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Abstract
We classify all integer squares (and, more generally, q-th powers for certain values
of q) whose ternary expansions contain at most three digits. Our results follow from
Padé approximants to the binomial function, considered 3-adically.

–Dedicated to the memory of John Selfridge.

1. Introduction

If we fix an integer base b > 1 and let Bk(b) denote the set of integers whose
base b representation contains at most k nonzero “digits”, then standard density
arguments suggest that for a typical sequence S of positive integers, with suitable
growth rate, the intersection S ∩ Bk(b) should be a finite set. Quantifying this
statement for any given S can be remarkably difficult. In the case where S consists
of the positive integer squares, then S ∩B3(b) is not actually finite (as the identity
(1 + b�)2 = 1 + 2b� + b2� for � ≥ 1 reveals), yet a result of Corvaja and Zannier
[5] implies that all but finitely many squares in B3(b) can be classified by means of
such polynomial identities. The proof of this result in [5], however, depends upon
Schmidt’s Subspace Theorem and is thus ineffective (in that it does not allow one
to determine the implicit exceptional set). Analogous questions for B4(b) appear to
be almost completely open (but see [6] in case b = 2).

Szalay [8] employed rather different means to deduce a complete classification of
odd squares with three binary digits. He proved the following.

Theorem S If y is an odd positive integer such that y2 has at most three binary
digits, then y = 7, y = 23 or y = 2t + 1 for some positive integer t.

The arguments of [8], which rely on a result of Beukers based upon Padé ap-
proximation, do not appear to readily extend to bases b > 2. In this short note,
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however, we will employ a somewhat different approach to treat the case b = 3. We
prove

Theorem 1 If y is a positive integer with, say, y coprime to 3, then if y2 has at
most three ternary digits, it follows that y ∈ {1, 5, 8, 13} or y = 3t + 1, where t is a
nonnegative integer.

Note that the squares y2 with three ternary digits which are divisible by 3 may
be obtained from the values listed here via multiplication by a suitable power of 3.
In a recent paper of Bugeaud, Mignotte and the author [2], the result of Szalay is
extended to higher powers yq for q > 2. The techniques of [2] do not apparently
provide an absolute upper bound upon q for which yq has at most three ternary
digits (though they do precisely this under the assumption that y ≡ 1 (mod 3)). It
is, however, possible to prove the following.

Theorem 2 If y is a positive integer with y coprime to 3, then if yq has at most
three ternary digits for q = 3 or 7 ≤ q < 1000 prime, it follows that (y, q) = (13, 3).

Observe that we make no claims regarding the case q = 5. Indeed, we are unable
to effectively solve the equation

3a + 3b + 2 = y5.

Presumably, it has no solutions in positive integers a and b with a > b, other than
(a, b) = (3, 1). By the main theorem of [5], for each value of q excluded in the above
theorem (i.e. q = 3 and prime q > 1000), there are at most finitely many qth powers
with at most three ternary digits, though the result is ineffective.

At the risk of being accused of trying to impart Theorems 1 and 2 with un-
due significance, one might mention that they represent effective solutions of (very
simple) cases of a deep conjecture of Lang and Vojta on the Zariski denseness of
S-integral points on certain algebraic varieties (see e.g. page 486 of [7]).

2. Squares With 3 Ternary Digits

We begin by considering the case of squares with at most 2 ternary digits. These
correspond, assuming that gcd(3, y) = 1 and y > 1, to the Diophantine equation

2δ13a + 2δ2 = y2,

where δi ∈ {0, 1} and a > 0. Modulo 12, it follows that δ1 = δ2 = 0 and so, after
factoring y2 − 1, we have that a = 1 and y = 2.
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We now turn our attention to squares with 3 ternary digits. A priori, if we
suppose that y is coprime to 3, we are led to the Diophantine equation

2δ13a + 2δ23b + 2δ3 = y2, (1)

where δi ∈ {0, 1} and a > b > 0. Modulo 3, however, and crucially for our argument,
we may suppose that δ3 = 0. Modulo 8, we may also assume that (δ1, δ2) �= (0, 0).
To simplify matters, we check that there are no unexpected solutions with 1 ≤ b <
a ≤ 200; we may thus suppose that a > 200. Our argument proceeds as follows.
Firstly, we will construct off-diagonal Padé approximants to (1+x)1/2 and use these
to show that solutions to equation (1) necessarily have a < 16b. From this, we will
deduce a contradiction via local arguments which force a to be substantially larger
than b. It is worth observing that the result of Beukers which is key to Theorem S
also appeals to Padé approximants to (1 + x)1/2 in order to derive a lower bound
upon the quantity |2a − y2|. The key difference is that the values of x are chosen
to be small in Archimedean terms, while we will be considering x which are small
3-adically (and indeed large in Archimedean absolute value). Such an approach
is already present in another paper of Beukers [4] and, more recently, in work of
Corvaja and Zannier [6]; our argument closely follows the latter.

We begin by writing down the Padé approximants to (1 + x)1/2. Specifically, if
n1 and n2 are positive integers, define

Pn1,n2(x) =
n1�

k=0

�
n2 + 1/2

k

��
n1 + n2 − k

n2

�
xk (2)

and

Qn1,n2(x) =
n2�

k=0

�
n1 − 1/2

k

��
n1 + n2 − k

n1

�
xk. (3)

Then, as in [1], we have that

Pn1,n2(x)− (1 + x)1/2 Qn1,n2(x) = xn1+n2+1 En1,n2(x), (4)

where (see e.g. Beukers [3])

En1,n2(x) =
(−1)n2 Γ(n2 + 3/2)

Γ(−n1 + 1/2)Γ(n1 + n2 + 1)
F (n1 + 1/2, n1 + 1, n1 + n2 + 2,−x), (5)

for F the hypergeometric function given by

F (a, b, c,−x) = 1− a · b
1 · cx +

a · (a + 1) · b · (b + 1)
1 · 2 · c · (c + 1)

x2 − · · · .

Appealing twice to (4) and (5) with, in the second instance, n1 replaced by n1 + 1,
and eliminating (1+x)1/2, we find that Pn1+1,n2(x)Qn1,n2(x)−Pn1,n2(x)Qn1+1,n2(x)
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is a polynomial of degree n1 +n2 +1 with a zero at x = 0 of order n1 +n2 +1 (and
hence is a monomial). It follows that we may write

Pn1+1,n2(x)Qn1,n2(x)− Pn1,n2(x)Qn1+1,n2(x) = cxn1+n2+1. (6)

Here, we may show that

c = (−1)n2+1 (n1 + n2 + 1)Γ(n2 + 3/2)
(n1 + 1)!n2!Γ(−n1 + 1/2)

.

The precise value of the constant c here is unimportant for our purposes; it is enough
to note that it is nonzero. We choose n2 = �a/4b�, i.e. the smallest integer not less
than a/4b, and let n1 = 3n2 − δ for one of δ ∈ {0, 1}. It is useful for us to observe
that �

n + 1
2

k

�
4k ∈ Z,

so that, in particular, 4n1Pn1,n2(x) and 4n1Qn1,n2(x) are polynomials with integer
coefficients.

Setting η =
√

1 + 2δ23b, since (1 + x)1/2, Pn1,n2(x) and Qn1,n2(x) have 3-adic
integral coefficients, the same is necessarily true of En1,n2(x) and so, via equation
(4), ��4n1Pn1,n2(2

δ23b)− η 4n1Qn1,n2(2
δ23b)

��
3
≤ 3−a.

On the other hand, from the fact that η2 ≡ y2 (mod 3a), we have

η ≡ (−1)κy (mod 3a),

for some κ ∈ {0, 1}, and hence
��4n1Pn1,n2(2

δ23b)− (−1)κy 4n1Qn1,n2(2
δ23b)

��
3
≤ 3−a.

Equation (6) readily implies that for at least one of δ ∈ {0, 1}, we must have

Pn1,n2(2
δ23b) �= (−1)κy Qn1,n2(2

δ23b)

and hence, for the corresponding choice of n1,
��4n1 Pn1,n2(2

δ23b)− (−1)κy 4n1 Qn1,n2(2
δ23b)

�� ≥ 3a. (7)

From (2) and (3), after some relatively routine calculus, we may conclude that

��4n1 Pn1,n2(2
δ23b)

�� < (n1 + 1)
����

�
n2 + 1

2

n1

����� (8 · 3b)n1 < 5n2 3bn1

and
��4n1 Qn1,n2(2

δ23b)
�� < (n2 + 1)

�
n1 − 1

2

n2

�
(2 · 3b)n2 4n1 < 7n2 3bn2 ,
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whereby, from |y| < 21/2 · 3a/2 and (7),

3a < 5n2 3bn1 + 21/2 7n2 3bn23a/2 ≤ 5n2 33bn2 + 21/2 7n2 3bn23a/2.

Since n2 < 1 + a/4b, we thus have

3a/4 < 5(a+4b)/4b 33b + 21/2 7(a+4b)/4b 3b. (8)

Let us assume that a ≥ 16b. Then (8) implies that b ≤ 7; in fact, each choice of b
with 2 ≤ b ≤ 7, together with (8), contradicts the further assumption that a > 200.
In case b = 1, inequality (8) fails to provide such a contradiction. If b = 1, however,
considering equation (1) modulo 8, we find that necessarily δ2 = 1 and that a is
even. In case δ1 = 0, we thus have a = 2 and y = 4. If δ1 = 1, standard routines
for finding integral points on models of genus one curves, applied to the quartic
equations

y2 = 2 · 32δx4 + 7, δ ∈ {0, 1}

lead to the conclusion that a = 2 and y = 5.
It remains, then, to handle the situation where a < 16b. We will appeal to

straightforward local arguments, providing full details for (δ1, δ2) = (0, 1); the cases
(δ1, δ2) = (1, 0) and (1, 1) are essentially similar.

Suppose then that (δ1, δ2) = (0, 1) and that we have a solution to equation (1).
Since ν3(y2 − 1) = b, it follows that either y = 3b − 1, y = 3b + 1, or y ≥ 5 · 3b − 1.
In the first case, we have

3a + 2 · 3b + 1 = 32b − 2 · 3b + 1

and so 3a = 32b − 4 · 3b, whereby b = a, a contradiction. The second case leads to
our infinite family with a = 2b. We may therefore suppose that y ≥ 5 · 3b − 1 and
thus a ≥ 2b + 3. Considering the Taylor series

(1 + x)1/2 = 1 +
x

2
− x2

8
+

x3

16
− 5x4

128
+

7x5

256
− 21x6

1024
+ · · · , (9)

and viewing x = 3a + 2 · 3b as a 3-adic integer, we have, from a ≥ 2b + 3, that

ν3(y ± (1 + 3b)) ≥ 2b.

We thus have
y ≥ 32b − 3b − 1

and so, after a little work, a ≥ 4b. Again considering (9), we now find that

ν3(y ± (1 + 3b − 32b/2)) = 3b

and so
y ≥ 33b − 32b/2 + 3b + 1.
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Again appealing to the equality 3a + 2 · 3b + 1 = y2, we deduce, after a short
argument, that a ≥ 6b. Continuing in this vein,

ν3

�
y ±

�
1 + 3b − 32b

2
+

33b

2
− 5 · 34b

8
+

7 · 35b

8

��
= 6b,

whence

y ≥ 36b − 7 · 35b

8
+

5 · 34b

8
− 33b

2
+

32b

2
− 3b + 1

and a ≥ 12b. Finally, we have

ν3

�
y ±

�
1 + 3b − 32b

2
+

33b

2
− 5 · 34b

8
+

7 · 35b

8
− 21 · 36b

16
+

33 · 37b

16

��
= 8b

and so

y ≥ 38b − 33 · 37b

16
+

21 · 36b

16
− 7 · 35b

8
+

5 · 34b

8
− 33b

2
+

32b

2
− 3b + 1. (10)

Since we assume that a > 200 and a < 16b, it follows that b > 12. Combining
(10) with the equation 3a + 2 · 3b + 1 = y2 implies that a ≥ 16b. The resulting
contradiction enables us to conclude as desired.

3. Higher Powers With 3 Ternary Digits

In this section, we will prove Theorem 2. The (great) majority of the work here
was already done in [2], where we find

Theorem 3 If there exist integers a > b > 0 and q ≥ 2 for which

xa + xb + 1 = yq, with x ∈ {2, 3},

then (x, a, b, y, q) is one of

(2, 5, 4, 7, 2), (2, 9, 4, 23, 2), (3, 7, 2, 13, 3), (2, 6, 4, 3, 4), (4, 3, 2, 9, 2) or (4, 3, 2, 3, 4),

or (x, a, b, y, q) = (2, 2t, t + 1, 2t + 1, 2), for some integer t = 2 or t ≥ 4.

In particular, it remains only to solve the equation

2δ13a + 2δ23b + 2δ3 = yq, (11)

where (δ1, δ2, δ3) �= (0, 0, 0), a > b > 0 and q = 3 or 7 ≤ q < 1000 is prime. In each
case under consideration, it is a routine (if not especially fast) matter to find local
obstructions to (11); i.e. to find N such that the equation in insoluble modulo N .
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We construct our values N as products of certain primes pi ≡ 1 (mod q) for which
ord2(pi) = mq with m a relatively small integer. Here, ordl(pi) denotes the smallest
positive integer k for which lk ≡ 1 (mod pi). Fixing an integer M , for each such pi

with m | M , we let a and b loop over integers from 1 to Mq and store the resulting
pairs (a, b) with the property that either 2δ13a + 2δ23b + 2δ3 ≡ 0 (mod pi) or

�
2δ13a + 2δ23b + 2δ3

�(pi−1)/q ≡ 1 (mod pi).

For a given prime pi, if we denote by Si the set of corresponding pairs (a, b), then
we wish to find M and corresponding primes p1, p2, . . . , pk for which

k�

i=1

Si = ∅. (12)

We check that such sets of primes exist (with M reasonably small) for each prime
q = 3 or 5 ≤ q < 1000, and each triple (δ1, δ2, δ3). By way of example, if we consider
equation (11) in case q = 439 and (δ1, δ2, δ3) = (0, 0, 1), we may take M = 1440
and pi ∈ {4391, 13171, 39511, 70241, 105361}. Full details and the Maple code used
for these computations are available from the author on request.

If q = 5, it is easy, as in other cases, to find local obstructions, provided
(δ1, δ2, δ3) �= (0, 0, 1). In the situation where (δ1, δ2, δ3) = (0, 0, 1), the solution
with (a, b) = (3, 1) ensures the failure of such a simple approach.

4. Concluding Remarks

The arguments of this paper are apparently not sufficient to prove like results for
bases b > 4. The principal reason for this is that they rely upon the assumption
that the given power yq which one wishes to conclude to have at least, say, 4 digits
in base b, satisfies yq ≡ 1 (mod b). Such a supposition is essentially without loss of
generality only for b = 2 or 3.

Acknowledgments Thanks are due to the anonymous referee for remarks that
improved the exposition of this paper.
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