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Abstract

We give an explicit formula for the figure of merit ρN of 2-dimensional rank 2 lattice rules
in terms of continued fractions for rational numbers. Further we generalize Fibonacci
lattice rules to rank 2 Fibonacci lattice rules which have the same ratio of the figure of
merit to the number of points as the classical Fibonacci lattice rule.

1. Introduction

For approximating integrals
∫

[0,1]s
f(x) dx one often uses a quasi-Monte Carlo rule, that

is, one approximates the integral by the average of the function value at certain quadra-

ture points. In this paper we restrict ourselves to dimension two and consider a special
class of those quasi-Monte Carlo rules, so-called rank 2 lattice rules.

A 2-dimensional rank 2 lattice rule is a quasi-Monte Carlo quadrature rule for func-
tions f over the 2-dimensional unit cube [0, 1]2 of the form

Q(f) =
1

N

n1∑
k1=1

n2∑
k2=1

f({k1z1/n1 + k2z2/n2}), (1)
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which cannot be re-expressed in an analogous form with a single sum. Here n1, n2 ≥ 2 are
integers such that n2|n1, N = n1n2 and z1, z2 are vectors in Z

2 (note that for n2 = 1 we

obtain what is called a rank 1 lattice rule). The integers n1, n2 are called the invariants of
the lattice rule. (For a vector x ∈ R

2 the fractional part {x} is defined component wise.)

For the definition and the general theory of lattice rules for multivariate integration we
refer to the books of Niederreiter [2] and of Sloan and Joe [4].

For a given rank 2 lattice rule with invariants n1 and n2, N = n1n2 and with z1 =

(z1, z2) and z2 = (ζ1, ζ2) for zi, ζi ∈ Z we define the quantity

ρN (z1, z2) := min
(h1,h2)∈Z2\{(0,0)}

h1z1+h2z2≡0 (mod n1)
h1ζ1+h2ζ2≡0 (mod n2)

r(h1)r(h2),

where r(h) = max(1, |h|) for h ∈ Z. This quantity is often called the figure of merit

of the lattice rule. (If n2 = 1 we obtain a rank 1 lattice rule and in this case we write
ρn1(z1) for the figure of merit.) The figure of merit is an effective quality measure for

lattice rules as will be explained in more detail in the following.

For reals α > 0 and C > 0 let E2
α(C) be the class of all continuous periodic functions

f : [0, 1]2 −→ R with period 1 in each variable and with Fourier-coefficients f̂(h), h =
(h1, h2) ∈ Z

2, satisfying |f̂(h)| ≤ Cr(h)−α for any h ∈ Z
2, where r(h) =

∏2
i=1 r(hi).

Then for the worst-case error for integration in the class E2
α(C) using a rank 2 lattice rule

(1) we have the relation

2C

ρN (z1, z2)α
≤ max

f∈E2
α(C)

∣∣∣∣
∫

[0,1]2
f(x) dx− Q(f)

∣∣∣∣ ≤ C · cα
1 + log ρN (z1, z2)

ρN(z1, z2)α
, (2)

where the constant cα depends only on α. So the quantity ρN determines – up to a log
factor – the exact order of the worst-case error for integration in the class E2

α(C) using a

rank 2 lattice rule. For a proof of the above result see [2, Theorem 5.34].

Furthermore one can use the figure of merit of a lattice rule to estimate the discrepancy

DN of the corresponding node set

{k1z1/n1 + k2z2/n2}, for 1 ≤ ki ≤ ni and i = 1, 2. (3)

(For the definition of the discrepancy DN see for example [1] or [2].) The discrepancy of

the point set (3) can be estimated by

1

4ρN(z1, z2)
≤ DN <

2

N
+

1

ρN (z1, z2)

2

log 2

(
(log N)2 +

3

2
log N

)
. (4)

For a proof see [3] or [2].

From (2) and (4) it follows that for a given number of points N one would like to

obtain a figure of merit as large as possible. In dimensions larger than two there is no
theoretical foundation how this can be achieved, whereas in dimension two this is known
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if the number of points is a Fibonacci number, see [5]. These lattice rules are called
Fibonacci lattice rules and are obtained by setting n2 = 1, n1 = Fk, the k-th Fibonacci

number, z1 = (1, Fk−1), where Fk−1 is the k − 1-th Fibonacci number, and z2 = (0, 0) in
(1).

Note that a trivial upper and lower bound on the figure of merit is given by

1 ≤ ρN (z1, z2) ≤ n1. (5)

In this paper we prove an explicit formula for the figure of merit ρN (z1, z2) in terms
of continued fractions for rational numbers. Our result is the rank 2 analogue to Nieder-

reiters formula [2, Theorem 5.15] for the figure of merit of rank 1 lattice rules. Using
this result we can give a rank 2 version of the well known Fibonacci lattice rules, which

achieve the same ratio of the figure of merit to the number of points as do rank 1 Fi-
bonacci lattice rules. Further, using our formula we can give good bounds for the figure

of merit of rank 2 lattice rules.

2. The figure of merit of rank 2 lattice rules

We consider 2-dimensional rank 2 lattice rules with invariants n1 and n2, N = n1n2 and
with z1 = (z1, z2) and z2 = (ζ1, ζ2) with zi, ζi ∈ Z and gcd(zi, n1) = 1 and gcd(ζi, n2) = 1

for i = 1, 2. In this case we may assume w.l.o.g. that z1 = ζ1 = 1. For simplicity we
write in the following z for z2 and ζ for ζ2.

Before we state our main result we introduce some notation which is used throughout
the paper. For z, ñ ∈ Z with gcd(z, ñ) = 1 let

z

ñ
= [a0; a1, . . . , al]

be the continued fraction expansion of z/ñ, where aj ∈ N for 1 ≤ j ≤ l and where al = 1.

The convergents to z/ñ are defined by

pj

qj

= [a0; a1, . . . , aj], (6)

for 0 ≤ j ≤ l. The integers pj and qj are uniquely determined if we impose the conditions

qj ≥ 1 and gcd(pj, qj) = 1. Further let K(z/ñ) denote the largest partial quotient aj ,

1 ≤ j ≤ l, in the continued fraction expansion of z/ñ.

Remark 1 With this notation we can improve the lower bound in (5). We have

ρN (z1, z2) ≥ min
(h1,h2)∈Z2\{(0,0)}

h1+h2z≡0 (mod n1)

r(h1)r(h2) ≥ n1

K(z/n1) + 2
, (7)

where K(z/n1) denotes the largest partial quotient in the continued fraction expansion
of z/n1. Here the last inequality follows from [2, Theorem 5.17].
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The following theorem is a rank 2 version of [2, Theorem 5.15] and expresses the
figure of merit using the convergents to z/ñ, where the integer ñ depends on z, ζ, n1, n2

and is defined in the subsequent theorem.

Theorem 1 Let n1, n2 ∈ N, n2|n1 and let z, ζ ∈ Z such that gcd(n1, z) = 1 and

gcd(n2, ζ) = 1. Let d := gcd(z − ζ, n2), n∗
1 := n1/n2 and ñ := n∗

1d. Then we have

ρN (z1, z2) = min

(
n1,

n2
2

d2
min
0≤j<l

qj |qjz − pjñ|
)

,

where pj/qj, 0 ≤ j ≤ l are the convergents to z/ñ as defined in (6).

Remark 2 1. From [2, Theorem 5.17] we obtain

N

d(K(z/ñ) + 2)
≤ n2

2

d2
min
0≤j<l

qj |qjz − pjñ| ≤ N

dK(z/ñ)
.

2. If the parameters are chosen in such a way that d = n2, then we have

n1

K(z/n1) + 2
≤ ρN (z1, z2) ≤ n1

K(z/n1)
.

Compare this result with Remark 1.

Proof of Theorem 1. Since ρN(z1, z2) ≤ n1 we have

ρN(z1, z2) = min
(h1,h2)∈Z2\{(0,0)}

h1+h2z≡0 (mod n1)
h1+h2ζ≡0 (mod n2)

r(h1)r(h2) = min


n1, min

1≤h2<n1
h1∈Z

h1+h2z≡0 (mod n1)
h1+h2ζ≡0 (mod n2)

r(h1)r(h2)


 .

Define

ρ̃N (z1, z2) := min
1≤h2<n1

h1∈Z

h1+h2z≡0 (mod n1)
h1+h2ζ≡0 (mod n2)

r(h1)r(h2).

For h2 ∈ Z the system

h1 + h2z ≡ 0 (mod n1) (8)

h1 + h2ζ ≡ 0 (mod n2) (9)

has a solution h1 iff gcd(n1, n2) = n2 is a divisor of −h2z + h2ζ , i.e., iff

h2(z − ζ) ≡ 0 (mod n2). (10)
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Let d = gcd(z − ζ, n2). Then (10) has d incongruent (modulo d) solutions x0, . . . , xd−1

with 0 ≤ xi < d. In fact it is clear that xi = in2/d for 0 ≤ i < d. It follows that h2 must

be of the form
h2 = xi + h̃2n2.

Now the system (8 & 9) becomes

h1 + (xi + h̃2n2)z ≡ 0 (mod n1) (11)

h1 + (xi + h̃2n2)ζ ≡ 0 (mod n2). (12)

From (12) we obtain
h1 + xiζ ≡ 0 (mod n2)

and hence h1 is of the form
h1 = −xiζ + h̃1n2.

Inserting this back into (11) gives

−xiζ + h̃1n2 + xiz + h̃2n2z ≡ 0 (mod n1).

This is equivalent to

h̃1n2 + h̃2zn2 ≡ −xi(z − ζ) (mod n1).

Since xi = in2/d and since d = gcd(n2, z − ζ), the last congruence is equivalent to

h̃1 + h̃2z ≡ −i
z − ζ

d
(mod n∗

1),

where n∗
1 = n1/n2. Define a := z−ζ

d
. Therefore we get

ρ̃N (z1, z2) = min
0≤i<d

min
0≤eh2<n∗

1
−i/d

max(i,eh2) �=0,eh1∈Z

eh1+eh2z≡−ia (mod n∗
1
)

(xi + h̃2n2)| − xiζ + h̃1n2|

= min
0≤i<d

min
0≤eh2<n∗

1
−i/d

max(i,eh2) �=0
t∈Z

(xi + h̃2n2)| − xiζ + (tn∗
1 − ia − zh̃2)n2|.

We have

−xiζ + (tn∗
1 − ia − zh̃2)n2 = tn∗

1n2 − n2z

(
i

d
+ h̃2

)
.

Hence

ρ̃N(z1, z2) = min
0≤i<d

min
0≤eh2<n∗

1−i/d

max(i,eh2) �=0
t∈Z

(xi + h̃2n2)

∣∣∣∣tn∗
1n2 − n2z

(
i

d
+ h̃2

)∣∣∣∣
=

n2
2

d2
min
0≤i<d

min
0≤eh2<n∗

1−i/d

max(i,eh2) �=0
t∈Z

(h̃2d + i)|z(h̃2d + i) − tn∗
1d|

=
n2

2

d2
min

1≤h<n∗
1d

t∈Z

h|hz − tn∗
1d|. (13)
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We define ñ = n∗
1d and show that gcd(z, ñ) = 1. Trivially we have gcd(z, n∗

1) = 1 since
gcd(z, n1) = 1. Now assume that gcd(z, d) = d1 > 1. Then d1 is a divisor of z, of z − ζ

and hence of ζ . Further d1 is a divisor of n2 and hence it follows that d1 is a divisor of
gcd(n2, ζ) = 1. Thus gcd(z, d) = 1 and also gcd(z, ñ) = 1.

Let pj/qj, 0 ≤ j ≤ l, be the convergents to z/ñ as defined in (6). Then it is easy to
see that

ρ̃N(z1, z2) =
n2

2

d2
min
0≤j<l

qj |qjz − pjñ|

and we are done. �

In the following lemma we state a few special cases not included in the Theorem 1
which will be usefull in the next section. The proofs of those results can be obtained

using similar arguments as in Theorem 1.

Lemma 1 Let n1, n2 ∈ N, n2|n1, z, ζ ∈ Z and n∗
1 = n1/n2.

a. If z is odd and ζ = 0, then

ρN (z1, z2) = min

(
n1, n

2
2 min

0≤j<l
qj |qjz − pjn

∗
1|

)
,

b. If n2 = 2, gcd(z, n1) = 2 and ζ = 0, then

ρN (z1, z2) = 2ρn∗
1
((1, z/2)),

where ρn∗
1
((1, z/2)) denotes the figure of merit of a rank 1 lattice rule with gener-

ating vector (1, z/2) and n∗
1 points.

c. If n2 = 2, gcd(z, n1) = 2 and ζ = 1, then

ρN (z1, z2) = 4ρn∗
1
((1, z)),

where ρn∗
1
((1, z)) denotes the figure of merit of a rank 1 lattice rule with generating

vector (1, z) and n∗
1 points.

3. Rank 2 lattice rules with a large figure of merit

In order to be able to compare the quality of lattice rules with different number of points
we consider the relative figure of merit which is given by the ratio of ρ to the number of

points, i.e., ρN/N . In the following we investigate how good rank 2 lattice rules can be
in terms of the relative figure of merit compared to rank 1 lattice rules.
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Note that the best rank 1 lattice rules are obtained by choosing the number of points
a Fibonacci number (see Section 1). Recall that Fibonacci numbers are defined by

F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3. For this case we have ρN(z1, z2) = Fk−2

(see Zaremba [5]) and
ρN

N
=

Fk−2

Fk
.

We remark that limk→∞ Fk−2/Fk = (3 −√
5)/2 = 0, 3819 . . . and

ρN

N
=

Fk−2

Fk

=
Fk−2

2Fk−2 + Fk−3

>
Fk−2

2Fk−2 + Fk−2

=
1

3
.

We search through all rank 2 lattice rules by considering all choices for n2. First
observe that for n2 = 1 the lattice rule we obtain is actually a rank 1 lattice rule. Hence

we consider only the cases where n2 > 1.

Now consider the case where n2 > 2. Then we have ρN (z1, z2) ≤ n1 and hence

ρN

N
≤ 1

n2
≤ 1

3
.

Thus in this case the relative figure of merit is worse than the relative figure of merit of

rank 1 Fibonacci lattice rules.

We are left with the case n2 = 2. As n2 = 2 it follows that n1 has to be even and the

value of d in Theorem 1 can either be 1 or 2.

We first consider the case where gcd(z, n1) = 1. Now if ζ = 1 we can use Theorem 1.

It follows that d = 2 and by Remark 2 we have

ρN (z1, z2) =
n2

2

d2
min
0≤j<l

qj |qjz − pjñ| = min
0≤j<l

qj |qjz − pjñ| = ρen((1, z)),

that is, the figure of merit for our rank 2 lattice rule coincides with the figure of merit of a

rank 1 lattice rule with ñ points and generating vector (1, z). Note that ñ = dn1/n2 = n1

and hence in this case we have

ρN((1, z), (1, ζ))

N
=

ρN ((1, z), (1, ζ))

2n1

=
1

2

ρen((1, z))

ñ
.

This means that under the above assumptions the best rank 2 lattice rule can only be
half as good as the best rank 1 lattice rule with an even number of points in terms of the

relative figure of merit (note that ñ has to be even as n2|n1 and ñ = n1).

On the other hand if we choose ζ = 0 in the above case we can use Lemma 1. Then
we have d = 1 and n∗

1 = n1/n2 = n1/2 and hence by [2, Lemma 5.8] it follows that

min
0≤j<l

qj |qjz − pjn
∗
1| = ρn∗

1
((1, z)) ≤ n∗

1

2
=

n1

4
.
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Hence we have

n2
2 min

0≤j<l
qj |qjz − pjn

∗
1| = 4 min

0≤j<l
qj |qjz − pjn

∗
1| ≤ n1

and thus in this case

ρN ((1, z), (1, ζ)) = 4 min
0≤j<l

qj |qjz − pjn
∗
1| = 4ρn∗

1
((1, z)),

with ρn∗
1
((1, z)) being the figure of merit of a rank 1 lattice rule with n∗

1 points and

generating vector (1, z). As N = n1n2 = 2n1 = 4n∗
1 we have

ρN((1, z), (1, ζ))

N
=

4ρn∗
1
((1, z))

4n∗
1

=
ρn∗

1
((1, z))

n∗
1

,

that is, for any rank 1 lattice rule with an even number of points we can always find a

rank 2 lattice rule with four times the number of points and the same relative figure of
merit.

Now let z be such that gcd(z, n1) = 2 (note that as n2|n1 and n2 = 2 it follows that
2|n1). If we choose ζ = 0 we obtain from Lemma 1 that

ρN (z1, z2)

N
=

2ρn∗
1
((1, z/2))

2n1
=

1

2

ρn∗
1
((1, z/2))

n∗
1

,

again showing that in this case rank 2 lattice rules are worse than rank 1 lattice rules. If
we choose ζ = 1 on the other hand, then Lemma 1 yields

ρN (z1, z2)

N
=

4ρn∗
1
((1, z))

2n1
=

ρn∗
1
((1, z))

n∗
1

and thus in this case we can obtain a rank 2 lattice rule with the same relative figure of

merit as a rank 1 lattice rule.

Observe that for n2 = 2 we can obtain the figure of merit for the rank 2 lattice rule

via a rank 1 lattice rule with n∗
1 = n1/2 points. The above results can hence also be used

the other way round. For a given rank 1 lattice rule with n∗
1 points and generating vector

(1, z) with gcd(z, n∗
1) = 1 we can always construct a rank 2 lattice rule with four times

the number of points and the same relative figure of merit.

We have shown the following theorem.

Theorem 2 Let a rank 2 lattice rule with generating vectors (1, z) and (1, ζ), z, ζ ∈ Z,

and N = n1n2 with n2|n1 be given. For n2 > 2 we have

ρN((1, z), (1, ζ))

N
≤ 1

3
.
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If gcd(z, n1) is either 1 or 2, n2 = 2 and z − ζ odd we have

ρN((1, z), (1, ζ))

N
=

ρn1/2((1, z))

n1/2
,

where ρn1/2((1, z)) denotes the figure of merit of a rank 1 lattice rule with n1/2 points

and generating vector (1, z). If z − ζ is even we obtain

ρN((1, z), (1, ζ))

N
=

1

2

ρn1/2((1, y))

n1/2
,

where y = z if z is odd and y = z/2 if z is even.

Remark 3 Theorem 2 shows that the best rank 2 lattice rules are obtained by choosing
n2 = 2 and ζ such that z−ζ odd. In all other cases Fibonacci rank 1 lattice rules achieve

a larger relative figure of merit.

Theorem 2 further shows that for every rank 1 lattice rule with m points and gener-

ating vector (1, z) with gcd(z, m) = 1 there exists a rank 2 lattice rule with four times
the number of points which has the same relative figure of merit. This rank 2 lattice rule

is obtained by choosing n1 = 2m, n2 = 2 and ζ ∈ {0, 1} such that z − ζ is odd.

In particular, if we choose n1 = 2Fk, z = Fk−1 and ζ such that z − ζ is odd, then we

obtain
ρ4Fk

((1, Fk−1), (1, ζ))

4Fk

=
Fk−2

Fk

,

which is the same ratio as for the relative figure of merit of rank 1 Fibonacci lattice rules.
Hence we shall name those point sets rank 2 Fibonacci lattice rules. (See Figures 1, 2

and 3 for examples.)
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Figure 1: Nodes of a rank 1 Fibonacci rule with 21 points (left) and of a rank 2 Fibonacci
rule with 20 = 4 · 5 points (right).

Figure 2: Nodes of a rank 1 Fibonacci rule with 34 points (left) and of a rank 2 Fibonacci
rule with 32 = 4 · 8 points (right).

Figure 3: Nodes of a rank 1 Fibonacci rule with 55 points (left) and of a rank 2 Fibonacci
rule with 52 = 4 · 13 points (right).


