# ON A CONJECTURE OF HAMIDOUNE FOR SUBSEQUENCE SUMS 

David J. Grynkiewicz<br>Mathematics 253-37, Caltech, Pasadena, CA 91125, USA<br>diambri@hotmail.com

Received: 3/16/04, Revised: 12/24/04, Accepted: 1/6/05, Published: 9/1/05


#### Abstract

Let $G$ be an abelian group of order $m$, let $S$ be a sequence of terms from $G$ with $k$ distinct terms, let $m \wedge S$ denote the set of all elements that are a sum of some $m$-term subsequence of $S$, and let $|S|$ be the length of $S$. We show that if $|S| \geq m+1$, and if the multiplicity of each term of $S$ is at most $m-k+2$, then either $|m \wedge S| \geq \min \{m,|S|-m+k-1\}$, or there exists a proper, nontrivial subgroup $H_{a}$ of index $a$, such that $m \wedge S$ is a union of $H_{a}$-cosets, $H_{a} \subseteq m \wedge S$, and all but $e$ terms of $S$ are from the same $H_{a}$-coset, where $e \leq \min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{a}\right|}\right\rfloor-1, a-2\right\}$ and $|m \wedge S| \geq(e+1)\left|H_{a}\right|$. This confirms a conjecture of Y. O. Hamidoune.


Let $(G,+, 0)$ be an abelian group. If $A, B \subseteq G$, then their sumset, $A+B$, is the set of all possible pairwise sums, i.e. $\{a+b \mid a \in A, b \in B\}$. A set $A \subseteq G$ is $H_{a}$-periodic, if it is the union of $H_{a}$-cosets for some subgroup $H_{a}$ of $G$ (note this definition of periodic differs slightly from the usual by allowing $H_{a}$ to be trivial). A set which is maximally $H_{a}$-periodic, with $H_{a}$ the trivial group, is aperiodic, and otherwise we refer to $A$ as nontrivially periodic. For notational convenience, we use $\phi_{a}: G \rightarrow G / H_{a}$ to denote the natural homomorphism. If $S$ is a sequence of terms from $G$, then an $n$-set partition of $S$ is a collection of $n$ nonempty subsequences of $S$, pairwise disjoint as sequences, such that every term of $S$ belongs to exactly one of the subsequences, and the terms in each subsequence are all distinct. Thus such subsequences can be considered as sets. Let $A=A_{1}, \ldots, A_{n}$ be an $n$-set partition of a sequence $S$ of terms from $G$ whose sumset (i.e. the sumset of whose terms) is $H_{a}$-periodic. Let $y \in G / H_{a}$. If $y \in \phi_{a}\left(A_{i}\right)$ for all $i$, then $y$ is an $H_{a}$-nonexception, and otherwise $y$ is an $H_{a}$-exception. The number of $y \in G / H_{a}$ that are $H_{a}$-nonexceptions of $A$ is denoted by $N\left(A, H_{a}\right)$. The number of terms $x$ of $S$ such that $\phi_{a}(x)$ is an $H_{a}$-exception of $A$ is denoted by $E\left(A, H_{a}\right)$. Note $N\left(A, H_{a}\right)=\frac{1}{\left|H_{a}\right|}\left|\bigcap_{i=1}^{n}\left(A_{i}+H_{a}\right)\right|$ and $E\left(A, H_{a}\right)=\sum_{j=1}^{n}\left(\left|A_{j}\right|-\left|A_{j} \cap \bigcap_{i=1}^{n}\left(A_{i}+H_{a}\right)\right|\right)$. A sequence is zero-sum if the sum of its terms is zero. Also, $|S|$ denotes the cardinality of $S$, if $S$ is a set, and the length of $S$, if $S$ is a sequence. If $S^{\prime}$ is a subsequence of $S$, then $S \backslash S^{\prime}$ denotes the subsequence of $S$ obtained by deleting all terms in $S^{\prime}$. Finally, $n \wedge S$ denotes the set of elements that can be represented as a sum of some $n$-term subsequence of $S$.

In 1961, Erdős, Ginzburg, and Ziv showed that any sequence of $2 m-1$ terms from an abelian group of order $m$ contains an $m$-term zero-sum subsequence [6]. Their result inspired numerous generalizations in extremal combinatorics. In 1967, Mann gave an easy extension of this theorem, by showing that if $m$ is prime, $|S|=m+n-1$, and every term of $S$ has multiplicity at most $n$, then $n \wedge S=G$ [15]. In 1977, Olson generalized this result in the case $n=m$ to an arbitrary abelian group of order $m$, by showing that if $|S|=2 m-1$, and if every term of $S$ has multiplicity at most $m$, then either $m \wedge S=G$, or there exists a proper, nontrivial subgroup $H_{a}$ of index $a$ such that $H_{a} \subseteq m \wedge S$, and all but at most $a-2$ terms of $S$ are from the same $H_{a}$-coset [17]. Unfortunately, while the conclusion of Olson's Theorem was quite strong, including a structure restriction on the sequence $S$, it failed to cover sequences with length smaller than $2 m-1$. In an effort to alleviate this restriction, Bolobás and Leader obtained a weaker version of Olson's result valid for sequences of any length; they showed that if $0 \notin m \wedge S$, then $|m \wedge S| \geq|S|-m+1$ [4]. Hamidoune improved upon this result - extending, as in Mann's result, from $m$-sums to arbitrary $n$-sums-by showing that either $|n \wedge S| \geq|S|-n+1$ or else there exists a term $x$ of $S$ with $n x \in n \wedge S$ [9]. Finally, a recent composite analog of the Cauchy-Davenport Theorem [5] was proved in [7] that fully generalized the previous results of Mann, Olson, Bolobás and Leader, and Hamidoune. It is the case $S=S^{\prime}$ in Theorem 2 below-which will be the main tool used in this paper, along with its easily derived consequence, Theorem 3.

In [2], Bialostocki and Dierker addressed the question of tightness in the Erdős-GinzburgZiv Theorem, and showed that if there were at least three distinct terms in a sequence $S$ from the cyclic group $\mathbb{Z}_{m}$, and if $|S|=2 m-2$, then $0 \in m \wedge S$. In the case of $m$ prime, Bialostocki and Lotspeich generalized the previous result by showing that $|S|=2 m-k+1$ guaranteed an $m$-term zero-sum in a sequence $S$ with at least $k$ distinct terms [3]. Hamidoune, Ordaz, and Ortuño extended this result in the weak Olson sense by showing that if $|S|=2 m-k+1$, and if every term of $S$ has multiplicity at most $m-k+2$, then there exists a nontrivial subgroup $H_{a}$ such that $H_{a} \subseteq m \wedge S$ [10]. In an attempt to further generalize the result to sequences of smaller length along lines of the Bollobás-Leader result, Hamidoune made the following conjecture [9].

Conjecture 1. Let $G$ be a cyclic group of order $m$, and let $S$ be a sequence of terms from $G$ with $|S| \geq m+1$ and at least $k$ distinct terms. If the multiplicity of every term of $S$ is at most $m-k+2$, then either
(i) $|m \wedge S| \geq|S|-m+k-1$,
(ii) there exists a nontrivial subgroup $H_{a}$ such that $H_{a} \subseteq m \wedge S$.

Hamidoune was able to prove a weakened from of Conjecture 1, where the inequality in (i) was replaced by $|m \wedge S| \geq|S|-m+k-2$, and additionally showed that result to be valid for abelian groups with cyclic or trivial 2-torsion subgroup [9].

The main result of this paper is Theorem 1, which confirms Conjecture 1 for an arbitrary abelian group, and which gives a more complete generalization of Olson's result [17] in that
it includes the corresponding structural coset condition on $S$. Theorem 1 also implies that if $|m \wedge S|<|S|-m+k-1$, then $m \wedge S$ is nontrivially periodic, a conclusion similar to the classical result of Kneser for sumsets [13, 14, 12, 11, 16].
Theorem 1. Let $G$ be an abelian group of order $m$, and let $S$ be a sequence of terms from $G$ that has at least $k$ distinct terms. If $|S| \geq m+1$ and the multiplicity of each term of $S$ is at most $m-k+2$, then either:
(i) $|m \wedge S| \geq \min \{m,|S|-m+k-1\}$,
(ii) there exists a proper, nontrivial subgroup $H_{a}$ of index $a$, such that $m \wedge S$ is $H_{a}$-periodic and $H_{a} \subseteq m \wedge S$, and there exists $\alpha \in G$, such that the coset $\alpha+H_{a}$ contains all but e terms of $S$, where $e \leq \min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{a}\right|}\right\rfloor-1, a-2\right\}$ and $|m \wedge S| \geq(e+1)\left|H_{a}\right|$.

The following are two simple propositions from [1] that we will need for the proof. The first was originally stated only in the case $n_{1}=n_{0}$, but the construction in [1] easily modifies to prove the more general statement given here, while the second was originally stated with $G$ a finite abelian group, but the proof given works even for $G$ an abelian monoid.
Proposition 1. Let $n_{1}$ and $n_{0}$ be positive integers with $n_{0} \leq n_{1}$. A sequence $S$ of terms from $G$ has an $n_{1}$-set partition $A=A_{1}, \ldots, A_{n_{1}}$ with $\left|A_{i}\right|=1$ for $i>n_{0}$ (and $\| A_{i}\left|-\left|A_{j}\right|\right| \leq 1$ for $i, j \leq n_{0}$ ) if and only if $|S| \geq n_{1}$, and for every nonempty subset $X \subseteq G$ with $|X| \leq$ $\frac{|S|-n_{1}-1}{n_{0}}+1$ there are at most $n_{1}+(|X|-1) n_{0}$ terms of $S$ from $X$. In particular, $S$ has an $n_{1}$-set partition if and only if $|S| \geq n_{1}$ and the multiplicity of every term of $S$ is at most $n_{1}$.
Proposition 2. Let $S$ be a finite sequence of terms from an abelian group $G$, and let $A=$ $A_{1}, \ldots, A_{n}$ be an n-set partition of $S$, where $\left|\sum_{i=1}^{n} A_{i}\right|=r$. Then there exists a subsequence $S^{\prime}$ of $S$ of length at most $n+r-1$, and an $n$-set partition $A^{\prime}=A_{1}^{\prime}, \ldots, A_{n}^{\prime}$ of $S^{\prime}$, where $A_{i}^{\prime} \subseteq A_{i}$ for $i=1, \ldots, n$, such that $\sum_{i=1}^{n} A_{i}^{\prime}=\sum_{i=1}^{n} A_{i}$.

The following is a refinement of the composite analog to the Cauchy-Davenport Theorem proved in [7], strengthened along lines of a result from [8]. Observe that Theorem 2 implies $\left|\sum_{i=1}^{n} A_{i}^{\prime}\right| \geq \min \left\{m,\left|S^{\prime}\right|-n+1\right\}$ unless $N\left(A^{\prime}, H_{a}\right)>0$ and $H_{a}$ is a proper, nontrivial subgroup.
Theorem 2. Let $S^{\prime}$ be a subsequence of a finite sequence $S$ of terms from an abelian group $G$, let $A=\left(A_{n}, \ldots, A_{1}\right)$ be an n-set partition of $S^{\prime}$, and let $a_{i} \in A_{i}$ for $i \in\{1, \ldots, n\}$. Then there exists an $n$-set partition $A^{\prime}=\left(A_{n}^{\prime}, \ldots, A_{1}^{\prime}\right)$ of a subsequence $S^{\prime \prime}$ of $S$ with sumset $H_{a}$-periodic, $\left|S^{\prime}\right|=\left|S^{\prime \prime}\right|, \sum_{i=1}^{n} A_{i} \subseteq \sum_{i=1}^{n} A_{i}^{\prime}, a_{i} \in A_{i}^{\prime}$ for $i \in\{1, \ldots, n\}$, and

$$
\left|\sum_{i=1}^{n} A_{i}^{\prime}\right| \geq\left(E\left(A^{\prime}, H_{a}\right)+\left(N\left(A^{\prime}, H_{a}\right)-1\right) n+1\right)\left|H_{a}\right|
$$

Furthermore, if $H_{a}$ is nontrivial, then $\phi_{a}(x) \in \phi_{a}\left(A_{i}^{\prime}\right)$ for every $i \in\{1, \ldots, n\}$ and every $x \in S \backslash S^{\prime \prime}$.

Proof. The proof for the case $S^{\prime}=S$ in [7] easily modifies to prove the more general statement as follows below. In the interest of space, and since so little needs to be added or changed, we refrain from repeating the entirety of the proof given in [7]. We remark that the assumption that the theorem is false with $H_{k}$ proper and nontrivial is used only once in the original proof, namely in the proof of Lemma 5 where it is used to guarantee the existence of an $H_{k}$-doubled $H_{k}$-exception, and thus the majority of the modification below simply provides an alternative argument to guarantee the existence of an $H_{k}$-doubled $H_{k}$-exception when the furthermore statement is included.

Replace, in the definition of an $r$-maximal partition set of $S$, both occurrences of ' $S$ ' by 'a subsequence of $S$ with length $\left|S^{\prime}\right|$ '. For instance, the definition of $\Lambda_{0}$ should read: $\Lambda_{0}$ consists of all ordered $n$-set partitions, $\left(Z_{n}, \ldots, Z_{1}\right)$, of a subsequence of $S$ with length $\left|S^{\prime}\right|$, such that $\sum_{i=1}^{n} A_{i} \subseteq \sum_{i=1}^{n} Z_{i}$ and $a_{i} \in Z_{i}$ for $i \leq n$. Likewise replace $S$ in the definitions of a $\rho$-factor form and a weak $\rho$-factor form, and also in the first and fourth sentences of the Proof of Theorem 1. Finally, replace the second sentence in the Proof of Lemma 5 with the following paragraph.

Suppose there does not exist an $H_{k}$-doubled $H_{k}$-exception. Hence from (II), (I) and Kneser's Theorem it follows, since Theorem 1 does not hold with $H_{k}$, that there exists $x \in S \backslash S^{\prime \prime}$ and a term $D$ of $F_{\rho}$ such that $\phi_{k}(x) \notin \phi_{k}(D)$, where $S^{\prime \prime}$ is the subsequence of $S$ that $F_{\rho}$ partitions. In view of (III) it follows that there exists an index $j$, with $\rho+1 \leq j<n$, such that $\left|\sum_{i=j}^{n} Z_{i}\right|<\left|\sum_{i=j+1}^{n} Z_{i}\right|+\left|Z_{j}\right|-1$. Hence from Kneser's theorem it follows that $\sum_{i=j}^{n} Z_{j}$ is maximally $H$-periodic with $H$ nontrivial, and that there cannot be an element in $Z_{j}$ which is the unique element from its $H$-coset. Consequently, since $H \leq H_{k}$ follows from (I), it follows that there cannot be an element in $Z_{j}$ which is the unique element from its $H_{k}$-coset. Hence, since there are no $H_{k}$-doubled $H_{k}$-exceptions, it follows that all elements of $\phi_{k}\left(A_{j}\right)$ are $H_{k}$-nonexceptions and that $\left|\phi_{k}^{-1}(\beta) \cap Z_{j}\right| \geq 2$ for each $H_{k}$-nonexception $\beta \in G / H$. Since $\left|\sum_{i=j}^{n} Z_{i}\right|<\left|\sum_{i=j+1}^{n} Z_{i}\right|+\left|Z_{j}\right|-1$, it follows in view of Proposition 1 that $\sum_{i=j}^{n} Z_{i}=\sum_{i=j+1}^{n} Z_{i}+\left(Z_{j} \backslash\{y\}\right)$ for $y \in Z_{j}$. Hence, since $\left|\phi_{k}^{-1}(\beta) \cap Z_{j}\right| \geq 2$ for each $\beta \in \phi_{a}\left(Z_{j}\right)$, it follows that we can choose $y \in Z_{j}$ such that $a_{j} \neq y$, such that $\left|\phi_{k}\left(A_{j}\right)\right|=\left|\phi_{k}\left(A_{j} \backslash\{y\}\right)\right|$, and such that $\sum_{i=j}^{n} Z_{i}=$ $\sum_{i=j+1}^{n} Z_{i}+\left(Z_{j} \backslash\{y\}\right)$. Hence it follows that we can remove $y$ from the set partition $F_{\rho}$ and place $x$ in $D$ to obtain a new ordered $n$-set partition $F_{\rho}^{\prime}=\left(Z_{n}^{\prime}, \ldots, Z_{1}^{\prime}\right)$ of the sequence $S^{\prime \prime \prime}=\left(S^{\prime} \backslash\{y\}\right) \cup\{x\}$, yielding a contradiction to the maximality of $\sum_{i=1}^{n}\left|\phi_{k}\left(Z_{j}\right)\right|$ for $F_{\rho}$ by the arguments used in the proof of Lemma 1. So we may assume there exists an $H_{k}$-doubled $H_{k}$-exception.

Note Theorem 3 below, which we will derive from Theorem 2, refines a recent result of [8], and also that Theorem 3(ii) implies $|S| \geq n+\left|S \backslash S^{\prime}\right|+(e+1)\left|H_{a}\right|$.

Theorem 3. Let $S^{\prime}$ be a subsequence of a finite sequence $S$ of terms from an abelian group $G$ of order $m$, let $P=P_{1}, \ldots, P_{n}$ be an $n$-set partition of $S^{\prime}$, let $a_{i} \in P_{i}$ for $i \in\{1, \ldots, n\}$, and let $p$ be the smallest prime divisor of $m$. If $n \geq \min \left\{\frac{m}{p}-1, \frac{\left|S^{\prime}\right|-n+1}{p}-1\right\}$, then either:
(i) there is an n-set partition $A=A_{1}, \ldots, A_{n}$ of a subsequence $S^{\prime \prime}$ of $S$ with $\left|S^{\prime}\right|=\left|S^{\prime \prime}\right|$, $\sum_{i=1}^{n} P_{i} \subseteq \sum_{i=1}^{n} A_{i}, a_{i} \in A_{i}$ for $i \in\{1, \ldots, n\}$, and

$$
\left|\sum_{i=1}^{n} A_{i}\right| \geq \min \left\{m,\left|S^{\prime}\right|-n+1\right\}
$$

(ii) there is a proper, nontrivial subgroup $H_{a}$ of index $a$, a coset $\alpha+H_{a}$ such that all but e terms of $S$ are from $\alpha+H_{a}$, where

$$
e \leq \min \left\{a-2,\left\lfloor\frac{\left|S^{\prime}\right|-n}{\left|H_{a}\right|}\right\rfloor-1\right\}
$$

an n-set partition $A=A_{1}, \ldots, A_{n}$ of of subsequence $S^{\prime \prime}$ of $S$ with $\left|S^{\prime \prime}\right|=\left|S^{\prime}\right|, \sum_{i=1}^{n} P_{i} \subseteq \sum_{i=1}^{n} A_{i}$, $a_{i} \in A_{i}$ for $i \in\{1, \ldots, n\}$, and $\left|\sum_{i=1}^{n} A_{i}\right| \geq(e+1)\left|H_{a}\right|$, and an $n$-set partition $B=B_{1}, \ldots, B_{n}$ of a subsequence $S_{0}^{\prime \prime}$ of $S$, with all terms of $S_{0}^{\prime \prime}$ from $\alpha+H_{a}$ and $\left|S_{0}^{\prime \prime}\right| \leq n+\left|H_{a}\right|-1$, such that $\sum_{i=1}^{n} B_{i}=n \alpha+H_{a}$.

Proof. We use induction on $|S|$ with $n$ fixed. Note that (i) holds trivially with $A=P$ for the base case $|S|=n$. Apply Theorem 2 to the subsequence $S^{\prime}$ of $S$ with $n$-set partition $P$, and let $A=A_{1}, \ldots, A_{n}$ be the resulting set partition and $H_{a}$ the corresponding subgroup. Since $n \geq \min \left\{\frac{m}{p}-1, \frac{\left|S^{\prime}\right|-n+1}{p}-1\right\}$, then from Theorem 2 we may assume that $H_{a}$ is a proper, nontrivial subgroup, that $N\left(A, H_{a}\right)=1$, that $\left|\sum_{i=1}^{n} A_{i}\right| \geq(e+1)\left|H_{a}\right|$, and that

$$
\begin{equation*}
e \leq \min \left\{a-2,\left\lfloor\frac{\left|S^{\prime}\right|-n}{\left|H_{a}\right|}\right\rfloor-1\right\} \tag{1}
\end{equation*}
$$

where $e=E\left(A, H_{a}\right)$, since otherwise (i) follows. Thus all but $e \leq \min \left\{a-2,\left\lfloor\frac{\left|S^{\prime}\right|-n}{\left|H_{a}\right|}\right\rfloor-1\right\}$ terms of $S$ are from the same $H_{a}$-coset, say $\alpha+H_{a}$, where $\phi_{a}(\alpha)$ is the $H_{a}$-nonexception, and $\left|\sum_{i=1}^{n} A_{i}\right| \geq(e+1)\left|H_{a}\right|$. Hence we may assume $e>0$, since otherwise in view of Proposition 2 applied to $A$ it follows that (ii) holds with $e=0$.

Let $S_{0}$ be the subsequence of $S$ consisting of all terms from $\alpha+H_{a}$, let $A^{\prime}=A_{1}^{\prime}, \ldots, A_{n}^{\prime}$ where $A_{i}^{\prime}=A_{i} \cap\left(\alpha+H_{a}\right)$, and let $S_{0}^{\prime}$ be the subsequence of $S_{0}$ that $A^{\prime}$ partitions. Note since $N\left(A, H_{a}\right)=1$, that $\left|A_{i}^{\prime}\right|>0$ for all $i$, and thus $A^{\prime}$ is an $n$-set partition of $S_{0}^{\prime}$. From (1) it follows that $\left|S_{0}^{\prime}\right| \geq n+(e+1)\left|H_{a}\right|-e \geq n+\left|H_{a}\right|$. Since $e>0$, it follows that $\left|S_{0}\right|<|S|$.

We may also w.l.o.g. assume $\alpha=0$. Hence we can apply the induction hypothesis to the subsequence $S_{0}^{\prime}$ of $S_{0}$ with set partition $A^{\prime}$ and with $G=H_{a}$. If (i) holds for $S_{0}$, then since $\left|S_{0}^{\prime}\right| \geq n+\left|H_{a}\right|$, it follows, in view of $\left|\sum_{i=1}^{n} A_{i}\right| \geq(e+1)\left|H_{a}\right|$, (1), and Proposition 2, that (ii) holds for $S$ with subgroup $H_{a}$. So assume (ii) holds for $S_{0}$ with subgroup $H_{k a} \leq H_{a}$ of index $k=\left[H_{a}: H_{k a}\right]$, with coset $\beta+H_{k a}$, and with $n$-set partition $B=B_{1}, \ldots, B_{n}$ satisfying $\sum_{i=1}^{n} B_{i}=n \beta+H_{k a}$. In this case, since by induction hypothesis at most $k-2$ terms of $S_{0}$ are not from the coset $\beta+H_{k a}$, and since $\left|S^{\prime}\right| \geq\left|S_{0}^{\prime}\right| \geq n+\left|H_{a}\right|=n+\frac{m}{a}$, it follows in view of (1) that there are at most

$$
\begin{aligned}
& \quad k-2+\min \left\{a-2, \frac{\left|S^{\prime}\right|-n}{\left|H_{a}\right|}-1\right\}=\min \left\{k-2+a-2, k-2+\frac{a\left(\left|S^{\prime}\right|-n\right)}{m}-1\right\} \leq \\
& \min \left\{k a-4, \frac{k a\left(\left|S^{\prime}\right|-n\right)}{m}-1+\left(k-2-(k-1) \frac{a\left(\left|S^{\prime}\right|-n\right)}{m}\right)\right\}<\min \left\{k a-2, \frac{\left(\left|S^{\prime}\right|-n\right)}{\left|H_{k a}\right|}-1\right\}
\end{aligned}
$$

terms of $S$ not from the coset $\beta+H_{k a}$. Also,

$$
\left|\sum_{i=1}^{n} A_{i}\right| \geq(e+1)\left|H_{a}\right|=k(e+1)\left|H_{k a}\right| \geq(k-1+e)\left|H_{k a}\right| \geq\left(e^{\prime}+1\right)\left|H_{k a}\right|
$$

where $e^{\prime}$ is the number of terms of $S$ not from $\beta+H_{k a}$. Hence (ii) holds for $S$ with subgroup $H_{k a}$, coset $\beta+H_{k a}$, and set partitions $A=A_{1}, \ldots, A_{n}$ and $B=B_{1}, \ldots, B_{n}$.

We are now ready to begin the proof of Theorem 1. For conceptual convenience the proof has been divided into three sections labelled Steps 1, 2, and 3. The goal of the first is to achieve the conditions needed to apply Theorem 3. The goal of the second is to complete the proof minus the conclusion that $m \wedge S$ is $H_{a}$-periodic, which will then be achieved in Step 3 by an extremal argument using the results from Step 2.

## Proof of Theorem 1.

Step 1. Since $m \wedge S=|S| \wedge S-(|S|-m) \wedge S$ holds trivially, and since $|1 \wedge S| \geq k$, it follows that (i) holds for $|S|=m+1$. So assume $|S| \geq m+2$. Let $\epsilon=\max \{0,|S|-(2 m-k+1)\}$, let $T$ be a subsequence of $S$ consisting of $k$ distinct terms including a term of $S$ with greatest multiplicity, let $S_{0}=S \backslash T$, let $n=|S|-m$, let $n_{0}=|S|-m-1$, and let $n_{1}=m-k+1+\epsilon$. Note that

$$
\begin{equation*}
\frac{\left|S_{0}\right|-n_{1}-1}{n_{0}}+1=\frac{|S|-m-2-\epsilon}{|S|-m-1}+1<2 . \tag{2}
\end{equation*}
$$

If there exists a subset $X \subseteq G$ such that $|X|=1$ and at least $\left(n_{1}+1\right)=m-k+2+\epsilon$ terms of $S_{0}$ are from $X$, then, since the multiplicity of every term of $S$ is at most $m-k+2$, and since $T$ contains a term of $S$ with greatest multiplicity, it follows that $\epsilon=0$ and that there are two terms of $S$ with multiplicity $m-k+2$, whence $|S| \geq 2(m-k+2)+k-2=2 m-k+2$, contradicting $\epsilon=0$. So we may assume no such subset $X$ exists. Hence, since $|S| \geq m+2$,
then in view of (2) and Proposition 1 applied to $S_{0}$, it follows that there exists an $n_{1}$-set partition $P_{2}, P_{3}, \ldots, P_{n_{1}+1}$ of $S_{0}$ with $\left|P_{i}\right|=1$ for $i>n_{0}+1=n$. Letting $P=P_{1}, \ldots, P_{n}$, where $P_{1}=T$, and letting $S^{\prime}$ be the subsequence that $P$ partitions, we obtain an $n$-set partition of the subsequence $S^{\prime}$ of $S$ with $\left|S^{\prime}\right|=|S|-\left(n_{1}-n_{0}\right)=2|S|-2 m+k-2-\epsilon$.

Apply Theorem 2 to the subsequence $S^{\prime}$ of $S$ with $n$-set partition $P$, and let $A=$ $A_{1}, \ldots, A_{n}$ be the resulting $n$-set partition, and $H_{a}$ the corresponding subgroup. Hence, since $m \wedge S=|S| \wedge S-(|S|-m) \wedge S$, then from Theorem 2 it follows that we may assume,

$$
\begin{equation*}
((N-1)(|S|-m)+e+1)\left|H_{a}\right| \leq \min \{|S|-m+k-2, m-1\}, \tag{3}
\end{equation*}
$$

where $e=E\left(A, H_{a}\right)$ and $N=N\left(A, H_{a}\right)$, since otherwise (i) holds. Hence $H_{a}$ is a proper subgroup. Observe that $\left|S^{\prime}\right|-(|S|-m)+1 \geq \min \{m,|S|-m+k-1\}$. Let $l$ be the number of distinct terms $x$ of $S$ such that $\phi_{a}(x)$ is an $H_{a}$-exception in $A$. Observe that $e \geq l$ and that

$$
\begin{equation*}
\frac{k-l}{\left|H_{a}\right|} \leq N \tag{4}
\end{equation*}
$$

hold trivially. Since $\left|S^{\prime}\right|-(|S|-m)+1 \geq \min \{m,|S|-m+k-1\}$, then from (3) it follows that we may assume $H_{a}$ is nontrivial and $N \geq 1$.

Let $k-\left|H_{a}\right|=l+\delta$, and suppose $\delta \geq 1$. Hence (4) implies $N\left|H_{a}\right| \geq\left|H_{a}\right|+\delta$. Thus, since $|S| \geq m+1$, since $e \geq l$, and since $\delta \geq 1$, it follows from (3) that

$$
k \geq(\delta-1)(|S|-m)+\left|H_{a}\right|(l+1)+2 \geq \delta-1+\left|H_{a}\right|+l+2=\left|H_{a}\right|+l+\delta+1
$$

contradicting the definition of $\delta$. So we may assume

$$
\begin{equation*}
k-\left|H_{a}\right| \leq l . \tag{5}
\end{equation*}
$$

Suppose $N>1$. Hence (3), $|S| \geq m+1$, and $e \geq l$ imply

$$
(|S|-m)\left(\left|H_{a}\right|-1\right)+(l+1)\left|H_{a}\right| \leq k-2,
$$

which, since (5) implies $\left|H_{a}\right|(l+1) \geq l+\left|H_{a}\right| \geq k$, since $|S| \geq m+1$, and since $\left|H_{a}\right| \geq 2$, is impossible. So we may assume $N=1$.

Suppose that $|S|<m+\left|H_{a}\right|+e$. Hence from $N=1$ and (3) it follows that $e\left|H_{a}\right|-e \leq k-3$. Thus, since $e \geq l$, it follows from (5) that $e\left(\left|H_{a}\right|-2\right) \leq\left|H_{a}\right|-3$, which is only possible if $e=0$. However, if $e=0$, then every term of $S$ is from the same $H_{a}$-coset, say $\alpha+H_{a}$, and by translation we may w.l.o.g. assume $\alpha=0$. Hence, since $\sum_{i=1}^{n} A_{i}$ is $H_{a}$-periodic, and since $N=1$, it follows that $H_{a} \subseteq(|S|-m) \wedge S$. Since every term of $S$ is from $H_{a}$, it follows that $|S| \wedge S \in H_{a}$. Thus, since $H_{a} \subseteq(|S|-m) \wedge S$, and since $m \wedge S=|S| \wedge S-(|S|-m) \wedge S$, it follows that $H_{a} \subseteq m \wedge S$. Hence, since (3) implies that $e \leq \min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{a}\right|}\right\rfloor-1, a-2\right\}$, and since $e=0$ implies $m \wedge S \subseteq H_{a}$, it follows that (ii) holds. So we may assume that

$$
\begin{equation*}
|S| \geq m+\left|H_{a}\right|+e \tag{6}
\end{equation*}
$$

Since $e \geq l$, then it follows in view of (6) and (5) that

$$
\begin{equation*}
|S| \geq m+k \tag{7}
\end{equation*}
$$

Suppose that $n<\frac{\left|S^{\prime}\right|-n+1}{p}-1$, where $p$ is the smallest prime divisor of $m$. Hence, since $n=|S|-m$, and since $\left|S^{\prime}\right|=2|S|-2 m+k-2-\epsilon$, it follows that

$$
\begin{equation*}
|S|-m<\frac{|S|-m+k-1-\epsilon}{p}-1 \tag{8}
\end{equation*}
$$

Since $p \geq 2$, and since $|S| \geq m+1$, it follows from (8) that $|S|-m<\frac{|S|-m+k-1-\epsilon}{2}-1$, implying that $|S|<m+k-3-\epsilon$, a contradiction to (7). So we may assume that $n \geq \frac{\left|S^{\prime}\right|-n+1}{p}-1$.

Step 2. Since $n \geq \frac{\left|S^{\prime}\right|-n+1}{p}-1$, it follows that we can apply Theorem 3 to the subsequence $S^{\prime}$ of $S$ with $n$-set partition $A$. If Theorem $3(\mathrm{i})$ holds, then, since $m \wedge S=$ $|S| \wedge S-(|S|-m) \wedge S$, it follows that (i) holds. So assume that Theorem 3(ii) holds with proper, nontrivial subgroup $H_{b}$ of index $b$, with coset $\beta+H_{b}$, with $e^{\prime}$ terms of $S$ not from $\beta+H_{b}$, and with $n$-set partitions $A^{\prime}=A_{1}^{\prime}, \ldots, A_{n}^{\prime}$ and $B=B_{1}, \ldots, B_{n}$, where $\left|\sum_{i=1}^{n} A_{i}^{\prime}\right| \geq\left(e^{\prime}+1\right)\left|H_{b}\right|$ and $\sum_{i=1}^{n} B_{i}=n \beta+H_{b}$. Hence the inequality

$$
\begin{equation*}
k-\left|H_{b}\right| \leq l^{\prime} \tag{9}
\end{equation*}
$$

holds trivially, where $l^{\prime}$ is the number of distinct terms of $S$ not from the coset $\beta+H_{b}$; and the inequality in Theorem 3(ii) implies

$$
\begin{equation*}
e^{\prime} \leq \min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{b}\right|}\right\rfloor-1, b-2\right\} . \tag{10}
\end{equation*}
$$

We may w.l.o.g. assume $\beta=0$. Hence, since $\sum_{i=1}^{n} B_{i}=H_{b}$, it follows that $H_{b} \subseteq(|S|-m) \wedge S$. Thus, if $e^{\prime}=0$, then $|S| \wedge S \in H_{b}$ and $m \wedge S \subseteq H_{b}$, whence (ii) follows from (10) and $m \wedge S=|S| \wedge S-(|S|-m) \wedge S$. So $e^{\prime}>0$. Since there are at most $n+\left|H_{b}\right|-1$ terms partitioned by the set partition $B$, it follows in view of (10) that there are at least

$$
\begin{equation*}
\left(e^{\prime}+1\right)\left|H_{b}\right|+m-k+2-e^{\prime}-\left(n+\left|H_{b}\right|-1\right)=2 m-|S|-k+3+e^{\prime}\left(\left|H_{b}\right|-1\right), \tag{11}
\end{equation*}
$$

terms of $S$ from $\beta+H_{b}$ that are not partitioned by $B$.
Hence if there are at most $2 m-|S|-1$ terms of $S$ from $\beta+H_{b}$ that are not partitioned by $B$, then since $e^{\prime}>0$, and since $e^{\prime} \geq l^{\prime}$, it follows in view of (11) that $k-4 \geq e^{\prime}\left(\left|H_{b}\right|-1\right) \geq$ $e^{\prime}+\left|H_{b}\right|-2 \geq l^{\prime}+\left|H_{b}\right|-2$, contradicting (9). Consequently we may assume that there are at least $2 m-|S|=m-n$ terms of $S$ from $\beta+H_{b}$ that are not partitioned by $B$. Thus we can add $m-n$ singleton sets, each containing a term of $S$ from $\beta+H_{b}$ not partitioned by $B$, to the set partition $B$, to obtain an $m$-set partition whose sumset is $H_{b}$. Hence

$$
\begin{equation*}
H_{b} \subseteq m \wedge S \tag{12}
\end{equation*}
$$

Step 3. In view of $\left|\sum_{i=1}^{n} A_{i}^{\prime}\right| \geq\left(e^{\prime}+1\right)\left|H_{b}\right|,(9),(10)$, and (12), let $H_{b^{\prime}}$ be a minimal cardinality nontrivial subgroup such that

$$
\begin{equation*}
H_{b^{\prime}} \subseteq m \wedge S \tag{13}
\end{equation*}
$$

and there exists a coset $\gamma+H_{b^{\prime}}$ satisfying

$$
\begin{equation*}
e^{\prime \prime} \leq \min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{b^{\prime}}\right|}\right\rfloor-1, b^{\prime}-2\right\}, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
k-\left|H_{b^{\prime}}\right| \leq l^{\prime \prime} \tag{15}
\end{equation*}
$$

and $|m \wedge S| \geq\left(e^{\prime \prime}+1\right) \mid H_{b^{\prime}}$, where $b^{\prime}$ is the index of $H_{b^{\prime}}$, and $e^{\prime \prime}$ is the number of terms of $S$ not from the coset $\gamma+H_{b^{\prime}}$, and $l^{\prime \prime}$ is the number of distinct terms of $S$ not from $\gamma+H_{b^{\prime}}$.

Suppose $e^{\prime \prime}=0$. Hence all terms of $S$ are from $\gamma+H_{b^{\prime}}$. Thus $m \wedge S \subseteq H_{b^{\prime}}$, and (ii) follows from (13) and (14). So $e^{\prime \prime}>0$.

Suppose $|S|<m+\left|H_{b^{\prime}}\right|+e^{\prime \prime}$. Hence it follows from (14) that $e^{\prime \prime}\left|H_{b^{\prime}}\right|-e^{\prime \prime} \leq k-3$. Thus, since $e^{\prime \prime} \geq l^{\prime \prime}$, it follows from (15) that $e^{\prime \prime}\left(\left|H_{b^{\prime}}\right|-2\right) \leq\left|H_{b^{\prime}}\right|-3$, which is only possible if $e^{\prime \prime}=0$, a contradiction. So

$$
\begin{equation*}
|S| \geq m+\left|H_{b^{\prime}}\right|+e^{\prime \prime} \tag{16}
\end{equation*}
$$

Let $T=\left(a_{1}, \ldots, a_{m}\right)$ be an $m$-term subsequence of $S$. To complete the proof we will show that every element from the same $H_{b^{\prime}-\operatorname{coset}}$ as $\sum_{i=1}^{m} a_{i}$ is contained in $m \wedge S$. By reordering, we may w.l.o.g. assume $a_{i} \in \gamma+H_{b^{\prime}}$ for $i \leq n_{0}$, where $e_{0}$ is the number of terms of $T$ not from $\gamma+H_{b^{\prime}}$, and $n_{0}=m-e_{0}$. Let $S_{0}$ be the subsequence of $S$ consisting of terms from $\gamma+H_{b^{\prime}}$, and let $n_{1}=|S|-e^{\prime \prime}-\left|H_{b^{\prime}}\right|+1$. Note $e_{0} \leq e^{\prime \prime}$, and hence in view of (14) and (16) it follows that both $n_{0}$ and $n_{1}$ are positive integers. Also, since $H_{b^{\prime}}$ proper, nontrivial implies $m \geq 4$, then it follows in view of (14) that

$$
\begin{equation*}
\frac{\left|S_{0}\right|-n_{1}-1}{n_{0}}+1=\frac{\left|H_{b^{\prime}}\right|-2}{m-e_{0}}+1<\frac{\left|H_{b^{\prime}}\right|}{m-b^{\prime}}+1 \leq 2 \tag{17}
\end{equation*}
$$

In view of (16) it follows that $n_{1}+1=|S|-e^{\prime \prime}-\left|H_{b^{\prime}}\right|+2 \geq m+2>m-k+2$. Hence every term of $S_{0}$ has multiplicity at most $n_{1}$, and in view of (17) and Proposition 1, it follows that there exists an $n_{1}$-set partition $A=A_{1}, \ldots, A_{n_{1}}$ of $S_{0}$ with $\left|A_{i}\right|=1$ for $i>n_{0}$.

Assume $A$ is chosen such that the number of indices $i \leq n_{0}$ with $a_{i} \notin A_{i}$ is minimal. If there exists an index $j$ such that $a_{j} \notin A_{j}$, then there will exist an index $j^{\prime} \neq j$ with $a_{j} \in A_{j^{\prime}}$ and, if $j^{\prime} \leq n_{0}$, then also with $a_{j} \neq a_{j^{\prime}}$, whence the set partition $A^{\prime}=A_{1}^{\prime}, \ldots, A_{n_{1}}^{\prime}$ defined by letting $A_{i}^{\prime}=A_{i}$ for $i \neq j, j^{\prime}$, and, if $\left|A_{j^{\prime}}\right|=1$, letting $A_{j}^{\prime}=\left(A_{j} \backslash\{y\}\right) \cup\left\{a_{j}\right\}$ and $A_{j^{\prime}}^{\prime}=\left(A_{j^{\prime}} \backslash\left\{a_{j}\right\}\right) \cup\{y\}$, or, if $\left|A_{j^{\prime}}\right|>1$, then letting $A_{j}^{\prime}=A_{j} \cup\left\{a_{j}\right\}$ and $A_{j^{\prime}}^{\prime}=A_{j^{\prime}} \backslash\left\{a_{j}\right\}$, where $y \in A_{j}$, will contradict the minimality of $A$. Hence we may assume $a_{i} \in A_{i}$ for all $i \leq n_{0}$.

Let $S_{0}^{\prime}$ be the subsequence of $S_{0}$ partitioned by the $n_{0}$-set partition $A_{1}, \ldots, A_{n_{0}}$. Note $\left|S_{0}^{\prime}\right|=\left|S_{0}\right|-\left(n_{1}-n_{0}\right)=n_{0}+\left|H_{b^{\prime}}\right|-1$. Hence, if $n_{0} \leq \frac{\left|S_{0}^{\prime}\right|-n_{0}}{p^{\prime}}-1$, where $p^{\prime}$ is the smallest prime divisor of $\left|H_{b^{\prime}}\right|$, then since $e_{0} \leq e^{\prime \prime}$, it follows in view of (14) that $m \leq\left|H_{b^{\prime}}\right|+e_{0}-1 \leq$ $\frac{m}{b^{\prime}}+b^{\prime}-3 \leq \frac{m}{2}-1$, a contradiction. So assume $n_{0} \geq \frac{\left|S_{0}^{\prime}\right|-n_{0}+1}{p^{\prime}}-1$.

We may w.l.o.g. assume $\gamma=0$. Hence, since $n_{0} \geq \frac{\left|S_{0}^{\prime}\right|-n_{0}+1}{p^{\prime}}-1$, it follows that we can apply Theorem 3 to the subsequence $S_{0}^{\prime}$ of $S_{0}$ with $n_{0}$-set partition $A_{1}, \ldots, A_{n_{0}}$, with group $G=H_{b^{\prime}}$, and with fixed elements $a_{i} \in A_{i}$ for $i \leq n_{0}$. If Theorem 3(i) holds with corresponding set partition $A^{\prime}=A_{1}^{\prime}, \ldots, A_{n_{0}}^{\prime}$, then since $\left|S_{0}^{\prime}\right|=n_{0}+\left|H_{b^{\prime}}\right|-1$, it follows that $\sum_{i=1}^{n_{0}} A_{i}^{\prime}=H_{b^{\prime}}$, whence $\left(\sum_{i=n_{0}+1}^{m} a_{i}\right)+\sum_{i=1}^{n_{0}} A_{i}^{\prime}$ is $H_{b^{\prime}}$-periodic, and $\sum_{i=1}^{m} a_{i} \in\left(\sum_{i=n_{0}+1}^{m} a_{i}\right)+\sum_{i=1}^{n_{0}} A_{i}^{\prime}$. Thus every element from the same $H_{b^{\prime}}$-coset as $\sum_{i=1}^{m} a_{i}$ is contained in $m \wedge S$, and the proof is complete. So assume that Theorem 3(ii) holds and let $H_{c b^{\prime}} \leq H_{b^{\prime}}$ be the corresponding subgroup with $c=\left[H_{b^{\prime}}: H_{c b^{\prime}}\right]$, let $\gamma^{\prime}+H_{c b^{\prime}}$ be the corresponding coset, and let $e_{0}^{\prime} \leq c-2$ be the number of terms of $S_{0}$ not from $\gamma+H_{c b^{\prime}}$. Thus, since $|S| \geq\left|H_{b^{\prime}}\right|+(m-k+2)$ follows from (14), then it follows from (14) and from $|m \wedge S| \geq\left(e^{\prime \prime}+1\right)\left|H_{b^{\prime}}\right|$, as in the proof of Theorem 3, that there are $e^{\prime \prime \prime} \leq c-2+\min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{b^{\prime}}\right|}\right\rfloor-1, b^{\prime}-2\right\}<\min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{c b^{\prime}}\right|}\right\rfloor-1, c b^{\prime}-2\right\}$ terms of $S$ not from the coset $\gamma^{\prime}+H_{c b^{\prime}}$, and that $|m \wedge S| \geq\left(e^{\prime \prime \prime}+1\right)\left|H_{c b^{\prime}}\right|$. Thus (14) holds for $S$ with subgroup $H_{c b^{\prime}}$. Furthermore, since $H_{c b^{\prime}} \leq H_{b^{\prime}}$, then (13) implies that $H_{c b^{\prime}} \subseteq m \wedge S$. Finally, $k-\left|H_{c b^{\prime}}\right| \leq l_{0}$, where $l_{0}$ is the number of distinct terms not from $\gamma+H_{c b^{\prime}}$, holds trivially. Consequently, from the conclusions of the last three sentences we see that the minimality of $H_{b^{\prime}}$ is contradicted by $H_{c b^{\prime}}$, and the proof is complete.

We conclude the paper by remarking that the inequality $e \leq \min \left\{\left\lfloor\frac{|S|-m+k-2}{\left|H_{a}\right|}\right\rfloor-1, a-2\right\}$ from Theorem 1(ii) implies

$$
\begin{equation*}
|S| \geq m-k+2+(e+1)\left|H_{a}\right|+\epsilon, \tag{18}
\end{equation*}
$$

where $e$ is the number of terms of $S$ not from the coset $\alpha+H_{a}$, and $\epsilon=\max \{0,|S|-$ $(2 m-k+1)\}$; also, as seen in the proof of Theorem 1, if $e>0$, then (18) (which is just the inequality in (3) rearranged with $N=1$ ) implies

$$
|S| \geq m+\left|H_{a}\right|+e \geq m+\left|H_{a}\right|+l \geq m+k
$$

where $l$ is the number of distinct terms of $S$ not from $\alpha+H_{a}$.
Acknowledgements. I would like to thank my advisor R. Wilson for his continual support and understanding, and the referee for several useful suggestions.

## References

[1] A. Bialostocki, P. Dierker, D. Grynkiewicz and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv Theorem II, Acta. Arith., 110 (2003), no. 2, 173-184.
[2] A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math., 110 (1992), no. 1-3, 1-8.
[3] A. Bialostocki and M. Lotspeich, Developments of the Erdős-Ginzburg-Ziv Theorem I, in Sets, graphs and numbers (Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992), 97-117.
[4] B. Bollobás and I. Leader, The number of $k$-sums modulo $k$, J. Number Theory, 78 (1999), 27-35.
[5] H. Davenport, On the addition of residue classes, J. London Math. Society, 10 (1935), 30-32.
[6] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in additive number theory, Bull. Res. Council Israel, 10F (1961), 41-43.
[7] D. Grynkiewicz, On a partition analog of the Cauchy-Davenport Theorem, Acta Math. Hungar., 107 (2005), no. 1-2, 167-181.
[8] D. Grynkiewicz and R. Sabar, Monochromatic and zero-sum sets of nondecreasing modified-diameter, Preprint.
[9] Y. O. Hamidoune, Subsequence Sums, Combin. Propab. Comput., 12 (2003), 413-425.
[10] Y. O. Hamidoune, O. Ordaz and A. Ortuño, On a combinatorial theorem of Erdős, Ginzburg and Ziv, Combin. Probab. Comput., 7 (1998), no. 4, 403-412.
[11] X. Hou, K. Leung and Q. Xiang, A generalization of an addition theorem of Kneser, J. Number Theory, 97 (2002), 1-9.
[12] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math., 103 (1960), 63-88.
[13] M. Kneser, Ein Satz über Abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z., 61 (1955), 429-434.
[14] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z., 58 (1953), 459-484.
[15] H. B. Mann, Two addition theorems, J. Combinatorial Theory, 3 (1967), 233-235.
[16] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics, 165, Springer-Verlag, New York, 1996.
[17] J. E. Olson, An addition theorem for finite abelian groups, J. Number Theory, 9 (1977), 63-70.

