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Abstract

Let G be an abelian group of order m, let S be a sequence of terms from G with k distinct
terms, let m ∧ S denote the set of all elements that are a sum of some m-term subsequence
of S, and let |S| be the length of S. We show that if |S| ≥ m + 1, and if the multiplicity
of each term of S is at most m − k + 2, then either |m ∧ S| ≥ min{m, |S| − m + k − 1},
or there exists a proper, nontrivial subgroup Ha of index a, such that m ∧ S is a union
of Ha-cosets, Ha ⊆ m ∧ S, and all but e terms of S are from the same Ha-coset, where
e ≤ min{� |S|−m+k−2

|Ha| � − 1, a − 2} and |m ∧ S| ≥ (e + 1)|Ha|. This confirms a conjecture of
Y. O. Hamidoune.

Let (G, +, 0) be an abelian group. If A, B ⊆ G, then their sumset, A + B, is the set of

all possible pairwise sums, i.e. {a + b | a ∈ A, b ∈ B}. A set A ⊆ G is Ha-periodic, if it
is the union of Ha-cosets for some subgroup Ha of G (note this definition of periodic differs

slightly from the usual by allowing Ha to be trivial). A set which is maximally Ha-periodic,
with Ha the trivial group, is aperiodic, and otherwise we refer to A as nontrivially periodic.

For notational convenience, we use φa : G → G/Ha to denote the natural homomorphism. If

S is a sequence of terms from G, then an n-set partition of S is a collection of n nonempty
subsequences of S, pairwise disjoint as sequences, such that every term of S belongs to

exactly one of the subsequences, and the terms in each subsequence are all distinct. Thus
such subsequences can be considered as sets. Let A = A1, . . . , An be an n-set partition of a

sequence S of terms from G whose sumset (i.e. the sumset of whose terms) is Ha-periodic.
Let y ∈ G/Ha. If y ∈ φa(Ai) for all i, then y is an Ha-nonexception, and otherwise y is

an Ha-exception. The number of y ∈ G/Ha that are Ha-nonexceptions of A is denoted by
N(A, Ha). The number of terms x of S such that φa(x) is an Ha-exception of A is denoted by

E(A, Ha). Note N(A, Ha) = 1
|Ha| |

n⋂
i=1

(Ai+Ha)| and E(A, Ha) =
n∑

j=1

(|Aj|−|Aj∩
n⋂

i=1

(Ai+Ha)|).
A sequence is zero-sum if the sum of its terms is zero. Also, |S| denotes the cardinality of S,

if S is a set, and the length of S, if S is a sequence. If S ′ is a subsequence of S, then S \ S ′

denotes the subsequence of S obtained by deleting all terms in S ′. Finally, n ∧ S denotes

the set of elements that can be represented as a sum of some n-term subsequence of S.
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In 1961, Erdős, Ginzburg, and Ziv showed that any sequence of 2m − 1 terms from an
abelian group of order m contains an m-term zero-sum subsequence [6]. Their result inspired

numerous generalizations in extremal combinatorics. In 1967, Mann gave an easy extension
of this theorem, by showing that if m is prime, |S| = m + n − 1, and every term of S has

multiplicity at most n, then n ∧ S = G [15]. In 1977, Olson generalized this result in the
case n = m to an arbitrary abelian group of order m, by showing that if |S| = 2m − 1,

and if every term of S has multiplicity at most m, then either m ∧ S = G, or there exists a

proper, nontrivial subgroup Ha of index a such that Ha ⊆ m ∧ S, and all but at most a − 2
terms of S are from the same Ha-coset [17]. Unfortunately, while the conclusion of Olson’s

Theorem was quite strong, including a structure restriction on the sequence S, it failed to
cover sequences with length smaller than 2m − 1. In an effort to alleviate this restriction,

Bolobás and Leader obtained a weaker version of Olson’s result valid for sequences of any
length; they showed that if 0 /∈ m∧S, then |m∧S| ≥ |S| −m + 1 [4]. Hamidoune improved

upon this result—extending, as in Mann’s result, from m-sums to arbitrary n-sums—by
showing that either |n ∧ S| ≥ |S| − n + 1 or else there exists a term x of S with nx ∈ n ∧ S

[9]. Finally, a recent composite analog of the Cauchy-Davenport Theorem [5] was proved
in [7] that fully generalized the previous results of Mann, Olson, Bolobás and Leader, and

Hamidoune. It is the case S = S ′ in Theorem 2 below—which will be the main tool used in
this paper, along with its easily derived consequence, Theorem 3.

In [2], Bialostocki and Dierker addressed the question of tightness in the Erdős-Ginzburg-
Ziv Theorem, and showed that if there were at least three distinct terms in a sequence S from

the cyclic group Zm, and if |S| = 2m−2, then 0 ∈ m∧S. In the case of m prime, Bialostocki

and Lotspeich generalized the previous result by showing that |S| = 2m− k + 1 guaranteed
an m-term zero-sum in a sequence S with at least k distinct terms [3]. Hamidoune, Ordaz,

and Ortuño extended this result in the weak Olson sense by showing that if |S| = 2m−k+1,
and if every term of S has multiplicity at most m − k + 2, then there exists a nontrivial

subgroup Ha such that Ha ⊆ m ∧ S [10]. In an attempt to further generalize the result to
sequences of smaller length along lines of the Bollobás-Leader result, Hamidoune made the

following conjecture [9].

Conjecture 1. Let G be a cyclic group of order m, and let S be a sequence of terms from
G with |S| ≥ m + 1 and at least k distinct terms. If the multiplicity of every term of S is at

most m − k + 2, then either

(i) |m ∧ S| ≥ |S| − m + k − 1,

(ii) there exists a nontrivial subgroup Ha such that Ha ⊆ m ∧ S.

Hamidoune was able to prove a weakened from of Conjecture 1, where the inequality in

(i) was replaced by |m ∧ S| ≥ |S| − m + k − 2, and additionally showed that result to be
valid for abelian groups with cyclic or trivial 2-torsion subgroup [9].

The main result of this paper is Theorem 1, which confirms Conjecture 1 for an arbitrary
abelian group, and which gives a more complete generalization of Olson’s result [17] in that
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it includes the corresponding structural coset condition on S. Theorem 1 also implies that
if |m∧ S| < |S| −m + k − 1, then m∧ S is nontrivially periodic, a conclusion similar to the

classical result of Kneser for sumsets [13, 14, 12, 11, 16].

Theorem 1. Let G be an abelian group of order m, and let S be a sequence of terms from

G that has at least k distinct terms. If |S| ≥ m + 1 and the multiplicity of each term of S is
at most m − k + 2, then either:

(i) |m ∧ S| ≥ min{m, |S| − m + k − 1},
(ii) there exists a proper, nontrivial subgroup Ha of index a, such that m∧S is Ha-periodic

and Ha ⊆ m∧S, and there exists α ∈ G, such that the coset α+Ha contains all but e terms

of S, where e ≤ min{� |S|−m+k−2
|Ha| � − 1, a − 2} and |m ∧ S| ≥ (e + 1)|Ha|.

The following are two simple propositions from [1] that we will need for the proof. The
first was originally stated only in the case n1 = n0, but the construction in [1] easily modifies

to prove the more general statement given here, while the second was originally stated with
G a finite abelian group, but the proof given works even for G an abelian monoid.

Proposition 1. Let n1 and n0 be positive integers with n0 ≤ n1. A sequence S of terms from
G has an n1-set partition A = A1, . . . , An1 with |Ai| = 1 for i > n0 (and ||Ai| − |Aj|| ≤ 1

for i, j ≤ n0) if and only if |S| ≥ n1, and for every nonempty subset X ⊆ G with |X| ≤
|S|−n1−1

n0
+ 1 there are at most n1 + (|X| − 1)n0 terms of S from X. In particular, S has an

n1-set partition if and only if |S| ≥ n1 and the multiplicity of every term of S is at most n1.

Proposition 2. Let S be a finite sequence of terms from an abelian group G, and let A =

A1, . . . , An be an n-set partition of S, where |
n∑

i=1

Ai| = r. Then there exists a subsequence S ′

of S of length at most n+r−1, and an n-set partition A′ = A′
1, . . . , A

′
n of S ′, where A′

i ⊆ Ai

for i = 1, . . . , n, such that
n∑

i=1

A′
i =

n∑
i=1

Ai.

The following is a refinement of the composite analog to the Cauchy-Davenport Theorem

proved in [7], strengthened along lines of a result from [8]. Observe that Theorem 2 implies

|
n∑

i=1

A′
i| ≥ min{m, |S ′|−n+1} unless N(A′, Ha) > 0 and Ha is a proper, nontrivial subgroup.

Theorem 2. Let S ′ be a subsequence of a finite sequence S of terms from an abelian group
G, let A = (An, . . . , A1) be an n-set partition of S ′, and let ai ∈ Ai for i ∈ {1, . . . , n}.
Then there exists an n-set partition A′ = (A′

n, . . . , A′
1) of a subsequence S ′′ of S with sumset

Ha-periodic, |S ′| = |S ′′|,
n∑

i=1

Ai ⊆
n∑

i=1

A′
i, ai ∈ A′

i for i ∈ {1, . . . , n}, and

∣∣∣∣∣
n∑

i=1

A′
i

∣∣∣∣∣ ≥ (E(A′, Ha) + (N(A′, Ha) − 1)n + 1) |Ha|.

Furthermore, if Ha is nontrivial, then φa(x) ∈ φa(A
′
i) for every i ∈ {1, . . . , n} and every

x ∈ S \ S ′′.
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Proof. The proof for the case S ′ = S in [7] easily modifies to prove the more general statement
as follows below. In the interest of space, and since so little needs to be added or changed, we

refrain from repeating the entirety of the proof given in [7]. We remark that the assumption
that the theorem is false with Hk proper and nontrivial is used only once in the original

proof, namely in the proof of Lemma 5 where it is used to guarantee the existence of an
Hk-doubled Hk-exception, and thus the majority of the modification below simply provides

an alternative argument to guarantee the existence of an Hk-doubled Hk-exception when the

furthermore statement is included.

Replace, in the definition of an r-maximal partition set of S, both occurrences of ‘S’ by

‘a subsequence of S with length |S ′|’. For instance, the definition of Λ0 should read: Λ0

consists of all ordered n-set partitions, (Zn, . . . , Z1), of a subsequence of S with length |S ′|,
such that

n∑
i=1

Ai ⊆
n∑

i=1

Zi and ai ∈ Zi for i ≤ n. Likewise replace S in the definitions of a

ρ-factor form and a weak ρ-factor form, and also in the first and fourth sentences of the

Proof of Theorem 1. Finally, replace the second sentence in the Proof of Lemma 5 with the
following paragraph.

Suppose there does not exist an Hk-doubled Hk-exception. Hence from (II), (I) and

Kneser’s Theorem it follows, since Theorem 1 does not hold with Hk, that there exists
x ∈ S \ S ′′ and a term D of Fρ such that φk(x) /∈ φk(D), where S ′′ is the subsequence of S

that Fρ partitions. In view of (III) it follows that there exists an index j, with ρ+1 ≤ j < n,

such that |
n∑

i=j

Zi| < |
n∑

i=j+1

Zi|+ |Zj| − 1. Hence from Kneser’s theorem it follows that
n∑

i=j

Zj is

maximally H-periodic with H nontrivial, and that there cannot be an element in Zj which
is the unique element from its H-coset. Consequently, since H ≤ Hk follows from (I), it

follows that there cannot be an element in Zj which is the unique element from its Hk-coset.
Hence, since there are no Hk-doubled Hk-exceptions, it follows that all elements of φk(Aj)

are Hk-nonexceptions and that |φ−1
k (β)∩Zj | ≥ 2 for each Hk-nonexception β ∈ G/H . Since

|
n∑

i=j

Zi| < |
n∑

i=j+1

Zi|+|Zj|−1, it follows in view of Proposition 1 that
n∑

i=j

Zi =
n∑

i=j+1

Zi+(Zj\{y})
for y ∈ Zj . Hence, since |φ−1

k (β)∩Zj| ≥ 2 for each β ∈ φa(Zj), it follows that we can choose

y ∈ Zj such that aj 
= y, such that |φk(Aj)| = |φk(Aj \ {y})|, and such that
n∑

i=j

Zi =

n∑
i=j+1

Zi + (Zj \ {y}). Hence it follows that we can remove y from the set partition Fρ and

place x in D to obtain a new ordered n-set partition F ′
ρ = (Z ′

n, . . . , Z ′
1) of the sequence

S ′′′ = (S ′ \ {y}) ∪ {x}, yielding a contradiction to the maximality of
n∑

i=1

|φk(Zj)| for Fρ by

the arguments used in the proof of Lemma 1. So we may assume there exists an Hk-doubled

Hk-exception.

Note Theorem 3 below, which we will derive from Theorem 2, refines a recent result of

[8], and also that Theorem 3(ii) implies |S| ≥ n + |S \ S ′| + (e + 1)|Ha|.
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Theorem 3. Let S ′ be a subsequence of a finite sequence S of terms from an abelian group
G of order m, let P = P1, . . . , Pn be an n-set partition of S ′, let ai ∈ Pi for i ∈ {1, . . . , n},
and let p be the smallest prime divisor of m. If n ≥ min{m

p
− 1, |S′|−n+1

p
− 1}, then either:

(i) there is an n-set partition A = A1, . . . , An of a subsequence S ′′ of S with |S ′| = |S ′′|,
n∑

i=1

Pi ⊆
n∑

i=1

Ai, ai ∈ Ai for i ∈ {1, . . . , n}, and

∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ ≥ min{m, |S ′| − n + 1},

(ii) there is a proper, nontrivial subgroup Ha of index a, a coset α + Ha such that all but

e terms of S are from α + Ha, where

e ≤ min{a − 2,

⌊ |S ′| − n

|Ha|
⌋
− 1},

an n-set partition A = A1, . . . , An of of subsequence S ′′ of S with |S ′′| = |S ′|,
n∑

i=1

Pi ⊆
n∑

i=1

Ai,

ai ∈ Ai for i ∈ {1, . . . , n}, and

∣∣∣∣
n∑

i=1

Ai

∣∣∣∣ ≥ (e + 1)|Ha|, and an n-set partition B = B1, . . . , Bn

of a subsequence S ′′
0 of S, with all terms of S ′′

0 from α + Ha and |S ′′
0 | ≤ n + |Ha| − 1, such

that
n∑

i=1

Bi = nα + Ha.

Proof. We use induction on |S| with n fixed. Note that (i) holds trivially with A = P for the

base case |S| = n. Apply Theorem 2 to the subsequence S ′ of S with n-set partition P , and
let A = A1, . . . , An be the resulting set partition and Ha the corresponding subgroup. Since

n ≥ min{m
p
− 1, |S′|−n+1

p
− 1}, then from Theorem 2 we may assume that Ha is a proper,

nontrivial subgroup, that N(A, Ha) = 1, that |
n∑

i=1

Ai| ≥ (e + 1)|Ha|, and that

e ≤ min{a − 2,

⌊ |S ′| − n

|Ha|
⌋
− 1}, (1)

where e = E(A, Ha), since otherwise (i) follows. Thus all but e ≤ min{a − 2,
⌊
|S′|−n
|Ha|

⌋
− 1}

terms of S are from the same Ha-coset, say α+Ha, where φa(α) is the Ha-nonexception, and

|
n∑

i=1

Ai| ≥ (e + 1)|Ha|. Hence we may assume e > 0, since otherwise in view of Proposition 2

applied to A it follows that (ii) holds with e = 0.

Let S0 be the subsequence of S consisting of all terms from α + Ha, let A′ = A′
1, . . . , A

′
n

where A′
i = Ai∩ (α+Ha), and let S ′

0 be the subsequence of S0 that A′ partitions. Note since

N(A, Ha) = 1, that |A′
i| > 0 for all i, and thus A′ is an n-set partition of S ′

0. From (1) it
follows that |S ′

0| ≥ n + (e + 1)|Ha| − e ≥ n + |Ha|. Since e > 0, it follows that |S0| < |S|.
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We may also w.l.o.g. assume α = 0. Hence we can apply the induction hypothesis to the
subsequence S ′

0 of S0 with set partition A′ and with G = Ha. If (i) holds for S0, then since

|S ′
0| ≥ n + |Ha|, it follows, in view of |

n∑
i=1

Ai| ≥ (e + 1)|Ha|, (1), and Proposition 2, that

(ii) holds for S with subgroup Ha. So assume (ii) holds for S0 with subgroup Hka ≤ Ha of

index k = [Ha : Hka], with coset β +Hka, and with n-set partition B = B1, . . . , Bn satisfying
n∑

i=1

Bi = nβ + Hka. In this case, since by induction hypothesis at most k − 2 terms of S0 are

not from the coset β + Hka, and since |S ′| ≥ |S ′
0| ≥ n + |Ha| = n + m

a
, it follows in view of

(1) that there are at most

k − 2 + min{a − 2,
|S ′| − n

|Ha| − 1} = min{k − 2 + a − 2, k − 2 +
a(|S ′| − n)

m
− 1} ≤

min

{
ka − 4,

ka(|S ′| − n)

m
− 1 +

(
k − 2 − (k − 1)

a(|S ′| − n)

m

)}
< min{ka−2,

(|S ′| − n)

|Hka| −1},

terms of S not from the coset β + Hka. Also,

|
n∑

i=1

Ai| ≥ (e + 1)|Ha| = k(e + 1)|Hka| ≥ (k − 1 + e)|Hka| ≥ (e′ + 1)|Hka|,

where e′ is the number of terms of S not from β +Hka. Hence (ii) holds for S with subgroup

Hka, coset β + Hka, and set partitions A = A1, . . . , An and B = B1, . . . , Bn.

We are now ready to begin the proof of Theorem 1. For conceptual convenience the proof
has been divided into three sections labelled Steps 1, 2, and 3. The goal of the first is to

achieve the conditions needed to apply Theorem 3. The goal of the second is to complete
the proof minus the conclusion that m ∧ S is Ha-periodic, which will then be achieved in

Step 3 by an extremal argument using the results from Step 2.

Proof of Theorem 1.

Step 1. Since m∧S = |S|∧S−(|S|−m)∧S holds trivially, and since |1∧S| ≥ k, it follows
that (i) holds for |S| = m + 1. So assume |S| ≥ m + 2. Let ε = max{0, |S| − (2m− k + 1)},
let T be a subsequence of S consisting of k distinct terms including a term of S with greatest
multiplicity, let S0 = S \T , let n = |S|−m, let n0 = |S|−m−1, and let n1 = m−k +1+ ε.

Note that |S0| − n1 − 1

n0
+ 1 =

|S| − m − 2 − ε

|S| − m − 1
+ 1 < 2. (2)

If there exists a subset X ⊆ G such that |X| = 1 and at least (n1+1) = m−k+2+ε terms

of S0 are from X, then, since the multiplicity of every term of S is at most m − k + 2, and
since T contains a term of S with greatest multiplicity, it follows that ε = 0 and that there

are two terms of S with multiplicity m−k+2, whence |S| ≥ 2(m−k+2)+k−2 = 2m−k+2,
contradicting ε = 0. So we may assume no such subset X exists. Hence, since |S| ≥ m + 2,
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then in view of (2) and Proposition 1 applied to S0, it follows that there exists an n1-set
partition P2, P3, . . . , Pn1+1 of S0 with |Pi| = 1 for i > n0 + 1 = n. Letting P = P1, . . . , Pn,

where P1 = T , and letting S ′ be the subsequence that P partitions, we obtain an n-set
partition of the subsequence S ′ of S with |S ′| = |S| − (n1 − n0) = 2|S| − 2m + k − 2 − ε.

Apply Theorem 2 to the subsequence S ′ of S with n-set partition P , and let A =
A1, . . . , An be the resulting n-set partition, and Ha the corresponding subgroup. Hence,

since m∧ S = |S| ∧ S − (|S| −m)∧ S, then from Theorem 2 it follows that we may assume,

((N − 1)(|S| − m) + e + 1)|Ha| ≤ min{|S| − m + k − 2, m − 1}, (3)

where e = E(A, Ha) and N = N(A, Ha), since otherwise (i) holds. Hence Ha is a proper
subgroup. Observe that |S ′|− (|S|−m)+1 ≥ min{m, |S|−m+k−1}. Let l be the number

of distinct terms x of S such that φa(x) is an Ha-exception in A. Observe that e ≥ l and
that

k − l

|Ha| ≤ N, (4)

hold trivially. Since |S ′| − (|S| −m) + 1 ≥ min{m, |S| −m + k− 1}, then from (3) it follows

that we may assume Ha is nontrivial and N ≥ 1.

Let k − |Ha| = l + δ, and suppose δ ≥ 1. Hence (4) implies N |Ha| ≥ |Ha| + δ. Thus,

since |S| ≥ m + 1, since e ≥ l, and since δ ≥ 1, it follows from (3) that

k ≥ (δ − 1)(|S| − m) + |Ha|(l + 1) + 2 ≥ δ − 1 + |Ha| + l + 2 = |Ha| + l + δ + 1,

contradicting the definition of δ. So we may assume

k − |Ha| ≤ l. (5)

Suppose N > 1. Hence (3), |S| ≥ m + 1, and e ≥ l imply

(|S| − m)(|Ha| − 1) + (l + 1)|Ha| ≤ k − 2,

which, since (5) implies |Ha|(l + 1) ≥ l + |Ha| ≥ k, since |S| ≥ m + 1, and since |Ha| ≥ 2, is

impossible. So we may assume N = 1.

Suppose that |S| < m+|Ha|+e. Hence from N = 1 and (3) it follows that e|Ha|−e ≤ k−3.

Thus, since e ≥ l, it follows from (5) that e(|Ha| − 2) ≤ |Ha| − 3, which is only possible if
e = 0. However, if e = 0, then every term of S is from the same Ha-coset, say α + Ha, and

by translation we may w.l.o.g. assume α = 0. Hence, since
n∑

i=1

Ai is Ha-periodic, and since

N = 1, it follows that Ha ⊆ (|S| −m) ∧ S. Since every term of S is from Ha, it follows that
|S| ∧ S ∈ Ha. Thus, since Ha ⊆ (|S| − m) ∧ S, and since m ∧ S = |S| ∧ S − (|S| − m) ∧ S,

it follows that Ha ⊆ m ∧ S. Hence, since (3) implies that e ≤ min{� |S|−m+k−2
|Ha| � − 1, a − 2},

and since e = 0 implies m ∧ S ⊆ Ha, it follows that (ii) holds. So we may assume that

|S| ≥ m + |Ha| + e. (6)
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Since e ≥ l, then it follows in view of (6) and (5) that

|S| ≥ m + k. (7)

Suppose that n < |S′|−n+1
p

− 1, where p is the smallest prime divisor of m. Hence, since
n = |S| − m, and since |S ′| = 2|S| − 2m + k − 2 − ε, it follows that

|S| − m <
|S| − m + k − 1 − ε

p
− 1. (8)

Since p ≥ 2, and since |S| ≥ m+1, it follows from (8) that |S|−m < |S|−m+k−1−ε
2

−1, implying

that |S| < m + k − 3 − ε, a contradiction to (7). So we may assume that n ≥ |S′|−n+1
p

− 1.

Step 2. Since n ≥ |S′|−n+1
p

− 1, it follows that we can apply Theorem 3 to the

subsequence S ′ of S with n-set partition A. If Theorem 3(i) holds, then, since m ∧ S =
|S| ∧ S − (|S| − m) ∧ S, it follows that (i) holds. So assume that Theorem 3(ii) holds

with proper, nontrivial subgroup Hb of index b, with coset β + Hb, with e′ terms of S
not from β + Hb, and with n-set partitions A′ = A′

1, . . . , A
′
n and B = B1, . . . , Bn, where

|
n∑

i=1

A′
i| ≥ (e′ + 1)|Hb| and

n∑
i=1

Bi = nβ + Hb. Hence the inequality

k − |Hb| ≤ l′, (9)

holds trivially, where l′ is the number of distinct terms of S not from the coset β + Hb; and
the inequality in Theorem 3(ii) implies

e′ ≤ min

{⌊ |S| − m + k − 2

|Hb|
⌋
− 1, b − 2

}
. (10)

We may w.l.o.g. assume β = 0. Hence, since
n∑

i=1

Bi = Hb, it follows that Hb ⊆ (|S| −m)∧S.

Thus, if e′ = 0, then |S| ∧ S ∈ Hb and m ∧ S ⊆ Hb, whence (ii) follows from (10) and

m ∧ S = |S| ∧ S − (|S| − m) ∧ S. So e′ > 0. Since there are at most n + |Hb| − 1 terms
partitioned by the set partition B, it follows in view of (10) that there are at least

(e′ + 1)|Hb| + m − k + 2 − e′ − (n + |Hb| − 1) = 2m − |S| − k + 3 + e′(|Hb| − 1), (11)

terms of S from β + Hb that are not partitioned by B.

Hence if there are at most 2m− |S| − 1 terms of S from β + Hb that are not partitioned

by B, then since e′ > 0, and since e′ ≥ l′, it follows in view of (11) that k−4 ≥ e′(|Hb|−1) ≥
e′ + |Hb| − 2 ≥ l′ + |Hb| − 2, contradicting (9). Consequently we may assume that there are

at least 2m − |S| = m − n terms of S from β + Hb that are not partitioned by B. Thus we
can add m − n singleton sets, each containing a term of S from β + Hb not partitioned by

B, to the set partition B, to obtain an m-set partition whose sumset is Hb. Hence

Hb ⊆ m ∧ S. (12)
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Step 3. In view of |
n∑

i=1

A′
i| ≥ (e′ + 1)|Hb|, (9), (10), and (12), let Hb′ be a minimal

cardinality nontrivial subgroup such that

Hb′ ⊆ m ∧ S, (13)

and there exists a coset γ + Hb′ satisfying

e′′ ≤ min

{⌊ |S| − m + k − 2

|Hb′ |
⌋
− 1, b′ − 2

}
, (14)

and

k − |Hb′| ≤ l′′, (15)

and |m∧ S| ≥ (e′′ + 1)|Hb′|, where b′ is the index of Hb′, and e′′ is the number of terms of S
not from the coset γ + Hb′ , and l′′ is the number of distinct terms of S not from γ + Hb′ .

Suppose e′′ = 0. Hence all terms of S are from γ + Hb′. Thus m ∧ S ⊆ Hb′ , and (ii)

follows from (13) and (14). So e′′ > 0.

Suppose |S| < m+ |Hb′ |+ e′′. Hence it follows from (14) that e′′|Hb′| − e′′ ≤ k− 3. Thus,

since e′′ ≥ l′′, it follows from (15) that e′′(|Hb′ | − 2) ≤ |Hb′| − 3, which is only possible if
e′′ = 0, a contradiction. So

|S| ≥ m + |Hb′| + e′′. (16)

Let T = (a1, . . . , am) be an m-term subsequence of S. To complete the proof we will show

that every element from the same Hb′-coset as
m∑

i=1

ai is contained in m∧S. By reordering, we

may w.l.o.g. assume ai ∈ γ + Hb′ for i ≤ n0, where e0 is the number of terms of T not from

γ + Hb′, and n0 = m− e0. Let S0 be the subsequence of S consisting of terms from γ + Hb′ ,
and let n1 = |S| − e′′ − |Hb′|+ 1. Note e0 ≤ e′′, and hence in view of (14) and (16) it follows

that both n0 and n1 are positive integers. Also, since Hb′ proper, nontrivial implies m ≥ 4,
then it follows in view of (14) that

|S0| − n1 − 1

n0

+ 1 =
|Hb′| − 2

m − e0

+ 1 <
|Hb′|

m − b′
+ 1 ≤ 2. (17)

In view of (16) it follows that n1 +1 = |S|−e′′−|Hb′ |+2 ≥ m+2 > m−k +2. Hence every

term of S0 has multiplicity at most n1, and in view of (17) and Proposition 1, it follows that
there exists an n1-set partition A = A1, . . . , An1 of S0 with |Ai| = 1 for i > n0.

Assume A is chosen such that the number of indices i ≤ n0 with ai /∈ Ai is minimal.
If there exists an index j such that aj /∈ Aj , then there will exist an index j′ 
= j with

aj ∈ Aj′ and, if j′ ≤ n0, then also with aj 
= aj′, whence the set partition A′ = A′
1, . . . , A

′
n1

defined by letting A′
i = Ai for i 
= j, j′, and, if |Aj′| = 1, letting A′

j = (Aj \ {y}) ∪ {aj} and
A′

j′ = (Aj′ \ {aj}) ∪ {y}, or, if |Aj′| > 1, then letting A′
j = Aj ∪ {aj} and A′

j′ = Aj′ \ {aj},
where y ∈ Aj , will contradict the minimality of A. Hence we may assume ai ∈ Ai for all
i ≤ n0.
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Let S ′
0 be the subsequence of S0 partitioned by the n0-set partition A1, . . . , An0. Note

|S ′
0| = |S0| − (n1 − n0) = n0 + |Hb′| − 1. Hence, if n0 ≤ |S′

0|−n0

p′ − 1, where p′ is the smallest

prime divisor of |Hb′|, then since e0 ≤ e′′, it follows in view of (14) that m ≤ |Hb′|+ e0 − 1 ≤
m
b′ + b′ − 3 ≤ m

2
− 1, a contradiction. So assume n0 ≥ |S′

0|−n0+1

p′ − 1.

We may w.l.o.g. assume γ = 0. Hence, since n0 ≥ |S′
0|−n0+1

p′ − 1, it follows that we can
apply Theorem 3 to the subsequence S ′

0 of S0 with n0-set partition A1, . . . , An0, with group

G = Hb′ , and with fixed elements ai ∈ Ai for i ≤ n0. If Theorem 3(i) holds with correspond-

ing set partition A′ = A′
1, . . . , A

′
n0

, then since |S ′
0| = n0+|Hb′|−1, it follows that

n0∑
i=1

A′
i = Hb′ ,

whence

(
m∑

i=n0+1

ai

)
+

n0∑
i=1

A′
i is Hb′-periodic, and

m∑
i=1

ai ∈
(

m∑
i=n0+1

ai

)
+

n0∑
i=1

A′
i. Thus every el-

ement from the same Hb′-coset as
m∑

i=1

ai is contained in m ∧ S, and the proof is complete.

So assume that Theorem 3(ii) holds and let Hcb′ ≤ Hb′ be the corresponding subgroup with

c = [Hb′ : Hcb′], let γ′ + Hcb′ be the corresponding coset, and let e′0 ≤ c− 2 be the number of
terms of S0 not from γ +Hcb′. Thus, since |S| ≥ |Hb′|+(m−k +2) follows from (14), then it

follows from (14) and from |m∧ S| ≥ (e′′ + 1)|Hb′|, as in the proof of Theorem 3, that there

are e′′′ ≤ c − 2 + min{� |S|−m+k−2
|Hb′ | � − 1, b′ − 2} < min{� |S|−m+k−2

|Hcb′ | � − 1, cb′ − 2} terms of S

not from the coset γ′ + Hcb′, and that |m ∧ S| ≥ (e′′′ + 1)|Hcb′|. Thus (14) holds for S with

subgroup Hcb′. Furthermore, since Hcb′ ≤ Hb′ , then (13) implies that Hcb′ ⊆ m∧ S. Finally,
k − |Hcb′| ≤ l0, where l0 is the number of distinct terms not from γ + Hcb′, holds trivially.

Consequently, from the conclusions of the last three sentences we see that the minimality of
Hb′ is contradicted by Hcb′, and the proof is complete.

We conclude the paper by remarking that the inequality e ≤ min{� |S|−m+k−2
|Ha| � − 1, a − 2}

from Theorem 1(ii) implies

|S| ≥ m − k + 2 + (e + 1)|Ha| + ε, (18)

where e is the number of terms of S not from the coset α + Ha, and ε = max{0, |S| −
(2m− k + 1)}; also, as seen in the proof of Theorem 1, if e > 0, then (18) (which is just the
inequality in (3) rearranged with N = 1) implies

|S| ≥ m + |Ha| + e ≥ m + |Ha| + l ≥ m + k,

where l is the number of distinct terms of S not from α + Ha.
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