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Abstract
We introduce a family of dynamical systems that generate negative β-expansions

and study the support of the invariant measure which is absolutely continuous with
respect to Lebesgue measure. We give a characterization of the set of digit sequences
that is produced by a typical member of this family of transformations. We discuss
the meaning of greedy expansions in the negative sense, and show that there is
no transformation in the introduced family of dynamical systems that generates
negative greedy. However, if one looks at random algorithms, then it is possible to
define a greedy expansion in base −β.

1. Introduction

Given a real number β > 1, it is well known that we can write every x in the unit
interval as

x =
∞∑

k=1

bk

βk
, (1)

where the bk’s are all taken from the set of integers {0, 1, . . . , "β#}. Here "β# is
the largest integer not exceeding β. The expression (1) is called a β-expansion of x
with digits in {0, 1, . . . , "β#} and the sequence b1b2 · · · is called a digit sequence for
x. One way to generate such expansions is by iterating the map x $→ βx (mod 1).
The expansions given by this map are the greedy β-expansions, in the sense that
if b1, b2, . . . , bn−1 are already known, then bn is the largest element from the set
{0, 1, . . . , "β#}, such that

∑n
k=1

bk

βk ≤ x. In [7], Ito and Sadahiro studied a dynamical
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system that can be used to generate β-expansions with negative bases. For each
real number β > 1, they defined a transformation that generates for each x in some
interval an expression of the form

x =
∞∑

k=1

bk

(−β)k
=

∞∑

k=1

(−1)k bk

βk
, (2)

where the digits bk are again in the set {0, 1, . . . , "β#}. Their dynamical system
generates what they call ‘greedy expansions in negative base’ and is defined on the
interval

[ −β
β+1 , 1

β+1

]
as follows.

Tx=






−βx− "β#, if
−β

β + 1
≤ x ≤ 1

β + 1
− "β#

β
,

−βx− j, if
1

β + 1
− j + 1

β
< x ≤ 1

β + 1
− j

β
, j ∈ {0, 1, . . . , "β# − 1}.

(3)

We call expressions of the form (2) negative β-expansions with digits in {0, 1, . . . , "β#}.
In [4], Frougny and Lai explored the properties of the expansions generated by this
transformation and made a further comparison with the β-expansions as given in
(1).

In this paper we have a closer look at the dynamics behind negative β-expansions.
For simplicity of the exposition, we only look at the two digit situation, but most of
the results are easily generalized to more digits. In Section 2 we introduce a family
of dynamical systems that generate negative β-expansions by iterations, and study
the support of the invariant measure which is absolutely continuous with respect
to Lebesgue measure. In Section 3 we give a characterization of the set of digit se-
quences that is produced by a typical member of this family of transformations. We
discuss the meaning of greedy expansions in the negative sense and show that there
is no transformation in the introduced family of dynamical systems that generates
negative greedy β-expansions. However, if one looks at random algorithms, then
it is possible to define a greedy expansion in base −β. This is done in Section 4,
where we also have a look at unique expansions.

2. Being Negative

Let β > 1 be a real number and consider expansions of the form (2) with bk ∈ {0, 1}
for each k ≥ 1. Since all the even k’s contribute a non-negative value to the total
sum and all the odd k’s a non-positive value, the smallest number we can obtain is
when bk = 0 if k is even and bk = 1 if k is odd. Similarly, we get the largest number
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when bk = 1 if k is even and bk = 0 for odd values k. This gives

M− = −
∞∑

k=1

1
β2k−1

=
−β

β2 − 1
and M+ =

∞∑

k=1

1
β2k

=
1

β2 − 1
.

Hence, every number with an expression of the form (2) with bk ∈ {0, 1} for all k ≥ 1,
is an element of the interval [M−,M+]. We have the following useful proposition.

Lemma 1. Let x ∈ [M−,M+] and suppose x has the negative β-expansion

x =
∞∑

k=1

(−1)k bk

βk
,

with bk ∈ {0, 1} for all k ≥ 1.

(i) if b1 = 0, then x ∈
[
− 1

β(β2−1) ,M
+
]
,

(ii) if b1 = 1, then x ∈
[
M−, 1

β2−1 −
1
β

]
.

Proof. (i) Suppose b1 = 0. Then the minimal value of the expression
∑∞

k=2(−1)k bk

βk ,
is achieved if bn = 1 for all odd n ≥ 3 and bn = 0 for all even values of n. This gives

x ≥
∞∑

k=1

(−1)k 1
β2k+1

= − 1
β3

1
1− 1/β2

= − 1
β(β2 − 1)

.

(ii) If b1 = 1, then the maximal value of
∑∞

k=2(−1)k bk

βk , is achieved if bn = 0 for all
odd values of n and bn = 1 for all even values of n. Hence,

x ≤ − 1
β

+
∞∑

k=1

1
β2k

= − 1
β

+
1

β2 − 1
.

2.1. Conditions for Transformations

We would like a family of transformations that generate negative β-expansions with
digits in {0, 1}. Therefore, consider the maps Tjx = −βx − j for j ∈ {0, 1}. The
family of transformations that we will introduce, use the map T0 on a subinterval
of [M−,M+] of the form [α,M+] and T1 on the complement [M−,α). If we want
to iterate such a transformation, then this combination of T0 and T1 needs to map
the interval [M−,M+] into itself. Note that T0

[
− 1

β(β2−1) ,M
+
]

= [M−,M−] and
T1

[
M−, 1

β2−1 −
1
β

]
= [M−,M+]. We can construct a transformation according

to the description above if for each x ∈ [M−,M+], either T0x ∈ [M−,M+] or
T1x ∈ [M−,M+]. Thus, only if the interval

[
− 1

β(β2−1) ,
1

β2−1 −
1
β

]
is non-empty,

which happens if and only if 1 < β ≤ 2. This divides [M−,M+] into three parts:

U1 =
[
M−,− 1

β(β2 − 1)

)
, S =

[
− 1

β(β2 − 1)
,

1
β2 − 1

− 1
β

]
, U0 =

( 1
β2 − 1

− 1
β

,M+
]
.

(4)
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Then [M−,M+] = U1 ∪S ∪U0, where this union in disjoint. On U1 we need to use
T1 and on U0 we use T0. Therefore, U1 and U0 are called uniqueness regions. On S
we have a choice between T0 and T1 and this interval is called a switch region. See
Figure 1(a).

Proposition 2. Every x ∈ [M−,M+] has an expansion of the form (2) with bk ∈
{0, 1} for all k ≥ 1 if and only if 1 < β ≤ 2.

Proof. By Lemma 1 we know that all x ∈ [M−,M+] have expansions of the form
(2) if and only if − 1

β(β2−1) ≤
1

β2−1 −
1
β , and this holds if and only if β ≤ 2.

Suppose that 1 < β ≤ 2 and let S be as in (4). Then for each α ∈ S, define two
transformations L = Lβ,α : [M−,M+] → [M−,M+] and R = Rβ,α : [M−,M+] →
[M−,M+] by setting

Lx =
{
−βx− 1, if x ≤ α,
−βx, if x > α,

and R x =
{
−βx− 1, if x < α,
−βx, if x ≥ α.

We can define for each x ∈ [M−,M+] the digit sequence b(x) = b1(x)b2(x) · · ·
given by R by setting for n ≥ 1,

bn = bn(x) =
{

0, if Rn−1x ≥ α,
1, if Rn−1x < α.

Then for each n ≥ 1,

x =
n∑

k=1

(−1)k bk

βk
+ (−1)n Rnx

βn
.

Since Rnx ∈ [M−,M+] for each n ≥ 1, this converges and thus, we can write
x =

∑∞
k=1(−1)k bk

βk . Hence, for each 1 < β ≤ 2 and each choice of α ∈ S, we get
a transformation Rβ,α that generates expansions of the form (2) with bk ∈ {0, 1},
and x ∈ [M−,M+]. We give an example.

Remark 3. (i) Note that the transformations R and L only differ at the point α.
We study the transformation R only, since for any α, the transformation L = Lβ,α

is isomorphic to the transformation Rβ,α̃, where α̃ = − 1
β+1 − α. The isomorphism

θ : [M−,M+] → [M−,M+] is given by θ(x) = − 1
β+1 − x.

(ii) If β = 2, then the switch region S consists of the single point − 1
β(β2−1) =

1
β2−1 −

1
β . Then, the maps L and R are both isomorphic to the full one-sided

uniform Bernoulli shift on two symbols. Since the same holds for the doubling map
x $→ 2x (mod 1), in this case the maps L and R are also both isomorphic to the
doubling map. Therefore, we will not consider β = 2 further.

Example 4. For two digits, the transformation T studied in [7] by Ito and Sadahiro
(see (3)) is obtained by taking Lβ,α with α = 1

β+1 −
1
β . We see this map in

Figure 1. Note that the interval
[
− β

β+1 , 1
β+1

]
is an attractor, which can be seen

from Figure 1(b).
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M−
0

U0SU1
M+

0

(a) T0 and T1

M−
0

α
M+

1/(β + 1)

−β/(β + 1)

0

(b) α = 1
β+1 −

1
β

−β/(β + 1)
0

α
1/(β + 1)

(c) Rβ,α from (b) in the
red box

Figure 1: In (a) we see the full maps T0 and T1 and in (b) we see the map Rβ,α

with α = 1
β+1 −

1
β , the choice from [7]. In (c) we see this transformation on the

interval
[
− β

β+1 , 1
β+1

]
.

2.2. Attract and Support

For two digits {0, 1} any transformation R = Rβ,α with 1 < β < 2 and α ∈ S
has exactly one point of discontinuity. By results from Li and Yorke ([12]), there
is a unique invariant probability measure absolutely continuous with respect to
Lebesgue (acim). From the same results, it follows immediately that this measure
is ergodic and that the support of the acim is a forward invariant set, which contains
an interval that has α as an interior point. It remains to determine what the support
of the acim is.

We can easily identify such a forward invariant set, by using the images of α
under T0 and T1. Note that the middle of the interval S is the point − 1

2(β+1) . By
symmetry it is enough to consider α ≤ − 1

2(β+1) .
First suppose that α ≤ − 1

β(β+1) , see Figure 2(a). Then β2α ≤ −βα − 1 and
−β3α− 1 ≤ −βα. Consider the interval [β2α,−βα]. Then

R[β2α,−βα] ⊆ [−βα− 1,−β3α− 1] ∪ [β2α,−βα] ⊆ [β2α,−βα].

Thus, the interval [β2α,−βα] is forward invariant with α in its interior, which
implies that it contains the support of the acim.

If α > − 1
β(β+1) , then −βα − 1 < β2α. See Figure 2(b). Consider the interval

[−βα− 1,−βα]. Then,

R[−βα− 1,−βα] ⊆ [−βα− 1,β2α + β − 1] ∪ [β2α,−βα].

Hence, in this case the interval [−βα− 1,−βα] contains the support of the acim.
In case α > − 1

2(β+1) , for α ≤ − β−1
β(β+1) , the invariant set is [−βα − 1,−βα] and

for α > − β−1
β(β+1) , the invariant set is [−βα− 1,β2α + β − 1].
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M−
α

M+

−βα

0

−β2α

−β2α
α

−βα

0

(a) α < − 1
β(β+1)

M−
α

M+

−βα
0

−βα − 1

−βα − 1
α

−βα

0

(b) − 1
β(β+1) < α < − 1

2(β+1)

Figure 2: Two choices of α for the same β that give different forward invariant sets.
For both (a) and (b), the map on the right is the map on the left restricted to this
forward invariant set.

We consider an example in which we can identify the support.

Example 5. Let α be one of the two endpoints of S, so α = 1
β2−1 −

1
β , or α =

− 1
β(β2−1) , and let R = Rβ,α. See Figure 3 for examples with α = − 1

β(β2−1) .
To identify the support of these transformations, by symmetry it is enough to

consider only one of the two. Take α = − 1
β(β2−1) . The fixed points of T0 and T1

are important. For T0 the fixed point is 0 and for T1 this is − 1
β+1 .

(i) First assume that −βα − 1 > 0. See Figure 3 (a). Then the set [M−,β2α +
β] ∪ [−βα − 1,M+] is forward invariant. Moreover, if we take an interval [a, b] ⊆
[M−,M+] with α ∈ (a, b) and such that b ≤ β2α + β, then for n ≥ 1 small enough,

Rn(α, b) =
(
Rnb,

1
β2 − 1

)
for odd n and Rn(α, b) =

(
− β

β2 − 1
, Rnb

)
for even n.

Since R is expanding, the Lebesgue measure of this interval grows with a factor β
with each iteration. Hence, after some n, [M−,α] ⊆ Rn(α, b). This implies that

Rn+2(a, b) = [M−,β2α + β] ∪ [−βα− 1,M+].

Hence, the support of the acim of R is exactly the set [M−,β2α+β]∪[−βα−1,M+],
i.e., the union of two disjoint intervals.
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(ii) Now, assume that −βα − 1 ≤ 0. See Figure 3 (b). Then, for any interval
[a, b] ⊆ [M−,M+] with α ∈ (a, b), there is an n ≥ 1, such that [M−,α] ⊆ Rn(α, b).
Since −βα− 1 ≤ 0, we have that

[M−,α] ∪R[M−,α] ∪R2[M−,α] = [M−,M+].

Hence, the acim in this case is fully supported.

If α = 1
β2−1−

1
β , then for −βα < − 1

β+1 the support is [M−,−βα]∪ [β2α−1,M+]
and if −βα ≥ − 1

β+1 , then the support is the whole interval [M−,M+].

M−
0

M+

−βα − 1
0

β2α + β

(a) −βα− 1 > 0

M−
0

M+

0

(b) −βα− 1 ≤ 0

M−
α

M+

−βα
0

−βα − 1

−βα − 1
−βα − 1 α

−βα

0

(c) A map from Example 6

Figure 3: In (a) and (b) we see two cases for the support of the acim of Rβ,α with
α = − 1

β(β2−1) . In (c) is an example of a map of which the support consists of at
least three disjoint intervals. On the left hand side is the complete picture and we
see that the interesting dynamics happens in the red box. On the right hand side
we see the map in this red box and we can identify the three intervals.

In general, for arbitrary choices of α the support is always a union of closed,
disjoint intervals, but many things can happen. We give an example where the
number of intervals is at least three. Liao and Steiner ([10]) have explicit con-
structions of examples of transformations of which the support of the acim is a
union of more than three intervals. To be more precise, they gave examples of
acims of which the support is the union of a number of intervals from the sequence
1, 2, 5, 10, 21, 22, 45, 46, . . ..
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Example 6. Take β such that β3 − β − 1 = 0 and let α ∈
(
− 1

β2(β+1) ,−
β−1
β2

)
.

Then
− 1

β + 1
< β2α < α, and α < β2α + β − 1 < 0. (5)

Define the set

[−βα− 1,−β3α− 1] ∪ [β2α,β2α + β − 1] ∪ [−β3α− β2 + β,−βα].

Then, by (5), this is a forward invariant set. Moreover, it contains α in its interior.
Thus, the support of the acim must be contained in this set. Since for any interval
containing α in its interior, the forward image has nonempty intersections with
both of the other two intervals, the support of the acim intersects all three of these
intervals. See Figure 3(c) for an example.

2.3. Invariant Density

Invariant densities for piecewise linear increasing maps have been thoroughly in-
vestigated (see, e.g., [5], [9]). We use a trick by Hofbauer ([6]) to view our map
R = Rβ,α as a factor of a piecewise linear and increasing map T = Tβ,α. This
allows one to derive the invariant density for the R map using the invariant density
for the T map. To do this, we first view R as a map on

[
0, 1

β−1

]
as follows. Let

φ :
[ −β

β2−1 , 1
β2−1

]
→

[
0, 1

β−1

]
be given by

φ(x) = x +
β

β2 − 1
.

Define W = Wβ,α :
[
0, 1

β−1

]
→

[
0, 1

β−1

]
by

W (x) = φ ◦R ◦ φ−1(x)






−βx +
1

β − 1
, if x ∈

[
0,α +

β

β2 − 1

]
,

−βx +
β

β − 1
, if x ∈

(
α +

β

β2 − 1
,

1
β − 1

]
.

Define T = Tβ,α :
[
0, 2

β−1

]
→

[
0, 2

β−1

]
by

T (x) =






2
β − 1

−W (x), if x ∈
[
0,

1
β − 1

]
,

W
( 2

β − 1
− x

)
, if x ∈

( 1
β − 1

,
2

β − 1

]
.

We see these maps in Figure 4.
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M−
α

space

M+

−βα
0

−βα − 1

(a) The map Rβ,α from
Figure 3(c)

0
α

space

2/(β − 1)

1/(β − 1)

(b) The maps T and W for
Rβ,α

Figure 4: The maps T and W for a map Rβ,α. In (b), the red lines indicate the
map T and the black lines the map W .

Finally, define the map τ :
[
0, 2

β−1

]
→

[
0, 1

β−1

]
by

τ(x) =






x, if x ∈
[
0,

1
β − 1

]
,

2
β − 1

− x, if x ∈
( 1

β − 1
,

2
β − 1

]
.

Then W ◦ τ = τ ◦ T , and it is easily seen that τ is a factor map. Notice that τ is
2-to-1 map, and that the map T is symmetric around the origin with

T

((
0,

1
β − 1

))
=

( 1
β − 1

,
2

β − 1

)
and T

(( 1
β − 1

,
2

β − 1

))
=

(
0,

1
β − 1

)
.

Thus if h is the invariant density for T , then the invariant density for W is given
by

g(x) = h(x) + h
( 2

β − 1
− x

)
= 2h(x).

From this it follows that the non-normalized invariant density for the R map is
given by

k(x) = g
(
x +

β

β2 − 1

)
= 2h

(
x +

β

β2 − 1

)
,

for x ∈
[ −β

β2−1 , 1
β2−1

]
.

3. Orderings

Let 1 < β < 2 and take α ∈ S. Let R = Rβ,α be the corresponding negative
β-transformation. We can give a characterization of the digit sequences generated
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by R. For {0, 1}N, define the ordering ≺, which is called the alternate ordering, as
follows. We say that b = b1b2 · · · ≺ d = d1d2 · · · if and only if there is an n ≥ 1,
such that bk = dk for all 1 ≤ k ≤ n− 1 and (−1)n(bn − dn) < 0. Then b - d if and
only if b = d or b ≺ d. We can define . and / similarly.

Lemma 7. Let x, y ∈ [M−,M+], and let b(x), b(y) be the corresponding digit se-
quences generated by R. Then x < y if and only if b(x) ≺ b(y).

Proof. Suppose x < y, then b(x) 0= b(y). Let n ≥ 0 be the first index such that
bn+1(x) 0= bn+1(y), then

x =
n∑

k=1

(−1)k bk(x)
βk

+ (−1)n Rnx

βn
=

n∑

k=1

(−1)k bk(y)
βk

+ (−1)n Rnx

βn

<
n∑

k=1

(−1)k bk(y)
βk

+ (−1)n Rny

βn
= y.

This implies that (−1)nRnx < (−1)nRny. If n is even, then Rnx < Rny implying
that bn+1(y) < bn+1(x). If n is odd, then Rny < Rnx, so bn+1(x) < bn+1(y). In
either case, we have b(x) ≺ b(y).

Conversely, if b(x) ≺ b(y), then x 0= y. If y > x, then by the first part of the
proof we have b(y) ≺ b(x) which is a contradiction. Hence, x < y.

So, under any transformation Rβ,α the alternate ordering respects the natural
ordering on R.

3.1. Characterizing Sequences

We want to have a characterization of the sequences that are generated by a trans-
formation R = Rβ,α. Let ΣR denote the set of all digit sequences generated by R.
We use ∆(b1 · · · bn) to denote the fundamental interval in [M−,M+] specified by
the digits b1, . . . , bn:

∆(b1 · · · bn) = {x ∈ [M−,M+] : bj(x) = bj , 1 ≤ j ≤ n}.

Results from [6] by Hofbauer give that a sequence b = b1b2 · · · ∈ {0, 1}N is generated
by R if and only if for each n ≥ 1,

if bn = 1, then b(M−) - bnbn+1 · · · ≺ b̃(α), and
if bn = 0, then b(α) - bnbn+1 · · · - b(M+), (6)

where
b̃(α) = lim

t↑α, t∈∆(1)
b(t).
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We want to give a description of the sequence b̃(α) and therefore we define a sequence
of transformations first. This sequence is obtained by alternating the transform-
ations L and R. First, let L0 be the identity and L1 = L. Then, for n ≥ 1, set
L2n = (R ◦ L)n and L2n+1 = L ◦ (R ◦ L)n. We use this sequence {Ln}n≥0 to make
digit sequences of points in [M−,M+]. For n ≥ 1, let

d2n−1(x) =
{

1, if L2n−2x ≤ α,
0, if L2n−2x > α,

and d2n(x) =
{

1, if L2n−1x < α,
0, if L2n−1x ≥ α.

Then d(x) = d1(x)d2(x) · · · .

Remark 8. Note that for each x such that Rnx 0= α for all n ≥ 0, we have
Rnx = Lnx = Lnx for each n. Also for the digit sequence d(x), the difference
between even and odd indexed digits is only in the point α itself. So, for each x
such that Rnx 0= α for all n ≥ 0, the digit sequences b(x) and d(x) are equal. In
the above, it is crucial that x 0= α, otherwise the remark is not true. To see this, let
β = 1+

√
5

2 , and α = − 1
β2 , then Rnα 0= α for all n ≥ 1, but Rnα 0= Lnα = α. Also,

b(α) = 001010101010 · · · , while d(α) = 100101010101 · · · .

The next lemma says that the digit sequence d(x) gives negative β-expansions.

Lemma 9. For each x ∈ [M−,M+] and each n ≥ 1, we have

x =
n∑

k=1

(−1)k dk(x)
βk

+ (−1)n Lnx

βn
, (7)

and thus x =
∑∞

k=1(−1)k dk(x)
βk .

Proof. The lemma follows easily by observing that for each n ≥ 1, we have Lnx =
−βLn−1x− dn(x).

The next theorem gives a characterization of the digit sequences generated by R.

Theorem 10. Let b = b1b2 · · · ∈ {0, 1}N. Then, b ∈ ΣR if and only if for all n ≥ 1,

if bn = 1, then b(M−) - bnbn+1 · · · ≺ d(α), and
if bn = 0, then b(α) - bnbn+1 · · · - b(M+). (8)

Proof. Set b̃ = b̃(α) and d = d(α). By (6) we only need to show that b̃ = d.

First note that if Lkα 0= α for all k ≥ 1, then Lkα = Lkα = Rk−1Lα 0= α
for all k ≥ 1. Hence, b̃ = 1b(Lα) = 1d(Lα) = d. So, assume Lkα = α for
some k ≥ 1, and let n be the least positive integer such that Lnα = α. Then,
Ljα = Rj−1Lα = Ljα 0= α for 1 ≤ j ≤ n − 1, and Lnα = Rn−1Lα = Lnα = α.
Thus, b̃j = dj for all 1 ≤ j ≤ n, and Lnα = α is an endpoint of Rn∆(b̃1 · · · b̃n).
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If n is even, then α is a right end-point of Rn∆(b̃1 · · · b̃n) so that dn+1 = 1.
Also, for all x ∈ ∆(b̃1 · · · b̃n+1) we have dRnx

dx = βn, so Rnx < Lnα = α. Since
Rn∆(b̃1 · · · b̃n+1) ⊆ ∆(b̃n+1), this implies b̃n+1 = 1 = dn+1. Since Ln+1α = (L ◦
Ln)α, Ln+1α is an endpoint of the interval Rn+1∆(b̃1 · · · b̃n+1).

On the other hand, if n is odd, then α is a left end-point of Rn∆(b̃1 · · · b̃n) so
that dn+1 = 0. Then, for all x ∈ ∆(b̃1 · · · b̃n+1), we have dRnx

dx = −βn and thus
Rnx > Lnα = α and b̃n+1 = 0 = dn+1. Now Ln+1α = (R ◦ Ln)α, so also here
Ln+1α is an endpoint of Rn+1∆(b̃1 · · · b̃n+1).

The same reasoning holds when Lkα = α for a k > n, so this gives the theorem.

Remark 11. For 1 < β < 2 there is a way to get positive β-expansions from
negative β-expansions. To see this, we define a map from the set of sequences
{0, 1}N to itself in the following way:

ψ(b1b2b3b4 · · · ) = (1− b1)b2(1− b3)b4 · · · .

Let x =
∑∞

k=1(−1)k bk

βk ∈ [M−,M+] and write b(x) = b1b2 · · · . Then

∞∑

k=1

ψ(b(x))k

βk
=

∞∑

k=1

1− b2k−1

β2k−1
+

∞∑

k=1

b2k

β2k
=

β

β2 − 1
+ x ∈

[
0,

1
β − 1

]
.

A map very similar to ψ was introduced in [8] for this reason, but ψ cannot be used
for our purposes. Before we explain why this is, we first recall some properties of
positive β-transformations.

Positive β-expansions with digits in {0, 1} can be obtained from the following
transformations, defined from the interval

[
0, 1

β−1

]
to itself.

L̄β,α′(x) =






βx, if x ∈
[
0,α′

]
,

βx− 1, if x ∈
(
α′, 1

β−1

]
,

and R̄β,α′(x) =






βx, if x ∈
[
0,α′

)
,

βx− 1, if x ∈
[
α′, 1

β−1

]
,

for any α′ ∈
[

1
β , 1

β(β−1)

]
. We will only discuss the properties of a map R̄ = R̄β,α′ ,

since L̄β,α′ can be treated similarly. The digit sequences generated by R̄ are given
in the obvious way: b̄1(x) = 0 if x < α′ and b̄1(x) = 1 otherwise and for n ≥ 2,
b̄n(x) = b̄1(R̄n−1x). We denote the digit sequence of x generated by R̄ by b̄(x). On
these sequences, R̄ behaves like the left shift in the sense that if b̄(x) = b̄1b̄2 · · · ,
then b̄(R̄x) = b̄2b̄3 · · · . Note that the negative maps Rβ,α have the same effect on
their digit sequences. Unfortunately, the map ψ does not commute with the left
shift. To see this, let σ : {0, 1}N → {0, 1}N be given by σ(xn)n≥1 = (yn)n≥1 with
yn = xn+1 for all n ≥ 1. Then

ψ(σ(xn)n≥1) = (1−x2)x3(1−x4)x5 · · · 0= x2(1−x3)x4(1−x5) · · · = σ(ψ((xn)n≥1)).
(9)
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This implies that we cannot use ψ to link the dynamics of Rβ,α to any map L̄β,α′

or R̄β,α′ and transfer any dynamical properties from one system to the other in this
way.

Moreover, ψ does not preserve the sets of sequences generated by the transform-
ations. To see this, observe that b̄(α′) = 10 · · · for any choice of α′ ∈

[
1
β , 1

β(β−1)

]
.

However, for the negative maps, if α ∈ S with α > 0, then b(α) = 01 · · · and
thus all digit sequences starting with 0 will in fact start with 01. This implies
that there are sequences generated by R̄β,α′ that are not contained in the set{
ψ(b(x)) : x ∈ [M−,M+]

}
. In particular,

b̄(α′) 0∈
{
ψ(b(x)) : x ∈ [M−,M+]

}
.

3.2. What is Greedy?

For expansions with a positive non-integer base, there is a well-understood notion of
greedy β-expansions. For numbers that have more than one β-expansion, the greedy
β-expansion is the one that has the largest digit sequence in the lexicographical
ordering. These expansions are the ones that are produced by the map

x $→






βx (mod 1), if x ∈ [0, 1),

βx− "β#, if x ∈
[
1, (β)β−1

]
.

A natural candidate for the negative greedy β-expansion, would be the one that is
largest in the alternate ordering.

Definition 12 (Greedy expansion). Let 1 < β < 2. Let x ∈ [M−,M+] have
the negative β-expansion x =

∑∞
k=1(−1)k bk

βk , with bk ∈ {0, 1} for all k ≥ 1. Set
b = b1b2 · · · . Then this expansion is the negative greedy β-expansion of x with digits
in {0, 1} if for each sequence d = d1d2 · · · ∈ {0, 1}N, such that x =

∑∞
k=1(−1)k dk

βk ,
we have d - b.

The next proposition shows that there is no transformation Rβ,α that generates
the negative greedy β-expansion of x with digits in {0, 1} for all x ∈ [M−,M+].

Proposition 13. Let 1 < β < 2. Then there is no α ∈ S, such that for all
x ∈ [M−,M+] the digit sequence for x generated by Rβ,α gives the greedy expansion
of x.

Proof. Note that if x ∈ S, then by Lemma 1 b1(x) can be either 0 or 1. Since we
want to get greedy expansions, for each x ∈ S, we need b1(x) = 0. Hence, on S, we
define Rβ,αx = −βx. This means that α = 1

β2−1 −
1
β . Now, consider the interval

I =
[ 1
β2
− 1

β(β2 − 1)
,

1
β2(β2 − 1)

]
⊆ R−1

β,αS ∩ U0.
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Then, for each x ∈ I, b1(x) = 0 and Rβ,αx ∈ S. To get the greedy expansion for
elements x ∈ I, we need to assign the digit b2(x) = b1(Rβ,αx) = 1, which contradicts
the previous choice of α. Hence, there is no transformation Rβ,α that generates the
greedy expansion for all x ∈ [M−,M+].

Among the family of transformations {Rβ,α : α ∈ Sβ}, one can speak of the
odd greedy transformation obtained by choosing α = − 1

β(β2−1) . Note that if x

has two negative β-expansions with different first digit, i.e., x =
∑∞

k=1(−1)k bk

βk =
∑∞

k=1(−1)k dk

βk with b1 = 0 and d1 = 1, then d1d2 · · · ≺ b1b2 · · · and this choice of
α would give b1 = 0. The next proposition gives a recursive algorithm to obtain
the digit sequences of the odd greedy transformation. Let ( = 01 be the largest
sequence in alternate ordering.

Proposition 14. Let 1 < β < 2 and α = − 1
β(β2−1) . Let b1b2 · · · ∈ {0, 1}N and

x =
∑∞

k=1(−1)k bk

βk . Then b1b2 · · · is the digit sequence of x generated by R = Rβ,α

if it satisfies the following recursive conditions. Suppose b1, b2, . . . , bn−1 are known.
If n is odd, then bn is the smallest element of {0, 1} such that

n−1∑

k=1

(−1)k bk

βk
− bn

βn
+ (−1)n 1

βn

∞∑

k=1

(−1)k (k

βk
≤ x.

If n is even, then bn is the smallest element of {0, 1} such that

n−1∑

k=1

(−1)k bk

βk
+

bn

βn
+ (−1)n 1

βn

∞∑

k=1

(−1)k (k

βk
≥ x.

Proof. Assume that the sequence b1b2 · · · satisfies the hypothesis. We want to
show that b1b2 gives the expansion of x that is generated by R, i.e., that bn = 1
if Rn−1x < − 1

β(β2−1) and bn = 0 if Rn−1x ≥ − 1
β(β2−1) . It is enough to prove the

proposition for n = 1, 2.

Suppose that b1 = 0. Then, by the hypothesis,

− 0
β

+
0
β2
− 1

β3
+

0
β4
− · · · = − 1

β(β2 − 1)
≤ x.

If b1 = 1, then

x < − 0
β

+
0
β2
− 1

β3
+

0
β4
− · · · = − 1

β(β2 − 1)
.

This shows that in both cases b1 is the digit generated by R and x = − b1
β − Rx

β .
For n = 2, if b2 = 0, then

−b1

β
+

0
β2
− 0

β3
+

1
β4
− · · · ≥ x = −b1

β
− Rx

β
.



15

Hence, −Rx
β ≤ 1

β2(β2−1) and thus Rx ≥ − 1
β(β2−1) . If b2 = 1, then

x = −b1

β
− Rx

β
> −b1

β
+

0
β2
− 0

β3
+

1
β4
− · · · .

Thus, Rx > − 1
β(β2−1) . Again, we see that b2 is the digit generated by R. This gives

the result.

4. The Number of Negative β-Expansions

4.1. Switch Regions and Infinitely Many Expansions

For all 1 < β < 2, we can divide the interval [M−,M+] into the switch region S and
the uniqueness regions U0 and U1, see (4). Then, we can define a random trans-
formation, as was done in [2] and [1]. Let Ω = {0, 1}N endowed with the product
σ-algebra F . Let σ : Ω → Ω be the left shift, and define Kβ : Ω × [M−,M+] →
Ω× [M−,M+] by

Kβ(ω, x) =






(ω,−βx− j), if x ∈ Uj , j ∈ {0, 1},

(σ(ω),−βx− ω1), if x ∈ S.

The elements of Ω represent the coin tosses (‘heads’=1 and ‘tails’=0) used every
time the orbit hits a switch region. Let

d1 = d1(ω, x) =






1, if x ∈ U1 or (ω, x) ∈ {ω1 = 1}× S,

0, if x ∈ U0 or (ω, x) ∈ {ω1 = 0}× S,

then

Kβ(ω, x) =






(ω,−βx− d1), if x ∈ U0 ∪ U1,

(σ(ω),−βx− d1), if x ∈ S.

Set dn = dn(ω, x) = d1

(
Kn−1

β (ω, x)
)
, and let π2 : Ω × [M−,M+] → [M−,M+] be

the canonical projection onto the second coordinate. Then

π2

(
Kn

β (ω, x)
)

= (−1)nβnx+(−1)nβn−1d1+(−1)n−1βn−2d2+· · ·+(−1)2βdn−1+(−1)1dn,

and rewriting yields

x = −d1

β
+

d2

β2
+ · · · + (−1)n dn

βn
+ (−1)n

π2

(
Kn

β (ω, x)
)

βn
.

Since π2

(
Kn

β (ω, x)
)
∈ [M−,M+], it follows that

∣∣∣x−
n∑

k=1

(−1)k dk

βk

∣∣∣ =
π2

(
Kn

β (ω, x)
)

βn
→ 0 as n →∞.
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This shows that for all ω ∈ Ω and for all x ∈ [M−,M+] one has that

x =
∞∑

k=1

(−1)k dk

βk
=

∞∑

k=1

(−1)k dk(ω, x)
βk

.

The random procedure just described shows that with each ω ∈ Ω corresponds an
algorithm that produces expansions in base β. If we identify the point (ω, x) with
(ω, d1(ω, x)d2(ω, x) · · · ), then the action of Kβ on the second coordinate corresponds
to the left shift. We call the sequence d1(ω, x)d2(ω, x) · · · the random negative β-
expansion of x specified by ω.

One can easily generalize the proof of Theorem 2 in [1] to obtain the following
theorem.

Theorem 15. Let x ∈ [M−,M+], and let x =
∑∞

n=1(−1)n bn
βn with bn ∈ {0, 1} be a

representation of x in base −β. Then there exists an ω ∈ Ω such that bn = dn(ω, x).

Using the map Kβ , one can generate greedy expansions in base −β, i.e., expan-
sions that are the largest in the alternate ordering. We have the following theorem.

Theorem 16. Let x ∈ [M−,M+], then there exists ω ∈ Ω such that d1(ω, x)d2(ω, x) · · · ,
the random negative β-expansion of x specified by ω, is the greedy expansion of x.

Proof. Let x ∈ [M−,M+], and set x0 = x. We define inductively a sequence of
cylinders Ω1 ⊇ Ω2 ⊇ · · · as follows.

• If x0 ∈ Uj for j ∈ {0, 1}, then set x1 = −βx− j, (1(x) = 0 and Ω1 = Ω.

• If x0 ∈ S, then set x1 = −βx, (1(x) = 1 and Ω1 = {ω ∈ Ω : ω1 = 0}.

We now consider x1.

• If x1 ∈ Uj for j ∈ {0, 1}, then set x2 = −βx− j, (2(x) = (1(x) and Ω2 = Ω1.

• If x1 ∈ S, then set x2 = −βx − 1, (2(x) = (1(x) + 1 and Ω2 = {ω ∈ Ω1 :
ω#2(x) = 1}.

Suppose that {x1, · · · , xn}, {(1(x), · · · , (n(x)} and Ω1 ⊇ Ω2 ⊇ · · · ⊇ Ωn have been
defined.
Case 1. n is even.

• If xn ∈ Uj for j ∈ {0, 1}, then set xn+1 = −βx − j, (n+1(x) = (n(x) and
Ωn+1 = Ωn.

• If xn ∈ S, then set xn+1 = −βx, (n+1(x) = (n(x) + 1 and Ωn+1 = {ω ∈ Ωn :
ω#n+1(x) = 0}.

Case 2. n is odd.

• If xn ∈ Uj for j ∈ {0, 1}, then set xn+1 = −βx − j, (n+1(x) = (n(x) and
Ωn+1 = Ωn.
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• If xn ∈ S, then set xn+1 = −βx − 1, (n+1(x) = (n(x) + 1 and Ωn+1 = {ω ∈
Ωn : ω#n+1(x) = 1}.

If Kβ hits the switch regions infinitely many times, then (n(x) → ∞ and, as is
well known,

⋂
Ωn consists of a single point. If this happens only finitely many times,

then the set {(n(x) : n ∈ N} is finite and
⋂

Ωn is exactly a cylinder set. In both
cases

⋂
Ωn is non-empty and for any ω ∈

⋂
Ωn, the random negative β-expansion

of x specified by ω, is the greedy expansion of x.

4.2. Uniqueness Regions and Unique Expansions

Proposition 17. The set of x ∈ [M−,M+] that has a unique negative β-expansion
with digits in {0, 1} has Lebesgue measure zero. Moreover, if β < 1+

√
5

2 , then M−

and M+ are the only two points with a unique negative β-expansion.

Proof. Recall from (4) that [M−,M+] = U0 ∪ S ∪ U1. A point x ∈ [M−,M+] as a
unique negative β-expansion if and only if for each choice of α ∈ S and for all k ≥ 0,
Rk

β,αx ∈ U0 ∪ U1. Fix α ∈ S, set R = Rβ,α and let µ be the unique, ergodic acim
for R. The support of µ contains an interval with α in its interior. Let C denote
the support of µ, then µ(C ∩ S) > 0. Let B be the set of points in [M−,M+] with
a unique negative β-expansion with digits in {0, 1}. Suppose that µ(B) > 0. By
the ergodicity of R, there is a k, such that µ(B ∩ R−k(C ∩ S)) > 0, which gives a
contradiction. Hence, µ(B) = 0. Since λ and µ are equivalent on C, this implies
that λ(B ∩ C) = 0, i.e., λ-a.e. x ∈ C has more than one expansion.

If β ≤ 1+
√

5
2 , then β2 − β − 1 ≤ 0 and thus

1
β2 − 1

− 1
β
≥ 0, and − 1

β(β2 − 1)
≤ 1

β + 1
.

Then RU0 ⊆ U1 ∪ S and RU1 ⊆ U0 ∪ S. This implies that for each x ∈ (M−,M+)
there is a k = k(x), such that Rkx ∈ S. Hence, the only points with a unique
expansion are M− and M+. This gives the second part of the proposition.

Remark 18. Everything in this article except Sections 2.2 and 4.2 can be extended
to more digits. In general, a class of transformations that generate negative β
expansions can be given for each combination of β > 1 and set of real numbers
A = {a0, . . . , am} that satisfy:

• a0 < a1 < · · · < am,

• max
1≤j≤m

(aj − aj−1) ≤
am − a0

β − 1
.

These transformations are given by choosing an α for each pair of digits aj , aj+1

and thus have m points of discontinuity. Results from [11] imply that each of these
transformations has an acim. The previously mentioned results from [12] give that
the number of ergodic components is at most m and that the support of each acim



18

is a forward invariant set, containing at least one of the points of discontinuity in
its interior. To find the density, we can use the same trick from [6]. Also, the set
of digit sequences is characterized in exactly the same way as for two digits, with a
condition for each digit. To find a transformation that generates greedy expansions,
we have to turn to a random transformation also here. This map can be constructed
similarly to as was done in [3] for β-expansions with arbitrary digits.
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