PERFECT POWERS WITH FEW TERNARY DIGITS

Michael A. Bennett ${ }^{1}$
Dept. of Mathematics, University of British Columbia, Vancouver, B.C. Canada
bennett@math.ubc.ca

Received: 7/20/11, Accepted: 3/22/12, Published: 10/12/12

Abstract

We classify all integer squares (and, more generally, q-th powers for certain values of q) whose ternary expansions contain at most three digits. Our results follow from Padé approximants to the binomial function, considered 3-adically.

-Dedicated to the memory of John Selfridge.

1. Introduction

If we fix an integer base $b>1$ and let $B_{k}(b)$ denote the set of integers whose base b representation contains at most k nonzero "digits", then standard density arguments suggest that for a typical sequence S of positive integers, with suitable growth rate, the intersection $S \cap B_{k}(b)$ should be a finite set. Quantifying this statement for any given S can be remarkably difficult. In the case where S consists of the positive integer squares, then $S \cap B_{3}(b)$ is not actually finite (as the identity $\left(1+b^{\ell}\right)^{2}=1+2 b^{\ell}+b^{2 \ell}$ for $\ell \geq 1$ reveals), yet a result of Corvaja and Zannier [5] implies that all but finitely many squares in $B_{3}(b)$ can be classified by means of such polynomial identities. The proof of this result in [5], however, depends upon Schmidt's Subspace Theorem and is thus ineffective (in that it does not allow one to determine the implicit exceptional set). Analogous questions for $B_{4}(b)$ appear to be almost completely open (but see [6] in case $b=2$).

Szalay [8] employed rather different means to deduce a complete classification of odd squares with three binary digits. He proved the following.

Theorem \mathbf{S} If y is an odd positive integer such that y^{2} has at most three binary digits, then $y=7, y=23$ or $y=2^{t}+1$ for some positive integer t.

The arguments of [8], which rely on a result of Beukers based upon Padé approximation, do not appear to readily extend to bases $b>2$. In this short note,

[^0]however, we will employ a somewhat different approach to treat the case $b=3$. We prove

Theorem 1 If y is a positive integer with, say, y coprime to 3 , then if y^{2} has at most three ternary digits, it follows that $y \in\{1,5,8,13\}$ or $y=3^{t}+1$, where t is a nonnegative integer.

Note that the squares y^{2} with three ternary digits which are divisible by 3 may be obtained from the values listed here via multiplication by a suitable power of 3 . In a recent paper of Bugeaud, Mignotte and the author [2], the result of Szalay is extended to higher powers y^{q} for $q>2$. The techniques of [2] do not apparently provide an absolute upper bound upon q for which y^{q} has at most three ternary digits (though they do precisely this under the assumption that $y \equiv 1(\bmod 3))$. It is, however, possible to prove the following.

Theorem 2 If y is a positive integer with y coprime to 3 , then if y^{q} has at most three ternary digits for $q=3$ or $7 \leq q<1000$ prime, it follows that $(y, q)=(13,3)$.

Observe that we make no claims regarding the case $q=5$. Indeed, we are unable to effectively solve the equation

$$
3^{a}+3^{b}+2=y^{5} .
$$

Presumably, it has no solutions in positive integers a and b with $a>b$, other than $(a, b)=(3,1)$. By the main theorem of [5], for each value of q excluded in the above theorem (i.e. $q=3$ and prime $q>1000$), there are at most finitely many q th powers with at most three ternary digits, though the result is ineffective.

At the risk of being accused of trying to impart Theorems 1 and 2 with undue significance, one might mention that they represent effective solutions of (very simple) cases of a deep conjecture of Lang and Vojta on the Zariski denseness of S-integral points on certain algebraic varieties (see e.g. page 486 of [7]).

2. Squares With 3 Ternary Digits

We begin by considering the case of squares with at most 2 ternary digits. These correspond, assuming that $\operatorname{gcd}(3, y)=1$ and $y>1$, to the Diophantine equation

$$
2^{\delta_{1}} 3^{a}+2^{\delta_{2}}=y^{2}
$$

where $\delta_{i} \in\{0,1\}$ and $a>0$. Modulo 12 , it follows that $\delta_{1}=\delta_{2}=0$ and so, after factoring $y^{2}-1$, we have that $a=1$ and $y=2$.

We now turn our attention to squares with 3 ternary digits. A priori, if we suppose that y is coprime to 3 , we are led to the Diophantine equation

$$
\begin{equation*}
2^{\delta_{1}} 3^{a}+2^{\delta_{2}} 3^{b}+2^{\delta_{3}}=y^{2} \tag{1}
\end{equation*}
$$

where $\delta_{i} \in\{0,1\}$ and $a>b>0$. Modulo 3 , however, and crucially for our argument, we may suppose that $\delta_{3}=0$. Modulo 8 , we may also assume that $\left(\delta_{1}, \delta_{2}\right) \neq(0,0)$. To simplify matters, we check that there are no unexpected solutions with $1 \leq b<$ $a \leq 200$; we may thus suppose that $a>200$. Our argument proceeds as follows. Firstly, we will construct off-diagonal Padé approximants to $(1+x)^{1 / 2}$ and use these to show that solutions to equation (1) necessarily have $a<16 b$. From this, we will deduce a contradiction via local arguments which force a to be substantially larger than b. It is worth observing that the result of Beukers which is key to Theorem S also appeals to Padé approximants to $(1+x)^{1 / 2}$ in order to derive a lower bound upon the quantity $\left|2^{a}-y^{2}\right|$. The key difference is that the values of x are chosen to be small in Archimedean terms, while we will be considering x which are small 3 -adically (and indeed large in Archimedean absolute value). Such an approach is already present in another paper of Beukers [4] and, more recently, in work of Corvaja and Zannier [6]; our argument closely follows the latter.

We begin by writing down the Padé approximants to $(1+x)^{1 / 2}$. Specifically, if n_{1} and n_{2} are positive integers, define

$$
\begin{equation*}
P_{n_{1}, n_{2}}(x)=\sum_{k=0}^{n_{1}}\binom{n_{2}+1 / 2}{k}\binom{n_{1}+n_{2}-k}{n_{2}} x^{k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n_{1}, n_{2}}(x)=\sum_{k=0}^{n_{2}}\binom{n_{1}-1 / 2}{k}\binom{n_{1}+n_{2}-k}{n_{1}} x^{k} \tag{3}
\end{equation*}
$$

Then, as in [1], we have that

$$
\begin{equation*}
P_{n_{1}, n_{2}}(x)-(1+x)^{1 / 2} Q_{n_{1}, n_{2}}(x)=x^{n_{1}+n_{2}+1} E_{n_{1}, n_{2}}(x) \tag{4}
\end{equation*}
$$

where (see e.g. Beukers [3])

$$
\begin{equation*}
E_{n_{1}, n_{2}}(x)=\frac{(-1)^{n_{2}} \Gamma\left(n_{2}+3 / 2\right)}{\Gamma\left(-n_{1}+1 / 2\right) \Gamma\left(n_{1}+n_{2}+1\right)} F\left(n_{1}+1 / 2, n_{1}+1, n_{1}+n_{2}+2,-x\right) \tag{5}
\end{equation*}
$$

for F the hypergeometric function given by

$$
F(a, b, c,-x)=1-\frac{a \cdot b}{1 \cdot c} x+\frac{a \cdot(a+1) \cdot b \cdot(b+1)}{1 \cdot 2 \cdot c \cdot(c+1)} x^{2}-\cdots
$$

Appealing twice to (4) and (5) with, in the second instance, n_{1} replaced by $n_{1}+1$, and eliminating $(1+x)^{1 / 2}$, we find that $P_{n_{1}+1, n_{2}}(x) Q_{n_{1}, n_{2}}(x)-P_{n_{1}, n_{2}}(x) Q_{n_{1}+1, n_{2}}(x)$
is a polynomial of degree $n_{1}+n_{2}+1$ with a zero at $x=0$ of order $n_{1}+n_{2}+1$ (and hence is a monomial). It follows that we may write

$$
\begin{equation*}
P_{n_{1}+1, n_{2}}(x) Q_{n_{1}, n_{2}}(x)-P_{n_{1}, n_{2}}(x) Q_{n_{1}+1, n_{2}}(x)=c x^{n_{1}+n_{2}+1} \tag{6}
\end{equation*}
$$

Here, we may show that

$$
c=(-1)^{n_{2}+1} \frac{\left(n_{1}+n_{2}+1\right) \Gamma\left(n_{2}+3 / 2\right)}{\left(n_{1}+1\right)!n_{2}!\Gamma\left(-n_{1}+1 / 2\right)} .
$$

The precise value of the constant c here is unimportant for our purposes; it is enough to note that it is nonzero. We choose $n_{2}=\lceil a / 4 b\rceil$, i.e. the smallest integer not less than $a / 4 b$, and let $n_{1}=3 n_{2}-\delta$ for one of $\delta \in\{0,1\}$. It is useful for us to observe that

$$
\binom{n+\frac{1}{2}}{k} 4^{k} \in \mathbb{Z}
$$

so that, in particular, $4^{n_{1}} P_{n_{1}, n_{2}}(x)$ and $4^{n_{1}} Q_{n_{1}, n_{2}}(x)$ are polynomials with integer coefficients.

Setting $\eta=\sqrt{1+2^{\delta_{2}} 3^{b}}$, since $(1+x)^{1 / 2}, P_{n_{1}, n_{2}}(x)$ and $Q_{n_{1}, n_{2}}(x)$ have 3-adic integral coefficients, the same is necessarily true of $E_{n_{1}, n_{2}}(x)$ and so, via equation (4),

$$
\left|4^{n_{1}} P_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)-\eta 4^{n_{1}} Q_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)\right|_{3} \leq 3^{-a}
$$

On the other hand, from the fact that $\eta^{2} \equiv y^{2}\left(\bmod 3^{a}\right)$, we have

$$
\eta \equiv(-1)^{\kappa} y\left(\bmod 3^{a}\right)
$$

for some $\kappa \in\{0,1\}$, and hence

$$
\left|4^{n_{1}} P_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)-(-1)^{\kappa} y 4^{n_{1}} Q_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)\right|_{3} \leq 3^{-a}
$$

Equation (6) readily implies that for at least one of $\delta \in\{0,1\}$, we must have

$$
P_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right) \neq(-1)^{\kappa} y Q_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)
$$

and hence, for the corresponding choice of n_{1},

$$
\begin{equation*}
\left|4^{n_{1}} P_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)-(-1)^{\kappa} y 4^{n_{1}} Q_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)\right| \geq 3^{a} \tag{7}
\end{equation*}
$$

From (2) and (3), after some relatively routine calculus, we may conclude that

$$
\left|4^{n_{1}} P_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)\right|<\left(n_{1}+1\right)\left|\binom{n_{2}+\frac{1}{2}}{n_{1}}\right|\left(8 \cdot 3^{b}\right)^{n_{1}}<5^{n_{2}} 3^{b n_{1}}
$$

and

$$
\left|4^{n_{1}} Q_{n_{1}, n_{2}}\left(2^{\delta_{2}} 3^{b}\right)\right|<\left(n_{2}+1\right)\binom{n_{1}-\frac{1}{2}}{n_{2}}\left(2 \cdot 3^{b}\right)^{n_{2}} 4^{n_{1}}<7^{n_{2}} 3^{b n_{2}}
$$

whereby, from $|y|<2^{1 / 2} \cdot 3^{a / 2}$ and (7),

$$
3^{a}<5^{n_{2}} 3^{b n_{1}}+2^{1 / 2} 7^{n_{2}} 3^{b n_{2}} 3^{a / 2} \leq 5^{n_{2}} 3^{3 b n_{2}}+2^{1 / 2} 7^{n_{2}} 3^{b n_{2}} 3^{a / 2}
$$

Since $n_{2}<1+a / 4 b$, we thus have

$$
\begin{equation*}
3^{a / 4}<5^{(a+4 b) / 4 b} 3^{3 b}+2^{1 / 2} 7^{(a+4 b) / 4 b} 3^{b} \tag{8}
\end{equation*}
$$

Let us assume that $a \geq 16 b$. Then (8) implies that $b \leq 7$; in fact, each choice of b with $2 \leq b \leq 7$, together with (8), contradicts the further assumption that $a>200$. In case $b=1$, inequality (8) fails to provide such a contradiction. If $b=1$, however, considering equation (1) modulo 8 , we find that necessarily $\delta_{2}=1$ and that a is even. In case $\delta_{1}=0$, we thus have $a=2$ and $y=4$. If $\delta_{1}=1$, standard routines for finding integral points on models of genus one curves, applied to the quartic equations

$$
y^{2}=2 \cdot 3^{2 \delta} x^{4}+7, \delta \in\{0,1\}
$$

lead to the conclusion that $a=2$ and $y=5$.
It remains, then, to handle the situation where $a<16 b$. We will appeal to straightforward local arguments, providing full details for $\left(\delta_{1}, \delta_{2}\right)=(0,1)$; the cases $\left(\delta_{1}, \delta_{2}\right)=(1,0)$ and $(1,1)$ are essentially similar.

Suppose then that $\left(\delta_{1}, \delta_{2}\right)=(0,1)$ and that we have a solution to equation (1). Since $\nu_{3}\left(y^{2}-1\right)=b$, it follows that either $y=3^{b}-1, y=3^{b}+1$, or $y \geq 5 \cdot 3^{b}-1$. In the first case, we have

$$
3^{a}+2 \cdot 3^{b}+1=3^{2 b}-2 \cdot 3^{b}+1
$$

and so $3^{a}=3^{2 b}-4 \cdot 3^{b}$, whereby $b=a$, a contradiction. The second case leads to our infinite family with $a=2 b$. We may therefore suppose that $y \geq 5 \cdot 3^{b}-1$ and thus $a \geq 2 b+3$. Considering the Taylor series

$$
\begin{equation*}
(1+x)^{1 / 2}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\frac{7 x^{5}}{256}-\frac{21 x^{6}}{1024}+\cdots \tag{9}
\end{equation*}
$$

and viewing $x=3^{a}+2 \cdot 3^{b}$ as a 3 -adic integer, we have, from $a \geq 2 b+3$, that

$$
\nu_{3}\left(y \pm\left(1+3^{b}\right)\right) \geq 2 b
$$

We thus have

$$
y \geq 3^{2 b}-3^{b}-1
$$

and so, after a little work, $a \geq 4 b$. Again considering (9), we now find that

$$
\nu_{3}\left(y \pm\left(1+3^{b}-3^{2 b} / 2\right)\right)=3 b
$$

and so

$$
y \geq 3^{3 b}-3^{2 b} / 2+3^{b}+1
$$

Again appealing to the equality $3^{a}+2 \cdot 3^{b}+1=y^{2}$, we deduce, after a short argument, that $a \geq 6 b$. Continuing in this vein,

$$
\nu_{3}\left(y \pm\left(1+3^{b}-\frac{3^{2 b}}{2}+\frac{3^{3 b}}{2}-\frac{5 \cdot 3^{4 b}}{8}+\frac{7 \cdot 3^{5 b}}{8}\right)\right)=6 b
$$

whence

$$
y \geq 3^{6 b}-\frac{7 \cdot 3^{5 b}}{8}+\frac{5 \cdot 3^{4 b}}{8}-\frac{3^{3 b}}{2}+\frac{3^{2 b}}{2}-3^{b}+1
$$

and $a \geq 12 b$. Finally, we have

$$
\nu_{3}\left(y \pm\left(1+3^{b}-\frac{3^{2 b}}{2}+\frac{3^{3 b}}{2}-\frac{5 \cdot 3^{4 b}}{8}+\frac{7 \cdot 3^{5 b}}{8}-\frac{21 \cdot 3^{6 b}}{16}+\frac{33 \cdot 3^{7 b}}{16}\right)\right)=8 b
$$

and so

$$
\begin{equation*}
y \geq 3^{8 b}-\frac{33 \cdot 3^{7 b}}{16}+\frac{21 \cdot 3^{6 b}}{16}-\frac{7 \cdot 3^{5 b}}{8}+\frac{5 \cdot 3^{4 b}}{8}-\frac{3^{3 b}}{2}+\frac{3^{2 b}}{2}-3^{b}+1 \tag{10}
\end{equation*}
$$

Since we assume that $a>200$ and $a<16 b$, it follows that $b>12$. Combining (10) with the equation $3^{a}+2 \cdot 3^{b}+1=y^{2}$ implies that $a \geq 16 b$. The resulting contradiction enables us to conclude as desired.

3. Higher Powers With 3 Ternary Digits

In this section, we will prove Theorem 2. The (great) majority of the work here was already done in [2], where we find

Theorem 3 If there exist integers $a>b>0$ and $q \geq 2$ for which

$$
x^{a}+x^{b}+1=y^{q}, \quad \text { with } \quad x \in\{2,3\}
$$

then (x, a, b, y, q) is one of
$(2,5,4,7,2),(2,9,4,23,2),(3,7,2,13,3),(2,6,4,3,4),(4,3,2,9,2)$ or $(4,3,2,3,4)$,
or $(x, a, b, y, q)=\left(2,2 t, t+1,2^{t}+1,2\right)$, for some integer $t=2$ or $t \geq 4$.
In particular, it remains only to solve the equation

$$
\begin{equation*}
2^{\delta_{1}} 3^{a}+2^{\delta_{2}} 3^{b}+2^{\delta_{3}}=y^{q} \tag{11}
\end{equation*}
$$

where $\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \neq(0,0,0), a>b>0$ and $q=3$ or $7 \leq q<1000$ is prime. In each case under consideration, it is a routine (if not especially fast) matter to find local obstructions to (11); i.e. to find N such that the equation in insoluble modulo N.

We construct our values N as products of certain primes $p_{i} \equiv 1(\bmod q)$ for which $\operatorname{ord}_{2}\left(p_{i}\right)=m q$ with m a relatively small integer. Here, $\operatorname{ord}_{l}\left(p_{i}\right)$ denotes the smallest positive integer k for which $l^{k} \equiv 1\left(\bmod p_{i}\right)$. Fixing an integer M, for each such p_{i} with $m \mid M$, we let a and b loop over integers from 1 to $M q$ and store the resulting pairs (a, b) with the property that either $2^{\delta_{1}} 3^{a}+2^{\delta_{2}} 3^{b}+2^{\delta_{3}} \equiv 0\left(\bmod p_{i}\right)$ or

$$
\left(2^{\delta_{1}} 3^{a}+2^{\delta_{2}} 3^{b}+2^{\delta_{3}}\right)^{\left(p_{i}-1\right) / q} \equiv 1\left(\bmod p_{i}\right)
$$

For a given prime p_{i}, if we denote by S_{i} the set of corresponding pairs (a, b), then we wish to find M and corresponding primes $p_{1}, p_{2}, \ldots, p_{k}$ for which

$$
\begin{equation*}
\bigcap_{i=1}^{k} S_{i}=\emptyset \tag{12}
\end{equation*}
$$

We check that such sets of primes exist (with M reasonably small) for each prime $q=3$ or $5 \leq q<1000$, and each triple $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$. By way of example, if we consider equation (11) in case $q=439$ and $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(0,0,1)$, we may take $M=1440$ and $p_{i} \in\{4391,13171,39511,70241,105361\}$. Full details and the Maple code used for these computations are available from the author on request.

If $q=5$, it is easy, as in other cases, to find local obstructions, provided $\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \neq(0,0,1)$. In the situation where $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=(0,0,1)$, the solution with $(a, b)=(3,1)$ ensures the failure of such a simple approach.

4. Concluding Remarks

The arguments of this paper are apparently not sufficient to prove like results for bases $b>4$. The principal reason for this is that they rely upon the assumption that the given power y^{q} which one wishes to conclude to have at least, say, 4 digits in base b, satisfies $y^{q} \equiv 1(\bmod b)$. Such a supposition is essentially without loss of generality only for $b=2$ or 3 .

Acknowledgments Thanks are due to the anonymous referee for remarks that improved the exposition of this paper.

References

[1] M. Bauer and M. Bennett, Application of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J. 6 (2002), 209-270.
[2] M. Bennett, Y. Bugeaud and M. Mignotte, Perfect powers with few binary digits and related Diophantine problems II, Preprint.
[3] F. Beukers, On the generalized Ramanujan-Nagell equation. I., Acta Arith. 38 (1980/81), 389-410.
[4] F. Beukers, On the generalized Ramanujan-Nagell equation. II., Acta Arith. 39 (1981), 113123.
[5] P. Corvaja and U. Zannier, On the Diophantine equation $f\left(a^{m}, y\right)=b^{n}$, Acta Arith. 94 (2000), 25-40.
[6] P. Corvaja and U. Zannier, Finiteness of odd perfect powers with four nonzero binary digits. Preprint.
[7] M. Hindry and J. Silverman, Diophantine Geometry, An Introduction, Springer Verlag GTM 201, 2001.
[8] L. Szalay, The equations $2^{n} \pm 2^{m} \pm 2^{l}=z^{2}$, Indag. Math. (N.S.) 13 (2002), 131-142.

[^0]: ${ }^{1}$ Research supported in part by a grant from NSERC

