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Abstract

An idea used in the characterization of even perfect numbers is used, first, to derive
new necessary conditions for the existence of an odd perfect number and, second,
to show that there are no even 3-perfect numbers of the form 2aM , where M is odd
and squarefree and a ≤ 718, besides the six known examples.

–In memory of John Selfridge

1. Introduction

Some elementary background, quickly. If σ denotes the sum-of-divisors function,
then a natural number N is perfect if σ(N) = 2N and 3-perfect if σ(N) = 3N .

All known perfect numbers are even. Euler showed that such numbers are neces-
sarily of the form 2a(2a+1 − 1), where 2a+1 − 1 is prime, and 47 of these have been
found to this time. For more, see Wikipedia: wikipedia.org/wiki/Perfect number.
Odd perfect numbers, if there are any, are known to satisfy a great many restrictions
in their size and factorization. Many such restrictions are listed in the website just
given.

There are six known 3-perfect numbers, all found more than 360 years ago, the
last in 1643. They are:

120 = 233 · 5,
672 = 253 · 7,

523776 = 293 · 11 · 31,
459818240 = 285 · 7 · 19 · 37 · 73,
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1476304896 = 2133 · 11 · 43 · 127,
51001180160 = 2145 · 7 · 19 · 31 · 151.

At a Western Number Theory Conference some years ago, John Selfridge quickly
wrote these up by considering even 3-perfect numbers in the form 2aM , M odd,
and factorizing 2a+1 − 1 for a ≤ 14; he went on to ask what was known otherwise
of such numbers. It is generally assumed, for example by Achim Flammenkamp in
his Multiply Perfect Numbers Page (www.uni-bielefeld.de/∼achim/mpn.html), that
there are no others, but this presupposes that no odd perfect numbers exist. This
is a consequence of the following result; the proof is easy.

Lemma 1 An odd number N is perfect if and only if 2N is 3-perfect.

In this note we will use an idea based on a simple proof of Euler’s theorem on
even perfect numbers as an aid in showing that there are no 3-perfect numbers
2aM , with M odd and squarefree, besides the six above, for a ≤ 718. (The reason
for the bound 718 is given in Section 4.) The same idea is used in determining new
necessary conditions for the existence of an odd perfect number.

Regarding notation, Roman letters denote positive integers and p, with or with-
out a subscript, is prime. The notation m � n means m is a unitary divisor of n,
that is, (m,n/m) = 1. Note in particular that pe � n (e ≥ 0) means pe | n but
pe+1 � n.

We make extensive use of the following simple lemma, detailing two properties
of the function σ.

Lemma 2 (i) For positive integers m and n, if m | n, then

σ(m)
m

≤ σ(n)
n

,

with equality if and only if m = n.

(ii) If m � n (in particular, if n is squarefree and m | n), then σ(m) | σ(n).

Proof. (i) Notice that

σ(m)
m

=
�

d|m

1
d
≤

�

d|n

1
d

=
σ(n)

n
;

the statement on equality is clear.
(ii) Notice first that, if n is squarefree and m | n, then, necessarily, m � n. Since

σ is multiplicative, we have

σ(n) = σ
� n

m
· m

�
= σ

� n

m

�
σ(m),
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and the result follows. ✷

A natural number m is called abundant if σ(m) > 2m and deficient if σ(m) < 2m.
It follows from Lemma 2(i) that all proper divisors of a perfect number are deficient.

A proof that an even perfect number N must have the form N = 2a(2a+1 − 1),
with 2a+1 − 1 prime, may now be given as follows. We suppose that N = 2aM ,
where M is odd. Then, since σ(N) = 2N ,

(2a+1 − 1)σ(M) = 2a+1M.

For any prime p, we have (pa,σ(pa)) = 1, so 2a+1 − 1 | M and, using Lemma 2(i),

2a+1

2a+1 − 1
=

σ(M)
M

≥ σ(2a+1 − 1)
2a+1 − 1

≥ (2a+1 − 1) + 1
2a+1 − 1

=
2a+1

2a+1 − 1
.

It follows that there must be equality in both places, so that, first, M = 2a+1 − 1
and, second, 2a+1 − 1 is prime.

This proof, based on an idea by Wayne McDaniel, was given in Cohen [3].

2. On Odd Perfect Numbers

It is another result of Euler’s that an odd perfect number N , if one exists, must
have the prime decomposition N =

�t
i=0 pai

i , where all pi are odd, p0 ≡ a0 ≡ 1
(mod 4) and ai ≡ 0 (mod 2) for i = 1, . . . , t. It is easy to see that t > 0. (In fact,
Nielsen [7] has recently shown that t ≥ 8.) We refer to the pai

i as components and
to p0 as the special prime in the factorization of N .

Since 2N = σ(N) =
�t

i=0 σ(pai
i ), it is clear that σ(pai

i ) | N for i = 1, . . . , t. From
an earlier remark, then all such divisors of N are deficient. That is, σ(σ(pai

i )) <
2σ(pai

i ) for i = 1, . . . , t. It is our intention in the first place to give a slight
improvement of such results based on the approach in the proof of Euler’s theorem
on even perfect numbers, given above. The result is contained in the following
theorem.

Theorem 3 Let pa be a component in an odd perfect number. If p is the special

prime, then

σ(σ(pa)) ≤ 3pa − 1.

Otherwise,

σ(σ(pa)) ≤ 2pa − 2.
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Proof. Let N = paM be an odd perfect number, where p � M . Since σ(N) = 2N ,
we have σ(pa)σ(M) = 2paM .

Suppose that p is the special prime. Then σ(pa) | 2M and, using Lemma 2(i),

pa

σ(pa)
=

σ(M)
2M

=
σ(2M)
3 · 2M ≥ σ(σ(pa))

3σ(pa)
. (1)

Hence σ(σ(pa)) ≤ 3pa. We will show that equality is not possible here. Since p is the
special prime, we can write σ(pa) = 2n, where n is odd. Then σ(σ(pa)) = 3σ(n). If
we suppose that σ(σ(pa)) = 3pa, then σ(n) = pa. However, it is shown in Dandapat
et al. [4] (Theorem 1) that the equations σ(n) = pa and σ(pa) = 2n can both hold
only for p = 2b+1−1, b ≥ 1. Then p ≡ 3 (mod 4), a contradiction. This shows that
σ(σ(pa)) ≤ 3pa − 1.

Next, suppose that p is not the special prime. Then σ(pa) | M and, this time,

2pa

σ(pa)
=

σ(M)
M

≥ σ(σ(pa))
σ(pa)

.

Hence σ(σ(pa)) ≤ 2pa. It is known that equality is not possible here, a result due to
Suryanarayana [8]; see also [4]. Furthermore, if σ(σ(pa)) = 2pa−1, an odd number,
then σ(pa) = y2 for some odd number y, but it follows from a result of Ljunggren [5]
that this cannot happen in our situation. (In fact, it follows from Ljunggren’s result
that σ(σ(pa)) must be even here, except for the one possibility pa = 34.)

That completes the proof. ✷

A computer run, testing prime powers pa with p ≡ a ≡ 1 (mod 4), for p < 105

and pa < 1015, produced the following cases in which σ(σ(pa)) > 3pa and a > 1:

55∗, 517∗, 419, 895, 1095, 1495, 2695, 3735∗,
3895, 5095, 5695, 7695, 8095, 8295, 9295;

and the following in which σ(σ(p)) > 3p:

1889, 4409, 5669, 10709, 11549, 11969, 13229, 13649, 14489,
15749, 16829∗, 18269, 20789, 25409, 28349, 30029, 30869, 34649,
38609∗, 40949, 42209, 43889, 44549∗, 44729, 45989, 51869, 52289,
53129, 53549, 57329, 59669∗, 63629, 67829, 69929, 73709, 77489,
80849, 84629, 85049, 85469, 90089, 94049∗, 94709, 95549, 97649.

By Theorem 1, none of these can be components in an odd perfect number.
It has long been known that an odd number divisible by 3 ·5 ·7 cannot be perfect.

For each prime power pa above (including the second list where a = 1) which is not

marked with an asterisk, and only for those, it is the case that 3 · 5 · 7 | σ(pa), and
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this implies another way to show that those cannot be components of an odd perfect
number. There are other prime powers in the range of p and pa considered here that
can also be excluded in that way; but those marked with an asterisk indicate that
Theorem 1 may be useful in conjunction with other approaches in any investigation
of the factorization of an odd perfect number.

Somewhat more is available relating to the second list. Suppose that N = paM
is an odd perfect number, with p the special prime and p � M . Since p ≡ a ≡ 1
(mod 4), we have 2 � p+1 and p+1 = σ(p) | σ(pa). But σ(pa) | 2N , so 1

2 (p+1) | N .
Thus, 1

2 (p + 1) is deficient: σ(1
2 (p + 1)) < 2 · 1

2 (p + 1) = p + 1. Suppose that
σ(1

2 (p + 1)) = p. Since the right-hand side is prime, we must have 1
2 (p + 1) = qb,

for some prime q. In that case,

qb+1 − 1
q − 1

= 2qb − 1,

and it is easy to see that the only solution of this is q = 2. But then p = 2b+1−1 ≡ 3
(mod 4), a contradiction. Therefore, σ(1

2 (p + 1)) ≤ p− 1. Since 2 � p + 1, we have
the following result.

Theorem 4 If p is the special prime in an odd perfect number, then

σ(p + 1) ≤ 3(p− 1). (2)

In (2), equality holds when p = 5, so it is unlikely that this result can be improved
in a similarly straightforward manner. It follows that none of the 45 primes in the
second list above can be the special prime in an odd perfect number. (Up to 107, a
further 2992 primes congruent to 1 (mod 4) may be similarly shown to be ineligible
as the special prime in an odd perfect number.)

Theorem 1, as it relates to non-special primes, seems to have less practical value.
We will indicate later how large p might be in order that σ(σ(p2)) > 2p2−2, but, for
interest, will first consider σ(σ(pa)) for certain odd values of a and any odd prime p.
(Divisibility properties quoted to the end of this section are based on results in, for
example, Nagell [6], Chapter 5.)

We will show first that σ(pa) is abundant when a ≡ 3 (mod 4). For a = 3,

σ(σ(p3)) = σ((p + 1)(p2 + 1)) > (p + 1)(p2 + 1) +
p + 1

2
(p2 + 1) + (p + 1)

p2 + 1
2

=
�

1 +
1
2

+
1
2

�
(p + 1)(p2 + 1) = 2σ(p3);

and the same approach works in general since (p + 1)(p2 + 1) | σ(pa) for all such a.
Now take a = 5. It may be checked directly that σ(35) is abundant. For p > 3,
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3 | p4 + p2 + 1 so

σ(σ(p5)) = σ((p + 1)(p4 + p2 + 1))

> (p + 1)(p4 + p2 + 1) +
p + 1

2
(p4 + p2 + 1) + (p + 1)

p4 + p2 + 1
3

+
p + 1

2
p4 + p2 + 1

3

=
�

1 +
1
2

+
1
3

+
1
6

�
(p + 1)(p4 + p2 + 1) = 2σ(p5).

An alternative approach makes use of Lemma 2(i): since 6 is a proper divisor of
(p + 1)(p4 + p2 + 1) = σ(p5) for p > 3, σ(σ(p5))/σ(p5) > σ(6)/6 = 2.

The same is true for p > 3 and any a ≡ 5 (mod 12), but the situation is less
clear for p = 3 here and for other values of a ≡ 1 (mod 4). For example, it may be
checked that σ(σ(39)) > 2 · 39, but σ(39) is not abundant.

The situation is similarly different when a is even, particularly so if a+1 is prime
since then σ(pa) has no algebraic factorization. We can, for example, indicate as
follows how the smallest p such that σ(σ(p2)) is abundant might be estimated. It
is known that σ(p2) is divisible only by 3 perhaps, but never by 32, and by primes
congruent to 1 (mod 3). Some experimenting shows that the smallest product B of
such primes satisfying σ(B)/B > 2 is B = 3 · 7413 · 19 · · · 73. Then, if p is a prime
such that 1 + p + p2 is divisible by B, we have, by Lemma 2(i),

σ(σ(p2))
σ(p2)

≥ σ(B)
B

> 2.

A useful estimate for the smallest p such that σ(σ(p2)) > 2p2 − 2 is therefore√
B > 108, so there is little point for the present purposes in carrying out the

estimation to greater precision.

3. On Even 3-Perfect Numbers

We begin with some simple properties, given in the following two lemmas. These
and other tools will be used in an investigation of 3-perfect numbers N of the form
2aM , where M is odd and squarefree. Three-perfect numbers of this form are called
flat by Broughan and Zhou [2], who have derived certain other necessary properties,
distinct from those obtained here.

Lemma 5 (i) If N is a 3-perfect number, then kN is not 3-perfect for any k > 1.
(ii) If N is an even perfect number, then kN is not 3-perfect for any k with

(k,N) = 1.
(iii) If N = 2aM is 3-perfect, where M is odd and squarefree, then a ≥ 3 and

2a+1 − 1 is not prime.
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Proof. (i) Since N | kN and k > 1, by Lemma 2(i),

σ(kN)
kN

>
σ(N)

N
= 3,

so kN is not 3-perfect.
(ii) If kN is 3-perfect where (k,N) = 1, then 3kN = σ(kN) = σ(k)σ(N) =

2σ(k)N . This implies that 2 | k, a contradiction since N is even and (k,N) = 1.
(iii) Suppose first that a = 1. Then, by Lemma 1, M is perfect, which is not

possible for M odd and squarefree, as we have seen in Section 2. So a ≥ 2. Suppose
next that 2a+1 − 1 is prime. We have σ(N) = 3N , so (2a+1 − 1)σ(M) = 2a3M .
Thus 2a+1 − 1 | M , as a ≥ 2 and 2a+1 − 1 is prime. Then we have a contradiction,
using (ii), since M is squarefree and 2a(2a+1− 1) is perfect when 2a+1− 1 is prime.
Finally, then we must have a ≥ 3 since 23 − 1 is prime. ✷

Lemma 6 Let N = 2aM be 3-perfect, where M is odd and squarefree.

(i) Suppose that p2 | σ(2a+1 − 1) for some odd prime p. Then 3 � M , a is even,

and p = 3. Furthermore, then 32 � σ(2a+1 − 1).
(ii) Also, 2a+1 − 1 is squarefree except if a ≡ 5 (mod 6), in which case 32 �

2a+1 − 1 and
1
9 (2a+1 − 1) is squarefree.

Proof. Since σ(N) = 3N , so (2a+1 − 1)σ(M) = 2a3M .
(i) We show first that 3 � M . If that is not the case, then 3M is squarefree and

2a+1 − 1 � 3M . By Lemma 2(ii), σ(2a+1 − 1) | σ(3M) = 4σ(M), so σ(2a+1 − 1) |
2a+23M . Then we cannot have p2 | σ(2a+1 − 1) for any odd p. Hence 3 � M . Now
consider three cases.

(a) If a is even, then 3 � 2a+1 − 1, so 2a+1 − 1 � M . Then σ(2a+1 − 1) | σ(M) |
2a3M , so, if p2 | σ(2a+1 − 1) for p odd, then p = 3 and clearly 33 � σ(2a+1 − 1).

(b) If a ≡ 1 or 3 (mod 6), then 3 � 2a+1 − 1. From

2a+1 − 1
3

σ(M) = 2aM,

we have 1
3 (2a+1 − 1) � M and

σ(2a+1 − 1) = σ

�
3 · 2a+1 − 1

3

�
= 4σ

�
2a+1 − 1

3

�
| 4σ(M) | 2a+2M.

Then we cannot have p2 | σ(2a+1 − 1) for any odd p.
(c) If a ≡ 5 (mod 6), then 32 � 2a+1 − 1. (Notice that 33 � 2a+1 − 1 since M is

squarefree.) From
2a+1 − 1

32
σ(M) = 2a M

3
, (3)

we have 1
9 (2a+1 − 1) � 1

3M , and, using (3) again,

σ(2a+1 − 1) = 13σ
�

2a+1 − 1
32

�
| 13σ

�
M

3

�
=

13
4

σ(M) | 2a−213
M

3
.
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Hence, if p is odd and p2 | σ(2a+1 − 1), then p = 13. But, in that case, 13 � M
so 7 | σ(13) | σ(M) and it follows that 7 � M . Then, since σ(3 · 7) = 25, we have
253 · 7 | N , and we note that 253 · 7 is 3-perfect. By Lemma 3(i), we cannot also
have 13 � N , since that would give a contradiction. Hence p2 | σ(2a+1 − 1) is not
possible for odd p.

(ii) This is evident from arguments within the proof of (i). ✷

In the remainder of this paper, assume that M is odd and squarefree and N =
2aM is 3-perfect. We will confine our attention to values of a satisfying 3 ≤ a ≤ 718.
By Lemma 3(iii), we may assume a /∈ S = {4, 6, 12, 16, 18, 30, 60, 88, 106, 126, 520,
606}, since, for these values of a, 2a+1 − 1 is prime. The eight cases corresponding
to whether or not 3, 5 and 7 are factors of N will be considered separately, and in
this regard (for N as stated) the following will be useful:

3 � 2a+1 − 1 if and only if a ≡ 1 or 3 (mod 6),
5 � 2a+1 − 1 if and only if a ≡ 3 (mod 4),
7 � 2a+1 − 1 if and only if a ≡ 2 (mod 3),

32 � 2a+1 − 1 if and only if a ≡ 5 (mod 6).

We also make use of the following sets of primes:

T3 = {p > 5 : p ≡ 2 (mod 3)},
T5 = {p : p ≡ 4 (mod 5)},
T7 = {p : p ≡ 6 (mod 7)}.

Cases 1 and 2. 3 · 5 � N , 7 � N ; 3 · 5 � N , 7 � N .
By Lemma 3(iii), 23 | N . We note that 233 · 5 is 3-perfect, so, by Lemma 3(i),

there is no other 3-perfect number N with 3 · 5 � N . The possibilities 7 � N and
7 � N are both covered here.

Case 3. 3 · 7 � N, 5 � N .
The argument in this case is similar to that just given, producing the 3-perfect

number 253 · 7. (The argument was in fact part of the proof of Lemma 4.)

Case 4. 3 � N, 5 � N, 7 � N .

It is convenient to consider two subcases: (i) 11 � N , and (ii) 11 � N .
(i) Write N = 2a3 · 11M , where (2 · 3 · 5 · 7 · 11,M) = 1. Since σ(N) = 3N , we

have (2a+1 − 1) · 22 · 223 · σ(M) = 2a3211M , so

(2a+1 − 1)σ(M) = 2a−43 · 11M. (4)

Therefore, a ≥ 4 and 2a+1 − 1 � 3 · 11M . Since 3 � M then 32 � 2a+1 − 1, so a �≡ 5
(mod 6). Similarly, since 5 � M , a �≡ 3 (mod 4); and since 7 � M , a �≡ 2 (mod 3).
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Also, by Lemma 2(ii), σ(2a+1 − 1) | σ(3 · 11M) = 243σ(M), and from (4) it follows
that σ(2a+1 − 1) | 2a3211M .

Also from (4),

2a−4

2a+1 − 1
=

σ(M)
3 · 11M

=
σ(3 · 11M)

243 · 3 · 11M
≥ σ(2a+1 − 1)

243(2a+1 − 1)
,

by Lemma 2(i). So σ(2a+1 − 1) ≤ 2a3.
A computer program was run to determine values of a, 4 ≤ a ≤ 718, such that

a /∈ S; a ≡ 0, 1, 4, 6, 9 or 10 (mod 12); Lemma 4 is satisfied; σ(2a+1 − 1) is not
divisible by 2a+1, 5 or 7; and σ(2a+1 − 1) ≤ 2a3.

Furthermore, the program required that σ(2a+1 − 1) not be divisible by any
p ∈ T5 ∪ T7. For suppose that p � σ(2a+1 − 1) for any such prime. (The possibility
p2 | σ(2a+1 − 1) is excluded by Lemma 4, since this lemma is applied first.) Then
p � M , since σ(2a+1 − 1) | 2a3211M , so σ(p) = p + 1 | σ(M). It follows from (4)
and the definitions of T5 and T7 that 5 | M or 7 | M ; but this is not possible.

The values of a that were found were: 9, 13, 22, 25, 33, 37, 48, and 121.
For a = 9, write N = 293·11M and note that σ(29) = 3·11·31. Since σ(N) = 3N ,

we have 3 · 11 · 31 · 243σ(M) = 293211M so that 31σ(M) = 25M . Hence 31 � M .
The number 293 · 11 · 31 is 3-perfect, so, by Lemma 3(i), there is no other 3-perfect
number N with 293 · 11 � N .

For a = 13, write N = 2133 · 11M and note that σ(213) = 3 · 43 · 127. We then
proceed as in the preceding paragraph, noting that 2133 · 11 · 43 · 127 is 3-perfect.

For the remaining values of a, we use factor chains to arrive at a divisor of M that
is not possible—a contradiction of the statement that N is 3-perfect. The approach
in part extends the use of the set T5∪T7 to further iterations of the sum-of-divisors
function applied to σ(2a) and is similar to that used in many problems to do with
odd perfect numbers, such as in Brent et al. [1].

Suppose that a = 22, and that N = 2223 · 11M is 3-perfect, where, as usual
here, (2 · 3 · 5 · 7 · 11,M) = 1. We obtain a number of necessary prime factors of M
by noting that: σ(222) = 47 · 178481, so 178481 � M ; σ(178481) = 2 · 3 · 151 · 197
so 151 � M ; σ(151) = 2319, so 19 � M ; σ(19) = 225, so 5 | M . But this is a
contradiction.

This argument is summarized in the following, where arguments for the remaining
values of a are given. Each ends in a contradiction. There is a slightly different form
of argument for a = 33, but the approach for each a should be self-explanatory.

Here, and in later similar lists, primes of 15 digits or more are indicated by p,
q, r, . . . . They retain their values for any particular value of a, but vary between
values of a.

Case 4(i). N = 2a3 · 11M, M squarefree, (2 · 3 · 5 · 7 · 11,M) = 1

a = 22, σ(2a) = 47 · 178481:
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178481 � M ⇒ σ(178481) = 2 · 3 · 151 · 197 | σ(M) ⇒ 151 � M

⇒ σ(151) = 2319 | σ(M) ⇒ 19 � M ⇒ σ(19) = 225 | σ(M) ⇒ 5 | M ;
a = 25, σ(2a) = 3 · 2731 · 8191:

2731 � M ⇒ σ(2731) = 22683 | σ(M) ⇒ 683 � M ⇒ σ(683) = 223219 | σ(M)
⇒ 3 | M ;

a = 33, σ(2a) = 3 · 43691 · 131071:
43691 � M ⇒ σ(43691) = 223 · 11 · 331 | σ(M) & 3 | σ(2a) ⇒ 3 | M ;

a = 37, σ(2a) = 3 · 174763 · 524287:
174763 � M ⇒ σ(174763) = 2243691 | σ(M) ⇒ 43691 � M (see a = 33);

a = 48, σ(2a) = 127 · 4432676798593:
4432676798593 � M ⇒ σ(4432676798593) = 2 · 11 · 201485309027 | σ(M)
⇒ 201485309027 � M ⇒ σ(201485309027) = 223 · 7589 · 2212471 | σ(M)
⇒ 7589 � M

⇒ σ(7589) = 2 · 3 · 5 · 11 · 23 | σ(M) ⇒ 5 | M ;
a = 121, σ(2a) = 3 · p · q (p < q) :

p � M ⇒ σ(p) = 222833 · 37171 · 1824726041 | σ(M) ⇒ 1824726041 � M

⇒ σ(1824726041) = 2 · 3417 · 79 · 8387 | σ(M) ⇒ 3 | M.

Case 4(ii). Write N = 2a3M , where (2 · 3 · 5 · 7 · 11,M) = 1. Since σ(N) = 3N ,
we have (2a+1 − 1)22σ(M) = 2a32M , so

(2a+1 − 1)σ(M) = 2a−232M. (5)

Then 2a+1−1 | 32M . We will consider separately three possibilities: (a) 3 � 2a+1−1,
(b) 3 � 2a+1 − 1, (c) 32 � 2a+1 − 1.

Subcase 4(ii)a. Notice that a is even. Furthermore, a �≡ 2 or 8 (mod 12), else
7 | 2a+1 − 1. Since M is squarefree, we have 2a+1 − 1 � M so σ(2a+1 − 1) | σ(M) |
2a−232M . Also, using (5) and Lemma 2(i),

2a−232

2a+1 − 1
=

σ(M)
M

≥ σ(2a+1 − 1)
2a+1 − 1

,

so σ(2a+1 − 1) ≤ 2a−232.
A computer program was run to determine values of a ≡ 0, 4, 6 or 10 (mod 12),

4 ≤ a ≤ 718, such that a /∈ S; Lemma 4 is satisfied; σ(2a+1 − 1) is not divisible by
2a−1, 5, 7, 11 or any prime in T5 ∪ T7 (see Case 4(i) and the argument there); and
σ(2a+1−1) ≤ 2a−232. The only value of a ≤ 718 that was found was 22, eliminated
as for Case 4(i).
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Subcase 4(ii)b. Notice that a ≡ 1 or 3 (mod 6). Further, a �≡ 3 (mod 4), else 5 |
2a+1−1, and a �≡ 9 (mod 10), else 11 | 2a+1−1. From (5), we have 1

3 (2a+1−1) � M
so σ(2a+1 − 1) = 4σ(1

3 (2a+1 − 1)) | 4σ(M) | 2a32M . Using (5) and Lemma 2(i),

2a−23
1
3 (2a+1 − 1)

=
σ(M)

M
≥

σ(1
3 (2a+1 − 1))

1
3 (2a+1 − 1)

,

so
σ(2a+1 − 1) = 4σ

�
2a+1 − 1

3

�
≤ 2a3.

A computer program was run to determine values of a ≤ 718 such that a ≡ 1 or
9 (mod 12) and a �≡ 9 (mod 10); a /∈ S; Lemma 4 is satisfied; σ(2a+1 − 1) is not
divisible by 2a+1, 5, 7, 11 or any prime in T5 ∪ T7 (see Case 4(i) and the argument
there); and σ(2a+1 − 1) ≤ 2a3. The values found were 25, 37 and 121, all of which
may be eliminated as for Case 4(i).

(c) Notice that a ≡ 5 (mod 6), since 32 � 2a+1 − 1. But a �≡ 2 (mod 3), else
7 | 2a+1 − 1, so this subcase is empty.

Case 5. 5 · 7 � N, 3 � N .

Write N = 2a5 · 7M , where M is squarefree and (2 · 3 · 5 · 7,M) = 1. Since
σ(N) = 3N , we have (2a+1 − 1) · 2 · 3 · 23 · σ(M) = 2a3 · 5 · 7M , so

(2a+1 − 1)σ(M) = 2a−45 · 7M. (6)

Therefore, 2a+1 − 1 � 5 · 7M . We must have 3 � 2a+1 − 1, so a is even. By
Lemma 2(ii), σ(2a+1 − 1) | σ(5 · 7M) = 243σ(M), and, from (6), it follows that
σ(2a+1 − 1) | 2a3 · 5 · 7M . Notice that 32 � σ(2a+1 − 1).

Also from (6),

2a−4

2a+1 − 1
=

σ(M)
5 · 7M =

σ(5 · 7M)
243 · 5 · 7M ≥ σ(2a+1 − 1)

243(2a+1 − 1)
,

by Lemma 2(i). So σ(2a+1 − 1) ≤ 2a3.
A computer program was run to determine even values of a, 4 ≤ a ≤ 718, such

that a /∈ S; Lemma 4 is satisfied, except that 32 � σ(2a+1 − 1); σ(2a+1 − 1) is not
divisible by 2a+1 or any prime in T3; and σ(2a+1 − 1) ≤ 2a3. (If p | σ(2a+1 − 1)
for any p ∈ T3, then we see, along the lines of the corresponding argument in Case
4(i), that 3 | M , a contradiction.) The values found were: 8, 14, 50, 64 and 66.

For a = 8, write N = 285 · 7M and note that σ(28) = 7 · 73, σ(73) = 2 · 37,
σ(37) = 2 · 19, and σ(19) = 225. It follows that 19 · 37 · 73 � M and that σ(285 · 7 ·
19 · 37 · 73) = 283 · 5 · 7 · 19 · 37 · 73. That is, 285 · 7 · 19 · 37 · 73 is 3-perfect and, by
Lemma 3(i), there is no other 3-perfect number N with 285 · 7 � N .

For a = 14, write N = 2145 ·7M and note that σ(214) = 7 ·31 ·151, σ(151) = 2319
and σ(19) = 225. As above, we observe that σ(2145 · 7 · 19 · 31 · 151) = 2143 · 5 · 7 ·
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19 · 31 · 151. That is, 2145 · 7 · 19 · 31 · 151 is 3-perfect and, by Lemma 3(i), there is
no other 3-perfect number N with 2145 · 7 � N .

The remaining values may be treated as follows.

Case 5. N = 2a5 · 7M, M squarefree, (2 · 3 · 5 · 7,M) = 1

a = 50, σ(2a) = 7 · 103 · 2143 · 11119 · 131071:
103 � M ⇒ σ(103) = 2313 | σ(M)
⇒ 13 � M ⇒ σ(13) = 2 · 7 | σ(M) & 7 | σ(2a) ⇒ 7 | M ;

a = 64, σ(2a) = 31 · 8191 · p :
p � M ⇒ σ(p) = 2519 · 238972275589 | σ(M) ⇒ 19 · 238972275589 � M

⇒ σ(19 · 238972275589) = 235223897227559 | σ(M) ⇒ 5 | M ;
a = 66, σ(2a) = 193707721 · 761838257287:

193707721 � M ⇒ σ(193707721) = 2 · 13 · 7450297 | σ(M) ⇒ 7450297 � M

⇒ σ(7450297) = 2 · 23 · 149 · 1087 | σ(M)
⇒ 149 � M ⇒ σ(149) = 2 · 3 · 52 | σ(M) ⇒ 5 | M.

Case 6. 5 � N, 3 � N, 7 � N .

Write N = 2a5M , where M is squarefree and (2·3·5·7,M) = 1. Since σ(N) = 3N ,
we have (2a+1 − 1)2 · 3σ(M) = 2a3 · 5M , so

(2a+1 − 1)σ(M) = 2a−15M. (7)

Therefore, 2a+1 − 1 � 5M . We must have 3 � 2a+1 − 1, so a is even; and a �≡ 2
(mod 3), since 7 � 2a+1−1. By Lemma 2(ii), σ(2a+1−1) | σ(5M) = 2 ·3σ(M), and,
from (7), it follows that σ(2a+1 − 1) | 2a3 · 5M . Notice that 32 � σ(2a+1 − 1).

Also from (7),

2a−1

2a+1 − 1
=

σ(M)
5M

=
σ(5M)

2 · 3 · 5M ≥ σ(2a+1 − 1)
2 · 3(2a+1 − 1)

,

by Lemma 2(i). So σ(2a+1 − 1) ≤ 2a3.
A computer program was run to determine values of a ≡ 0, 4, 6 or 10 (mod 12),

4 ≤ a ≤ 718, such that a /∈ S; Lemma 4 is satisfied, except that 32 � σ(2a+1 − 1);
σ(2a+1−1) is not divisible by 7, 2a+1 or any prime in T3∪T7; and σ(2a+1−1) ≤ 2a3.
The only value found was 64, which may be treated as in Case 5.

Case 7. 7 � N, 3 � N, 5 � N .

Write N = 2a7M , where M is squarefree and (2·3·5·7,M) = 1. Since σ(N) = 3N ,
we have (2a+1 − 1)23σ(M) = 2a3 · 7M , so

(2a+1 − 1)σ(M) = 2a−33 · 7M. (8)



INTEGERS: 12A (2012) 13

Therefore, 2a+1−1 � 3 ·7M and, since 3 � M , a �≡ 5 (mod 6). Also, a �≡ 3 (mod 4),
else 5 | 2a+1 − 1. By Lemma 2(ii), σ(2a+1 − 1) | σ(3 · 7M) = 25σ(M), and, from
(8), it follows that σ(2a+1 − 1) | 2a+23 · 7M . Notice that 32 � σ(2a+1 − 1).

Also from (8),

2a−3

2a+1 − 1
=

σ(M)
3 · 7M =

σ(3 · 7M)
253 · 7M ≥ σ(2a+1 − 1)

25(2a+1 − 1)
,

by Lemma 2(i). So σ(2a+1 − 1) ≤ 2a+2.
A computer program was run to determine values of a, 4 ≤ a ≤ 718, such that

a �≡ 5 (mod 6) and a �≡ 3 (mod 4); a /∈ S; Lemma 4 is satisfied, but 32 � σ(2a+1−1);
σ(2a+1 − 1) is not divisible by 5, 2a+3 or p ∈ T5; and σ(2a+1 − 1) ≤ 2a+2. The 13
values found may be shown as follows not to lead to 3-perfect numbers.

Case 8. N = 2a7M, M squarefree, (2 · 3 · 5 · 7,M) = 1

a = 8, σ(2a) = 7 · 73:
73 � M ⇒ σ(73) = 2 · 37 | σ(M) ⇒ 37 � M ⇒ σ(37) = 2 · 19 | σ(M) ⇒ 19 � M

⇒ σ(19) = 225 | σ(M) ⇒ 5 | M ;
a = 9, σ(2a) = 3 · 11 · 31:

11 � M ⇒ σ(11) = 223 | σ(M) & 3 | σ(2a) ⇒ 3 | M ;
a = 13, σ(2a) = 3 · 43 · 127:

43 � M ⇒ σ(43) = 2211 | σ(M) ⇒ 11 � M (see a = 9);
a = 24, σ(2a) = 31 · 601 · 1801:

1801 � M ⇒ σ(1801) = 2 · 17 · 53 | σ(M) ⇒ 17 � M ⇒ σ(17) = 2 · 32 | σ(M)
⇒ 3 | M ;

a = 25 (see Case 4(i));
a = 33 (see Case 4(i));
a = 37 (see Case 4(i));
a = 48 (see Case 4(i));
a = 66 (see Case 5);
a = 84, σ(2a) = 31 · 131071 · p :

p � M ⇒ σ(p) = 2513 · 23 · 6163 · 161461131023 | σ(M) ⇒ 6163 � M

⇒ σ(6163) = 2223 · 67 | σ(M) & 23 | σ(p) ⇒ 232 | M ;
a = 121 (see Case 4(i));
a = 253, σ(2a) = 3 · p · q (p < q) :

p � M ⇒ σ(p) = 2211 · 251 · 4051 · 229668251 · r | σ(M) ⇒ 251 � M

⇒ σ(251) = 22327 | σ(M) ⇒ 3 | M ;



INTEGERS: 12A (2012) 14

a = 266, σ(2a) = 7 · 78903841 · 28753302853087 · p · q (p < q) :
q � M ⇒ σ(q) = 2 · 877 · 10643483 · r | σ(M)
⇒ 877 � M ⇒ σ(877) = 2 · 439 | σ(M)
⇒ 439 � M ⇒ σ(439) = 235 · 11 | σ(M) ⇒ 5 | M.

Case 9. 3 � N, 5 � N, 7 � N .

Since σ(N) = 3N , we have (2a+1 − 1)σ(M) = 2a3M , where N = 2aM , M is
squarefree and (2 · 3 · 5 · 7,M) = 1. We consider two subcases: (i) 3 � 2a+1 − 1, and
(ii) 3 � 2a+1 − 1.

(i) Notice that a ≡ 1 or 3 (mod 6). Further, a �≡ 3 (mod 4), else 5 | 2a+1 − 1,
and a �≡ 2 (mod 3), else 7 | 2a+1 − 1. We have 1

3 (2a+1 − 1) � M so σ(2a+1 − 1) =
4σ(1

3 (2a+1 − 1)) | 4σ(M) | 2a+23M . Using Lemma 2(i),

2a

1
3 (2a+1 − 1)

=
σ(M)

M
≥

σ(1
3 (2a+1 − 1))

1
3 (2a+1 − 1)

,

so σ(2a+1 − 1) ≤ 2a+2.
A computer program was run to determine values of a ≤ 718 such that a ≡ 1 or

9 (mod 12); a /∈ S; Lemma 4 is satisfied; σ(2a+1 − 1) is not divisible by 2a+3, 5, 7
or p ∈ T5∪T7; and σ(2a+1−1) ≤ 2a+2. The values found were 9 and 13 (eliminated
as in Case 7), and 25, 33, 37 and 121 (eliminated as in Case 4(i)).

(ii) Notice that a is even. Furthermore, a �≡ 2 or 8 (mod 12), else 7 | 2a+1 − 1.
Since M is squarefree, we have 2a+1 − 1 � M so σ(2a+1 − 1) | σ(M) | 2a3M . Also,
using Lemma 2(i),

2a3
2a+1 − 1

=
σ(M)

M
≥ σ(2a+1 − 1)

2a+1 − 1
,

so σ(2a+1 − 1) ≤ 2a3. A computer program was run to determine values of a ≡ 0,
4, 6 or 10 (mod 12), such that a /∈ S; Lemma 4 is satisfied, but 32 � σ(2a+1 − 1);
σ(2a+1 − 1) is not divisible by 2a+1, 5, 7 or p ∈ T5 ∪ T7; and σ(2a+1 − 1) ≤ 2a3.
The only value of a ≤ 718 that was found was 48, which may be eliminated as in
Case 4(i).

We have completed the proof of our main theorem:

Theorem 7 The only 3-perfect numbers of the form 2aM , for M odd and squarefree

and a ≤ 718, are the six known in the literature.

4. Further Comments

Almost certainly, if there were another such 3-perfect number in the range of a
considered here then it would have been discovered in the wider searches for multi-
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perfect numbers (or multiply perfect numbers, satisfying σ(N) = kN for integer
k ≥ 1), as described on Flammenkamp’s website, mentioned in Section 1. But none
of these searches, even the latest hugely intensive and extensive ones, indicate how
exhaustive they are in any aspect.

Our Theorem 3 has a small amount of personal intervention in its proof, as is
evident from the displayed lists where alternative approaches are available, probably
in all cases. It would not have been difficult to allow a single program, along the
lines used here or with a more direct factor-chain approach, to complete the whole
job. Our approach was adopted firstly to maintain the spirit of dependence on
ideas discussed in Section 1, and secondly to see the brevity of the computations
when “extraneous” information (here, whether 3, 5, 7 are factors or not of an even
3-perfect number) is introduced. In this sense, it is remarkable that no values of a,
for 267 ≤ a ≤ 718, needed special consideration. (It is likely that the notion of
extraneous information could be used profitably in searches such as that of Brent
et al. [1].)

Furthermore, the search in the present paper could no doubt be carried further,
perhaps even to the extent of the Cunningham Project’s complete factorizations
of 2a+1 − 1 for all a to around 920, and, with gaps, to 1928. (For the Cunning-
ham tables, see homes.cerias.purdue.edu/∼ssw/cun/.) The Cunningham Project’s
factorizations for larger a were uploaded to our program, as were factorizations of
σ(2a+1 − 1), as accumulated by the second author. We considered only those val-
ues of a for which complete factorizations of both 2a+1 − 1 and σ(2a+1 − 1) were
available. Our bound of 718 for a reflects the fact that σ(2720− 1) has a composite
factor of 164 digits (with unknown factorization). Partial factorizations, of either
2a+1 − 1 or σ(2a+1 − 1), or both, would no doubt produce results in many cases,
but we have chosen not to continue the work to that extent.

We are grateful to the referee for comments related to an earlier version of the
paper, and in particular for pushing the first author to greatly further the bound
for a in Theorem 3 from that originally contemplated.
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