects the

fact that the pairs of indices (i, w) such that Xi(w) ∈ K should form an ideal. Let
Bw = {X1(x), . . . , XT (w)} be the block indexed by w ∈ W. Let Pi(w) ∈ PG(m−1, q) be

the point generated by Xi(w). In geometric terms the defining condition of Proposition1
states that the Pi(w) should be in general position when (i, w) varies in an ideal of at

most k elements.

We are going to make use of cyclic codes as ingredients in the construction. Let

F = Fqr be an extension field, s a divisor of qr − 1 and W the subgroup of order s of the
multiplicative subgroup of F. In most cases we will choose s = qr − 1. This is known as

the primitive case. Let A ⊂ Z/sZ be a set of exponents. The set Z/sZ of exponents
is partitioned into cyclotomic cosets. Denote by Z(i) = {i, iq, iq2 . . . } the cyclotomic

coset containing i. The Galois closure Ã of A is the union of all Z(i), i ∈ A. The
smallest subfield L ⊆ F containing all wi, w ∈ W is the extension of degree |Z(i)| of

Fq. We interpret wi not as elements of F but as q-ary |Z(i)|-tuples. A matrix M with s

columns is constructed as follows: for each cyclotomic coset intersecting A nontrivially
choose a representative i. The entry of M in row i and column w is wi, where wi is

interpreted as a q-ary |Z(i)|-tuple as above. It follows that M is a matrix with
∑

i |Z(i)|
rows and s columns, with entries in Fq.

Let I = {a, a+ j, a+2j, . . . } ⊂ Z/sZ be a set of exponents, which form an arithmetic
progression (calculation is mod s). Then I is an interval if the stepwidth j is coprime

to s. The BCH-bound of coding theory states the following: if Ã contains an interval
I, then any set of |I| columns of matrix M is linearly independent. In other words, M is
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the check matrix of a code with minimum distance > |I|.
Definition 1. Let Xw ∈ F

m
q where w ∈ W, |W | = s. The family Xw is k-wise indepen-

dent if any k of the Xw are linearly independent.

With this terminology the BCH-bound states that the family of columns of matrix M

above is |I|-independent if the Galois closure of the set of exponents contains an interval

I. An equivalent expression is that the linear code generated by the matrix with the Xw

as columns has strength k. These sets of vectors are basic ingredients in our construction

of nets of strength k.

3.A construction in depth 2

Theorem 2. Let W be an index set of s elements. For every w ∈ W let X1(w) =

(Aw, Bw, 0) ∈ F
m
q and X2(w) = (0, Bw, Cw) ∈ F

m
q such that the following are satisfied:

1. The X1(w) are k-wise independent,

2. the Cw are l-wise independent,

3. the Bw are (k − l − 1)-wise independent,

4. the (Aw, Cw) are �(k/2)�-wise independent.

Then the X1(w), X2(w) generate an OOA of strength k in F
(2,s)
q

Proof. Consider a linear dependency involving both vectors of some i blocks and only

the first vector of some k − 2i blocks, where i = 0, 1, . . . , �(k/2)�. The first assumption
yields a contradiction when i = 0. The l-wise independence leads to a contradiction when

0 < i ≤ l. Let i ≥ l + 1. The number of blocks involved is ≤ k − l − 1. Let αj , βj be the
coefficients of the linear dependence. The independence property of the Bw shows that

αj = −βj for j = 1, . . . , i and αj = 0 for j > i. Observe i ≤ �(k/2)�. The assumption on
the (Aw, Cw) yields a contradiction.

We use cyclic codes to obtain the ingredients of Theorem 2. In particular we con-
centrate on the primitive binary case, where F = F2r and W is the multiplicative group

of F. We fix notation in order to have a succinct expression in cases when Theorem 2 is
applied to primitive cyclic codes.

Definition 2. Let Fq be the ground field, F = Fqr and W = F \ {0}. Let I = (a|b|c),
where a, b, c are strings of integers mod qr − 1. Define X1(w) = (Aw, Bw, 0) ∈ F

m
q and
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X2(w) = (0, Bw, Cw) ∈ F
m
q , where Aw = wa, Bw = wb, Cw = wc and wa stands short for

the tuple (wa1 , . . . , wai) if a = (a1, . . . , ai), analogously for the other exponents.

Define X(I) of depth 2, length s = qr − 1, whose block w is defined by X1(w), X2(w).
Call I the vector of exponents. The dimension m is determined as m = ma +mb +mc,

where ma =
∑i

j=1 |Z(aj)|, analogousy for mb, mc.

Theorem 2 shows that we can read off the strength of X(I) from the set of exponents

I.

Proposition 2. Let u be a string of integers mod s = qr − 1. We say that u generates

strength k if the vectors wu, w ∈ W = F \{0} are k-wise independent (see Definition 1).
Here we use the same convention as in Definition 2. Let X(I) be as in Definition 2, where

I = (a|b|c) is the vector of exponents. It follows from Theorem 2 that X(I) has strength

k provided the following hold:

1. (a|b) generates strength k,

2. c generates strength l,

3. b generates strength (k − l − 1), and

4. (a|c) generates strength �(k/2)�.

If the conditions of Proposition 2 are satisfied we call I a vector of exponents of
strength k in depth 2.

The BCH bound implies that a vector u of integers generates strength k provided the
Galois closure of u contains an interval of k integers. Observe also that in the binary

case a string u = (i) consisting of just one integer i generates strength 2 provided i is
coprime to 2r − 1. This follows from the fact that the Galois closure contains {i, 2i}, an

interval of length 2.

As a first illustration of Proposition 2 consider the vector I = (−1|0, 1|0) in the

binary case q = 2. The conditions of Proposition 2 are satisfied for k = 5, l = 1. For ex-
ample, (a|b) generates strength 5 as the Galois closure of {−1, 0, 1} (obtained by repeated

multiplication by 2) contains the interval {−2,−1, 0, 1, 2}, and (a|c) generates strength
�5/2� = 2 as the closure of {−1, 0} contains the interval {−2,−1, 0} : in fact strength 3

is generated. The dimension is the sum of the lengths of the cyclotomic cosets involved,
where each section is counted seperately: m = |Z(−1)| + |Z(0)| + |Z(1)| + |Z(0)| =

r + 1 + r + 1 = 2r + 2. This yields an OOA of depth 2, strength k = 5 and dimension

m = 2r + 2, where s = 2r − 1. The Gilbert-Varshamov bound Theorem 1 shows that
X(I) is net-embeddable. This yields a (2r − 3, 2r + 2, 2r − 1)2-net for all r, duplicating

a result from [4]. Slightly better parameters are obtained in [2], where BCH-codes of
length 2r + 1 are used to construct (2r − 3, 2r + 2, 2r + 1)2-nets.
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The following is a direct application of Proposition 2:

Theorem 3. Let q = 2. The following are vectors of exponents of strength k in depth 2.

• I = (−(2v − 1), . . . ,−1, 0|1, 3, . . . , 6v − 1|1, 3, . . . 2v − 1)

for k = 8v + 1, v ≥ 1.

• I = (−(2v − 1), . . . ,−1, 0|1, 3, . . . , 6v + 1|1, 3, . . .2v − 1)
for k = 8v + 3, v ≥ 1.

• I = (−(2v + 1), . . . ,−1|0, 1, 3, . . . , 6v + 1|0, 1, 3, . . .2v − 1)
for k = 8v + 5, v ≥ 1.

• I = (−(2v + 1), . . . ,−1|0, 1, 3, . . . , 6v + 3|0, 1, 3, . . .2v − 1)

for k = 8v + 7, v ≥ 1.

Proposition 2 may be seen as an attempt to embed the OA (depth 1) defined by expo-

nents (a|b) in an OOA of depth 2, while inflating the dimension. This is not interesting
at all if the original OA is embeddable. In general we wish to keep the contribution of the

additional exponents c as low as possible. For large strengths Proposition 2 cannot be
expected to give good results as in these cases the strength is roughly proportional to the

number of exponents and it is easy to see that the best choice for l under this assumption
is about one quarter of the strength, as in Theorem 3. For large strength this leads to

uninteresting dimensions. For small and medium strengths however Proposition 2 leads
to a large number of good nets, in particular in the binary case. The last step involves

embedding the OOA at depth 2 in a net, either by applying the GV-bound Theorem 1 or
by describing an explicit embedding. In order to apply the GV-bound we need a better

understanding of the parameters involved in Theorem 1.

Lemma 1. The volume of the unit ball of radius l in the metric on F
(T,s)
q is V

(T,s)
l =

l∑
i=0

S
(T,s)
i , where

S
(T,s)
l =

∑
π

(
s

fT , . . . , f1, s − b

)
(q − 1)bql−b,

the sum is over all partitions π of l with largest part ≤ T, fi is the multiplicity of i as a
part of π and b =

∑
fj .

4.Binary nets of strength 6

The first application of Proposition 2, which is of independent interest, occurs for strength
6.
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Theorem 4. If q = 2 and r is not divisible by 4, then I1 = (5|1, 3|0) is a vector of
exponents of strength 6 in depth 2. The corresponding OOA X(I1) has dimension m =

3r + 1 in F
(2,s)
q , where s = 2r − 1.

The vector I2 = (−1, 0|1, 3|0) of dimension m = 3r + 2 has strength 6 in depth 2 for
all r.

These depth 2 OOA are embeddable into nets. The resulting binary linear nets have
parameters (3r−5, 3r +1, 2r −1)2 when r is not a multiple of 4, parameters (3r−4, 3r +

2, 2r − 1)2 for arbitrary r.

Proof. The conditions of Proposition 2 are satisfied for k = 6, l = 1. In the case of I1 we

have that (a|c) = (5, 0) generates strength 3 as {0, 5, 10} is an interval. This is where
the assumption on r is needed. We have reached depth 2. The GV-theorem shows net-

embeddability. In fact, the condition is tightest for embedding into depth 3. It reads
V

(T,s−1)
k−T < qm−T+1, where q = 2, T = 3, s = 2r − 1. The critical case is m = 3r + 1. The

right side is 23r−1, the dominating term on the left occurs when b = 3, hence l = 3, f1 = 3.
This dominating term is therefore

(
s−1

3,s−4

)
=

(
s−1
3

) ∼ 23r/6.

Theorem 4 yields in particular nets (22, 28, 511)2, (25, 31, 1023)2 and (28, 34, 2047)2.
These parameters are reported in [3] already. An alternative direct construction allows

us to improve on Theorem 4.

Theorem 5. Let F = F2r . The vectors

X1(w) = (0, w, w3, w5), X2(w) = (1, w, w3, w5 + w)

generate an OAA of strength 6, depth 2 and dimension 3r + 1.

Proof. The BCH-bound and the first coordinate show that we can assume that no more
than 4 blocks are involved in a linear dependency. The first coordinate shows that the only

critical case is when precisely 4 blocks are involved. As exponents 1, 3 generate strength

4 it suffices to consider a linear dependency of X1(x), X2(x), X1(y), X2(y) for some x 
= y.
Let the coefficients be a, b, c, d. Because of strength 4 we have a+ b = c+d = 0. The first

coordinate shows b + d = 0. The coefficients are a,−a,−a, a. The last coordinate section
shows 0 = −ax + ay = a(y − x), hence a = 0.

Corollary 1. A (3r − 5, 3r + 1, 2r − 1)2-net exists for all r.

This yields in particular a (19, 25, 255)2-net.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A03 8

5.Binary nets of strength 7

Theorem 6. Let q = 2. If r is not divisible by 4, then I1 = (5|0, 1, 3|0) is a vector of

exponents of strength 7 in depth 2. In particular X(I1) generates of code of strength 7

and dimension m = 3r + 2 in F
(2,s)
q , where s = 2r − 1.

The vector I2 = (−1, 0|0, 1, 3|0) has strength 7 in depth 2 for arbitrary r. The dimen-

sion is m = 3r + 3.

Proof. Apply Proposition 2 in case k = 6, l = 1.

When r is odd we can construct an explicit embedding in depth 3. The proof makes

use of a special case of the following lemma, which is proved in [5].

Lemma 2. Let gcd(r, h) = 1. Then {0, 1, 2h + 1} generates strength 4. In particular

exponents {0, 1, 5} generate strength 4 when r is odd.

Theorem 7. For every odd r there is a linear (3r − 5, 3r + 2, 2r − 1)2-net.

Proof. If q = 2 and r is odd, we construct an explicit embedding of the family in The-
orem 6 defined by I1 in an OOA of depth 3. The GV embedding theorem proves the

claim.

Recall

X1(w) = (w5, 1, w, w3, 0), X2(w) = (0, 1, w, w3, 1).

We choose X3(w) = (0, 1, w, 0, 1).

Here and in the sequel we consider non-trivial vanishing linear combinations of the

Xj(wi). Denote the coefficient of X1(wi) by αi, of X2(wi) by βi and so forth. The type of
the linear combination is a partition of k. For example, in the case of type (3, 1, 1, 1, 1) the

coefficients are γ1, β1, α1, . . . , α5. Clearly γ1 = 1. The last coordinate shows γ1 = β1 = 1.
The second coordinate section shows that there is an even number of non-vanishing

coefficients αi. Assume α1 = 0. The contribution of the first block is (0, 0, 0, w3
1, 0).

Exponents {0, 1, 5} yield strength 4 (see Lemma 2). Here we use the hypothesis that r

is odd. The first three coordinate segments show αi = 0 for i > 1, contradiction. We
have γ1 = β1 = α1 = 1 and we can assume α5 = 0. The contribution of the first block is

(w5
1, 1, w1, 0, 0). The same argument as before yields a contradiction.

Consider type (3, 2, 1, 1). Clearly γ1 = β2 = 1. The last coordinate shows β1 = 0 and

because of the second coordinate there is an even number of non-vanishing α. Assume

α1 = 1. The fact that exponents 0, 1 generate strength 3 shows α3 = α4 = 0, α2 = 1.
Exponent 3 yields a contradiction. We have α1 = 0. If α2 = 1, the strength 3 argument

yields a contradiction. We have α2 = 0. The contribution of the first two blocks is
X3(w1) + X2(w2). Exponent 5 shows α3 = α4 = 0, exponent 1 yields a contradiction.
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In type (3, 2, 2) we have β2 = β3 = 1, because of the strength 3 argument α2 = α3 = 1
and then γ1 = 1, β1 = 1, α1 = 0. The contradiction w3

1 = 0 is obtained.

The final type is (3, 3, 1). The strength 3 argument shows α3 = 0. Clearly γ1 = γ2 = 1.
Exponent 5 shows α1 = α2 = 0. The strength 3 argument shows β1 = β2 = 1. Exponent

3 yields a contradiction. Here the hypothesis that r is odd is needed again.

As examples of Theorem 7 we obtain nets

(16, 23, 127)2, (22, 29, 511)2, (28, 35, 2047)2,

which were announced in [3] already. Instead of invoking Theorem 1 it is preferable to
obtain an explicit construction of the net embedding. Whenever r is not a multiple of

3 this can be done for the depth 3 OAA constructed in the proof of Theorem 7. In the
proof of Theorem 8 we make use of another independence result for sets of exponents

which is not implied by the BCH-bound.

Lemma 3. If r is not a multiple of 3, then the set {3, 5} of exponents has strength ≥ 3.

Proof. As 5, 6 is contained in the defining set, strength 2 is guaranteed by the BCH-

bound. By the assumption on r the set {0, 7} is an interval. As {3, 5} + {0, 7} is in the

defining set it follows from the Roos bound [6] from the theory of cyclic codes that the
strength is ≥ 3. The computer shows that in case r = 9 the strength is indeed = 2, thus

indicating that the assumption on r is necessary.

Theorem 8. Let q = 2 and r coprime to 6. A net embedding of the depth 3 codes from

the proof of Theorem 7 is described by

X4(w) = (0, 1, w, 0, 0), X5(w) = (0, 1, 0, 0, 0), X6(w) = (0, 1, aw, 0, 0),

where a /∈ F2.

Proof. Recall

X1(w) = (w5, 1, w, w3, 0), X2(w) = (0, 1, w, w3, 1), X3(w) = (0, 1, w, 0, 1).

Consider type (4, 1, 1, 1). Clearly δ1 = 1. The last coordinate shows β1 = γ1. If both
are = 1 the fact that exponents 1, 3 generate strength 4 shows α2 = α3 = α4 = 0,

contradiction. We have β1 = γ1 = 0. Assume α1 = 1. The contribution of the first block
is (w5

1, 0, 0, w
3
1, 0). As exponents 0, 1 generate strength 3 it follows α2 = α3 = α4 = 0,

contradiction. We have α1 = 0 and X4(w1) is the contribution of the first block.

As r is not a multiple of 3 exponents 3, 5 generate strength 3 (see Lemma 3). This

implies α2 = α3 = α4 = 0, contradiction.
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Consider type (4, 2, 1). Exponents 0, 1 show that α3 = 0, α2 = β2 and that (α1, β1, γ1)
has odd weight. Exponent 3 shows α1 = β1, hence γ1 = 1. Exponent 5 shows α2 = β2 = 0

and α1 = 0. We have reached a contradiction.

The final type in depth 4 is (4, 3). Clearly γ2 = 1. Exponents 0, 1 show α2 
= β2 and

(α1, β1, γ1) has odd weight. Exponent 3 yields α1 = β1, hence γ1 = 1, as well as α2 = β2,
contradiction.

We have reached depth 4. Consider type (5, 1, 1). The last coordinate shows β1 = γ1.

The first segment shows α2 = α3. The second segment shows that (α1, β1, γ1, δ1) has odd
weight. Assume at first α2 = α3 = 0. Exponents 3 and 5 show α1 = 0 = β1 = γ1, δ1 = 1,

contradiction. We have α2 = α3 = 1. Exponent 5 shows α1 = 1. We have that (β1, γ1, δ1)
has even weight, the second segment implies β1 = 0, γ1 = δ1, the second segment shows

β1 = γ1 = δ1 = 0. The fact that exponents 1, 3 generate strength 3 yields a contradiction.

Consider type (5, 2). Clearly ε1 = β2 = 1. The last segment shows β1 
= γ1, the third

segment shows α2 = 1 and (α1, β1, γ1, δ1) has even weight. The fourth segment implies
α1 = β1, hence γ1 = δ1. Exponent 5 yields a contradiction. We have reached depth 5.

The only type to consider in depth 6 is (6, 1). The third segment shows α2 = 1.
Exponent 5 shows α1 = 1 and w5

1 = w5
2, a contradiction as r is odd.

Theorem 9. Let q = 2. Then I3 = (−1|0, 1, 3|0) is a vector of exponents of strength 7

in depth 2. An embedding in depth 3 is defined by
X3(w) = (w−1, 0, 0, w, 1).

Proof. In depth 2 this is another application of Proposition 2 for k = 6, l = 1. Consider
type (3, 1, 1, 1, 1). The last coordinate shows that X3(x) and X2(x) are involved in the

linear combination where x is the block at depth 3. As X3(x) + X2(x) = (x−1, 1, x, x, 0)

and exponents −1, 0, 1 generate strength 5 it follows that the linear relation involves
only block x. The penultimate coordinate section yields a contradiction. Consider type

(3, 2, 1, 1). The last coordinate and the fact that type (3, 1, 1, 1, 1) has been dealt with
shows that with obvious terminology X3(x) and X2(y) must be involved in the linear

relation while X2(x) is not. Exponents 0, 1 generate strength 3. If X1(x) is not involved
it follows that only blocks x, y are used. The first section yields a contradiction. If

X1(x) is involved the contribution of the x-block is (0, 1, x, x, 1). If B1(y) is involved
the strength 3 argument yields a contradiction again. The contribution of block y is

therefore X2(y) = (0, 1, y, y3, 1). The first coordinate section shows that the remaining
vectors at depth 1 cannot be involved. As x 
= y this is a contradiction. The remaining

types are easily excluded. In type (3, 2, 2) the sum of all 7 vectors must vanish which is
impossible because of the first section. In type (3, 3, 1) the vector in the block at depth

1 is not involved and the sum of the remaining 6 vectors must vanish which is not the
case because of the penultimate coordinate section.

The OOA of Theorem 9 can be embedded into nets. This yields the following im-
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provement upon Theorem 7:

Corollary 2. For every r there is a linear (3r − 5, 3r + 2, 2r − 1)2-net.

This yields net parameters

(13, 20, 63)2, (19, 26, 255)2, (25, 32, 1023)2, (31, 38, 4095)2.

6.Binary nets of strengths 8

Theorem 10. Let F = F2r . The vectors

X1(w) = (0, w, w3, w5, w7), X2(w) = (w, w, w3, w5, w7 + w3)

generate an OAA of strength 8, depth 2 and dimension 5r.

Proof. Depth 1 is obvious because of the BCH-bound, types (2, 1, 1, 1, 1, 1, 1) and (2, 2, 1, 1, 1, 1)

are OK because of the first coordinate section. In the remaining types the exponents 1, 3, 5
show that for each block at depth 2 both vectors must be involved. As X1(x) + X2(x) =

(x, 0, 0, 0, x3) and exponents 1, 3 generate strength 4 we see that those types are ex-
cluded.

The OOA of Theorem 10 are net-embeddable by Theorem 1.

Corollary 3. (5r − 8, 5r, 2r − 1)2-nets exist for all r.

7. Binary nets of strengths 9 and 11

Theorem 3 shows that I = (−1, 0|1, 3, 5|1) is a vector of exponents of strength 9 and I =
(−1, 0|1, 3, 5, 7|1) is a vector of exponents of strength 11. The dimensions are m = 5r +1

and m = 6r + 1, respectively.

The GV theorem does not suffice to guarantee a net embedding in general. In the

case of the strength 9 family nets (5r − 8, 5r + 1, 2r − 1)2 are obtained for r ≤ 8.

Proposition 3. For every r there is a binary OOA of dimension 5r + 2 and strength 9

at depth 3.
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Proof. We use the family of depth 2 and strength k = 9 as constructed above with an
additional final bit coordinate, explicitly

X1(w) = (w−1, 1, w, w3, w5, 0, 0), X2(w) = (0, 0, w, w3, w5, w, 0),

and we choose

X3(w) = (0, 1, w, w3, w5, 0, 1).

The last bit yields a contradiction whenever entry 3 occurs an odd number of times in
the type. The first type to consider is therefore (3, 3, 13). Because of exponents 1, 3, 5

only the blocks at depth 3 are involved in the linear relation. The first coordinate section
shows that the vectors at depth 1 are not involved, the penultimate section shows that

the depth 2 vectors are not involved, contradiction.

The situation is similar in type (3, 3, 2, 1). The depth 1 block does not contribute.

The first section shows that each depth 3 block contributes the vectors at depth 1 and 3

to the linear relation. This is impossible because of the second section.

Corollary 4. A (5r − 7, 5r + 2, 2r − 1)2-net exists for all r.

Proof. Apply the GV embedding theorem to Proposition 3.

In the same manner, the strength 11 family yields nets

(32, 43, 121)2 and (38, 49, 210)2.

Proposition 4. Whenever r is not a multiple of 3 there is a binary OOA of dimension
6r + 2, strength 11 and depth 3.

Proof. Use the family of depth 2 and strength k = 11 as constructed earlier with an
additional final bit coordinate, explicitly

X1(w) = (w−1, 1|w, w3, w5, w7|0|0), X2(w) = (0, 0|w, w3, w5, w7|w|0),

and we choose

X3(w) = (0, 0|w, w3, w5, 0|w|1).

The last bit shows that we need to consider only types containing an even number of
entries 3. The first type to consider is (3, 3, 15). We have γ1 = γ2 = 1. The penultimate

section (exponent 1) shows β1 = β2 = 1. Assume α1 = 0 or α2 = 0. As exponents 1, 3, 5
generate strength 6 we obtain αi = 0 for all i. Exponent 7 yields a contradiction as 7

does not divide the group order. We have α1 = α2 = 1. Exponents −1, 0, 1, 3, 5 yield a

contradiction.

All remaining types have ≤ 6 parts. As exponents 1, 3, 5 generate strength 6 we can

assume that parts 1 do not occur in the type. In type (3, 3, 2) we have α3 = β3 = 1.
Exponents −1, 0 yield a contradiction.
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The last type to exclude is (3, 3, 2, 2). Exponents 1, 3, 5 show α3 = β3 = α4 = β4 = 1.
If α1 = 0 or α2 = 0, exponents −1, 0 would yield a contradiction. Because of exponents

1, 3, 5 we conclude α1 = α2 = 1, β1 = β2 = 0. Exponent 7 yields a contradiction as r is
not a multiple of 3.

Proposition 4 is not sufficient to guarantee a net embedding in general.
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