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Abstract
Decimal expansions of classical constants such as

√
2, π and ζ(3) have long been a

source of difficult questions. In the case of Laurent series with coefficients in a finite
field, where “no carries appear,” the situation seems to be simplified and drastically
different. In 1935 Carlitz introduced analogs of real numbers such as π, e or ζ(3)
and it became reasonable to enquire how “complex” the Laurent representation of
these “numbers” is. In this paper we prove that the inverse of Carlitz’s analog of π,
Πq, has, in general, linear subword complexity, except in the case q = 2, when the
complexity is quadratic. In particular, this gives a new proof of the transcendence
of Π2 over F2(T ). In the second part, we consider the classes of Laurent series of at
most polynomial complexity and of zero entropy. We show that these satisfy some
nice closure properties.

1. Introduction and Motivations

The sequence of digits of the real number π = 3.14159 · · · has baffled mathemati-
cians for a long time. Though the decimal expansion of π has been calculated to
billions of digits, we do not even know, for example, if the digit 1 appears infinitely
often. Actually, it is expected that, for any b ≥ 2, the b-ary expansion of π should
share some of the properties of a random sequence (see, for instance, [10]). More
concretely, it is widely believed that π is normal, meaning that all blocks of digits
of equal length occur in the b-ary representation of π with the same frequency, but
we are very far from having a proof of this claim. A common way to describe the
disorder of an infinite sequence a is to compute its subword complexity, which is the
function that associates with each positive integer m the number of distinct blocks
of length m occurring in the sequence a. Let α be a positive real number and let
a−ka−k+1 · · · a0.a1a2 · · · be the representation of α in an integer base b ≥ 2. The
complexity function of α is defined as follows

p(α, b,m) = Card{(aj , aj+1, . . . , aj+m−1), j ∈ N∗},
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for any positive integer m. Here N (respectively N∗) stands for the set {0, 1, 2, 3, . . .}
(resp. {1, 2, 3, . . .}). Notice that if π were normal, then its complexity would be
maximal, that is p(π, b,m) = bm, for every b ≥ 2 and m ≥ 1. In this direction,
similar questions have been asked about other well-known constants and it is for
instance widely believed that for every α ∈ {e, log 2, ζ(3),

√
2}, one should have

p(α, b,m) = bm,

for any m ≥ 1 and b ≥ 2.
In this paper we use the familiar asymptotic notation of Landau. We write

f = O(g) if there exist two positive real numbers k and n0 such that, for every
n ≥ n0 we have |f(n)| < k |g(n)|. We also write f = Θ(g) if f = O(g) and
g = O(f).

If α is a rational real number then for every integer b ≥ 2 we have p(α, b,m) =
O(1), where the constant depends on b and α. Moreover, there is a classical theorem
of Morse and Hedlund [31] which implies that for every irrational real number α,
we have

p(α, b,m) ≥ m + 1,

for all integers m ≥ 1 and b ≥ 2.
Concerning irrational algebraic numbers, the main result known to date in this

direction is due to Adamczewski and Bugeaud [3]. These authors proved that the
complexity of an irrational algebraic real number α satisfies

lim
m→∞

p(α, b,m)
m

= +∞, (1)

for any base b ≥ 2. For more details about complexity of real numbers, see [1, 3, 4].

The present paper is motivated by this type of question, but in the setting of
Laurent series with coefficients in a finite field. In the sequel we let Fq(T ), Fq[[T−1]]
and Fq((T−1)) denote respectively the field of rational functions, the ring of formal
power series and the field of formal Laurent power series over the finite field Fq, q
being a power of a prime number p.

By analogy with the real numbers, the complexity of a Laurent series is defined
as the subword complexity of its sequence of coefficients. Again, the theorem of
Morse and Hedlund gives a complete description of the rational Laurent series;
more precisely, they are the Laurent series of bounded complexity. Furthermore,
there is a remarkable theorem of Christol [19] (see also [21]) that precisely describes
the algebraic Laurent series over Fq(T ) as follows. Let f(T ) =

∑
n≥−n0

anT−n

be a Laurent series with coefficients in Fq. Then f is algebraic over Fq(T ) if,
and only if, the sequence of coefficients (an)n≥0 is p-automatic. More references
on automatic sequences can be found in [8]. Furthermore, Cobham proved that
the subword complexity of an automatic sequence is at most linear [23]. Hence, a
straightforward consequence of those two results is the following.
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Theorem 1. Let f ∈ Fq((T−1)) be algebraic over Fq(T ). Then we have

p(f,m) = O(m).

The converse is obviously not true, since there are uncountably many Laurent
series with linear complexity.1

In contrast with real numbers, the situation is thus clarified in the case of alge-
braic Laurent series. Also, notice that (1) and Theorem 1 point out the fact that
the subword complexities of algebraic elements in Fq((T−1)) and in R are quite
different.

On the other hand, Carlitz introduced in [17] functions in positive characteristic
by analogy with the Riemann ζ function, the usual exponential and the logarithm
function. Many values of these functions, including an analog of the real number
π, were shown to be transcendental over Fq(T ) (see [24, 29, 35, 36, 37]). In the
first part of this paper we focus on the analog of π, denoted, for each q, by Πq, and
we prove that its inverse has a “low” complexity. More precisely, we will prove the
following result in Section 3.

Theorem 2. Let q be a power of a prime number p. The complexity of the inverse
of Πq satisfies

(a) if q = 2 then

p

(
1

Π2
,m

)
= Θ(m2);

(b) if q ≥ 3 then

p

(
1

Πq
,m

)
= Θ(m).

Since any algebraic series has a linear complexity (by Theorem 1), the following
corollary yields.

Corollary 3. Π2 is transcendental over F2(T ).

The transcendence of Πq over Fq(T ) was first proved by Wade in 1941 (see
[36]) using an analog of a classical method of transcendence in zero characteristic.
Another proof was given by Yu in 1991 (see [37]), using the theory of Drinfeld
modules. De Mathan and Chérif, in 1993 (see [24]), using tools from Diophantine
approximation, proved a more general result, but in particular their result implied
the transcendence of Πq. Christol’s theorem has also been used as a combinatorial
criterion in order to prove the transcendence of Πq. This is what is usually called
an “automatic proof.” The non-automaticity, and also the transcendence, were first

1Consider for example the uncountable set of Laurent series of the form f(T ) =
∑

n≥0 anT−n!,

where (an)n≥0 is an arbitrary sequence with values in {0, 1}. Furthermore, it follows for instance
from [28] that f has sublinear complexity since its sequence of coefficients is a lacunary sequence.
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obtained by Allouche, in [6], via the so-called q-kernel. Notice that our proof here
is based also on Christol’s theorem, but we obtain the non-automaticity of Π2 over
F2(T ) as a consequence of the subword complexity.

Another motivation for this work comes from a paper of Beals and Thakur [11].
These authors proposed a classification of Laurent series by their space or time
complexity. They showed that some classes of Laurent series have good algebraic
properties (for instance, the class of Laurent series corresponding to any determinis-
tic space class at least linear form a field). The authors also place some of Carlitz’s
analogs in this computational hierarchy. Furthermore, motivated by Theorems 1
and 2, we consider the classes of Laurent series of at most polynomial complexity P
and of zero entropy Z (see Section 4), which seem to be good candidates to enjoy
some nice closure properties. In particular, we prove the following theorem.

Theorem 4. P and Z are vector spaces over Fq(T ).

We will also show that both classes are closed under some usual operations such
as the Hadamard product, the formal derivative and the Cartier operators. In
particular, Theorem 4 provides a criterion of linear independence over Fq(T ) (see
Proposition 28).

This paper is organized as follows. Some definitions and basic notions from
combinatorics on words are recalled in Section 2. Section 3 is devoted to the study
of the Carlitz’s analog of π; we prove Theorem 2. In Section 4 we study some
closure properties of Laurent series of “low” complexity and we prove Theorem 4.
Finally, we conclude in Section 5 with some remarks concerning the complexity
of the Cauchy product of two Laurent series, which seems to be a more difficult
problem.

2. Terminology and Basic Notions

In this section, we briefly recall some definitions and well-known results from com-
binatorics on words.

A word is a finite, as well as infinite, sequence of symbols (or letters) belonging to
a nonempty finite set A, called alphabet. We usually denote words by juxtaposition
of their symbols.

Given an alphabet A, we let A∗ := ∪∞k=0Ak denote the set of finite words over
A. Let V := a0a1 · · · am−1 ∈ A∗. Then the integer m is the length of V and is
denoted by |V |. The word of length 0 is the empty word, usually denoted by ε. We
also let Am denote the set of all finite words of length m and by AN the set of all
infinite words over A. We typically use the uppercase italic letters X,Y,Z, U, V,W
to represent elements of A∗. We also use bold lowercase letters a,b, c,d, e, f to
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represent infinite words. The elements of A are usually denoted by lowercase letters
a, b, c, · · · .

We say that V is a subword (or factor) of a finite word U if there exist some finite
words A, B, possibly empty, such that U = AV B, and we let V % U denote this
property. Otherwise, V ! U . We say that X is a prefix of U , and we let X ≺p U
denote this property, if there exists Y such that U = XY . We say that Y is a suffix
of U , and we let Y ≺s U denote this property, if there exists X such that U = XY .

Also, we say that a finite word V is a subword (or factor) of an infinite word
a = (an)n≥0 if there exists a nonnegative integer j such that V = ajaj+1 · · · aj+m−1.
The integer j is called an occurrence of V .

Let U, V,W be three finite words over A, V possibly empty. We let

i(U, V,W ) := {AV B, A ≺s U, B ≺p W, A,B possibly empty},

and
i(U, V,W )+ := {AV B, A ≺s U, B ≺p W, A,B nonempty}.

If n is a nonnegative integer, we let Un denote UU · · ·U︸ ︷︷ ︸
n times

. We also let U∞ denote

UU · · · , that is U concatenated (with itself) infinitely many times. An infinite word
a is periodic if there exists a finite word V such that a = V∞. An infinite word is
ultimately periodic if there exist two finite words U and V such that a = UV∞.

2.1. Subword Complexity and Topological Entropy

Let a = (an)n≥0 be an infinite word over A. As already mentioned in the introduc-
tion, the subword complexity of a is the function that associates with each m ∈ N
the number p(a,m) defined as follows

p(a,m) = Card{(aj , aj+1, . . . , aj+m−1), j ∈ N}.

We now give an useful tool in order to obtain bounds on the subword complexity
function (for a proof see, for example, [8], p. 300–302).

Lemma 5. Let a be an infinite word over an alphabet A. We have the following
properties:

• p(a,m) ≤ p(a,m + 1) ≤ cardA · p(a,m), for every integer m ≥ 0;

• p(a,m + n) ≤ p(a,m)p(a, n), for all integers m,n ≥ 0.

The (topological) entropy of a is defined as follows

h(a) = lim
m→∞

log p(a,m)
m

.
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Notice that this definition makes sense because the function log p(a,m) is sub-
additive.

Let Fq be the finite field with q elements, where q is a power of a prime number
p. In this paper, we are interested in Laurent series with coefficients in Fq. Let
n0 ∈ N and consider

f(T ) =
+∞∑

n=−n0

anT−n ∈ Fq((T−1)).

Let m be a nonnegative integer. We define the complexity of f , denoted by
p(f,m), as being equal to the complexity of the infinite word a = (an)n≥0. We
also define the entropy of f , denoted by h(f), as being equal to the entropy of the
infinite word a = (an)n≥0.

3. An Analog of Π

In 1935, Carlitz [17] introduced for function fields in positive characteristic an analog
of the exponential function defined over C∞, which is the completion of the algebraic
closure of Fq((T−1)) (this is the natural analog of the field of complex numbers).
In order to get good properties analogous to the complex exponential, the resulting
analog, z → eC(z), satisfies

eC(0) = 0, d/dz(eC(z)) = 1 and eC(Tz) = TeC(z) + eC(z)q.

This is what is called the Carlitz exponential and the action u → Tu + uq leads
to the definition of the Carlitz Fq[T ]-module, which is in fact a particular case of a
Drinfeld module. The Carlitz exponential, eC(z), can be defined by the following
infinite product

eC(z) = z
∏

a∈Fq[T ], a'=0

(1− z

aΠ̃q

)

where

Π̃q = (−T )
q

q−1

∞∏

j=1

(
1− 1

T qj−1

)−1

.

Since ez = 1 if, and only if, z ∈ 2πiZ and since eC(z) was constructed by analogy
such that eC(z) = 0 if, and only if, z ∈ Π̃qFq[T ] (in other words the kernel of eC(z)
is Π̃qFq[T ]), we get a good analog Π̃q of 2πi. Hence, it seems that a good analog of
π may be considered

Πq =
∞∏

j=1

(
1− 1

T qj−1

)−1

.
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We mention that we use the notation that appears in [35] (page 32 and 47) and
we consider the analog of π defined by the formula above (as explained in [35], page
48 and page 365). For more details about analogs given by the theory of Carlitz
modules, and in particular about the exponential function or its fundamental period
Π̃q, we refer the reader to the monographs [29] (pages 51, 362) and [35] (pages 32,
47, 365).

If we look for the Laurent series expansion of Πq, we obtain that

Πq =
∞∏

j=1

(
1− 1

T qj−1

)−1

=
∑

n≥0

anT−n,

where an is defined as the number of partitions of n whose parts take values in
I = {qj − 1, j ≥ 1}, taken modulo p. To compute the complexity of Πq, we
would like to find a closed formula or some recurrence relations for the sequence of
partitions (an)n≥0. This question seems quite difficult and, unfortunately, we are
not able to solve it at this moment.

However, it was shown in [6] that the inverse of Πq has the following simple
Laurent series expansion

1
Πq

=
∞∏

j=1

(
1− 1

T qj−1

)
=

∞∑

n=0

pnT−n

where the sequence pq = (p(n))n≥0 is defined as follows

pn =






1 if n = 0;
(−1)card J if there exists a nonempty set J ⊂ N∗ such that n =

∑
j∈J (qj − 1);

0 if there is no set J ⊂ N∗ such that n =
∑

j∈J (qj − 1).
(2)

Remark 6. In [16], the authors show, using a well-known result of Fraenkel [27],
that a nonnegative integer n can be written of the form n =

∑
i≥0 ai(qi − 1), where

ai ∈ {0, 1, . . . , k − 1}, if, and only if, n is a multiple of q − 1. If it is the case, then
n has a unique representation of this form.

3.1. Proof of Part (a) of Theorem 2

In this subsection we study the sequence p2 = (p(2)
n )n≥0, defined by the formula (2)

in the case where q = 2. More precisely:

p(2)
n =

{
1 if n = 0 or if there exists J ⊂ N∗ such that n =

∑
j∈J (2j − 1);

0 otherwise.
(3)

In order to simplify the notation, in the rest of this subsection we set pn := p(2)
n

so that p2 = p0p1p2 · · · . For every n ≥ 1, we let Wn denote the factor of p2 that



INTEGERS: 11B (2011) 8

occurs between positions 2n − 1 and 2n+1 − 2, that is:

Wn := p2n−1 · · · p2n+1−2.

We also set W0 := 1. Observe that |Wn| = 2n. With this notation the infinite word
p2 can be factorized as:

p2 = 1︸︷︷︸
W0

10︸︷︷︸
W1

1100︸︷︷︸
W2

11011000︸ ︷︷ ︸
W3

· · · = W0W1W2 · · · .

Remark 7. The sequence p2 is related to von Neumann’s sequence (see [7], Theo-
rem 2). In [7], the authors proved that p2 is the infinite fixed point beginning with
1 of the morphism σ defined by σ(1) = 110 and σ(0) = 0.

There is a classical theorem of Pansiot that describes the asymptotic behavior
of the subword complexity of pure morphic sequences in function of the order of
growth of letters (see [32]). Note that Cassaigne and Nicolas [18] recently gave a
very clear and detailed exposition of the proof of this theorem. An important step
towards establishing Pansiot’s theorem is the following result which corresponds to
Theorem 4.7.66 in [18].

Theorem 8. Let a ∈ AN be a purely morphic sequence and let σ be the morphism
that generates a. If a is not ultimately periodic and if infinitely many distinct
factors of a are bounded under σ, then p(a,m) = Θ(m2).

We recall that a word U ∈ A∗ is said to be bounded under a morphism σ if
|σn(U)| remains bounded when n tends to ∞. Following Example 4.7.67 of [18],
one can use Theorem 8 to easily deduce that p(p2,m) = Θ(m2). Indeed, the infinite
sequence p2 is not ultimately periodic since the word 10n1 is a factor of p2 for every
n ∈ N. Furthermore, for every positive integer n, the word 0n is a factor of a that
is bounded under σ.

In an unpublished note [5], Allouche showed the weaker result that the complexity
of the sequence p2 satisfies

p(p2,m) ≥ Cm log m,

for some positive constant C and every positive integer m. The elementary proof
given by the author is based on the morphism σ but does not use Pansiot’s theorem.

We provide below an elementary proof in which we use neither Pansiot’s theorem
nor the morphism σ. One interest for such a proof is that it leads to a more precise
result (the hidden constants in Theorem 8 are explicitly given). Furthermore, the
approach we use for the case q = 2 naturally extends to the case q > 2.
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In [7], the authors also showed that, for every n ≥ 2, we have

Wn = 1W1W2 · · ·Wn−10. (4)

Since the subword Wn ends with 0, we can define Un by Wn := Un0, for every
n ≥ 1. Thus, U1 = 1, U2 = 110. For every n ≥ 1, we have

Un+1 = UnUn0. (5)

Lemma 9. For every n ≥ 2, there exists a word Zn such that Wn = 1Zn10n

and 0n−1 ! Zn (in other words Wn ends with exactly n zeros and Zn does not
contain blocks of 0 of length larger than n − 2). This is equivalent to saying that
Un = 1Zn10n−1 and 0n−1 ! Zn.

Proof. We argue by induction on n. For n = 2, W2 = 1100 ends with two zeros and
obviously there are no other zeros. We assume that Wn ends with n zeros and does
not contain any other block of zeros of length greater than n − 2. We show that
this statement holds for n + 1. By (5),

Wn+1 = Un+10 = UnUn00.

As Un ends exactly with n − 1 zeros (by the induction hypothesis), then Wn+1

also ends with n + 1 zeros. Now, Un = 1Zn10n−1 and 0n−1 ! Zn; so we have
Wn+1 = 1Zn10n−11Zn10n−100 = 1Zn+110n+1, where Zn+1 := Zn10n−11Zn. Since
0n−1 ! Zn, then 0n ! Zn+1. This completes the proof.

Lemma 10. For every n ≥ 1, let An := {U2
n0k, k ≥ 1}. Then p2 ∈ AN

n.

Proof. Let n ≥ 1. By definition of Wn and Un and using the relation (4), the infinite
word p2 can be factorized as:

p2 = 1W1W2 · · ·Wn−1︸ ︷︷ ︸
Un

Un0︸︷︷︸
Wn

Un+10︸ ︷︷ ︸
Wn+1

Un+20︸ ︷︷ ︸
Wn+2

· · · . (6)

We prove that for every positive integer k, there exist a positive integer r and
k1, k2, . . . , kr ∈ N∗ such that:

Un+k = U2
n0k1U2

n0k2 · · ·U2
n0kr . (7)

We argue by induction on k. For k = 1, we have Un+1 = UnUn0 = U2
n0. We

suppose that the relation (7) is true for k and we show it for k + 1. By (5)

Un+k+1 = Un+kUn+k0 = U2
n0k1U2

n0k2 · · ·U2
n0krU2

n0k1U2
n0k2 · · ·U2

n0kr+1.

By Eq. (6), this ends the proof.
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Remark 11. In fact, in Eq. (7), one can easily see that kr = k and ki < k, for
i < r. Hence, we also have the following expression for Wn+k:

Wn+k = U2
n0k1U2

n0k2 · · ·U2
n0k+1.

Fix m ∈ N,m ≥ 2. Then, there is a unique integer n such that:

2n−1 < m ≤ 2n. (8)

Lemma 12. Let m ∈ N. All distinct words of length m of p2 occur in the prefix:

Pm = W0W1 · · ·Wm.

Proof. Let m and n be two positive integers satisfying (8).
We show that all distinct words of length m occur in the prefix

Pm = W0W1W2 · · ·Wn−1Wn · · ·Wm = Un Un0︸︷︷︸
Wn

UnUn00︸ ︷︷ ︸
Wn+1

UnUn0UnUn000︸ ︷︷ ︸
Wn+2

· · ·Wm;

the second identity following from (4) and (5).
Notice that we cannot choose a shorter prefix because, for instance, the word 0m

first occurs in Wm.
By Remark 11, Wi ends with UnUn0i−n+1, for every i ≥ n + 1 and there are no

other block of zeros of length greater than i− n + 1. Hence, all the words UnUn0k,
with 0 ≤ k ≤ m−n+1, are factors of Pm. More precisely, we can easily prove that

If Bn := {UnUn0k, 0 ≤ k ≤ m− n + 1}, thenPm ∈ B∗n.

After the prefixe Pm, it is not possible to see new different subwords of length m.
Indeed, suppose that there exists a word F of length m such that F%Wm+1Wm+2Wm+3 · · ·
and F ! Pm.

Since 1 + |Un| = 2n ≥ m and using Lemma 10, F must occur in the words
Un0kUn, with k ≥ m−n + 1. But since Un ends with n− 1 zeros (by Lemma 9), F
must be equal to 0m or 0iRi, where i ≥ m− n + 2 and Ri ≺p Un, or F % Un. But
all these words already appear in Pm. This contradicts our assumption.

3.1.1. An Upper Bound for p( 1
Π2

, m)

In this part we prove the following result:

p(p2,m) ≤ (m− log2 m)(m + log2 m + 2)
2

+ 2m. (9)

In order to find all different factors of length m that occur in p2, it suffices, by
Lemmas 10 and 12, to consider factors appearing in the word UnUn and in the sets
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i(Un, 0k, Un), where 1 ≤ k ≤ m− n. To these, we add the word 0m, which cannot
occur neither in UnUn nor i(Un, 0k, Un).

In the word UnUn we can find at most |Un| distinct words of length m. Since
|Un| = 2n − 1 and 2n−1 < m ≤ 2n, the number of different factors of length m that
occur in UnUn is at most 2m− 1.

Also, it is not difficult to see that
∣∣i(Un, 0k, Un)

∣∣ ∩Am ≤ m− k + 1.
The number of distinct subwords occurring in all these sets, for 1 ≤ k ≤ m− n,

is less than or equal to:

m−n∑

k=1

(m− k + 1) = (m + 1)(m− n)− (m− n)(m− n + 1)
2

.

Counting all these words and using the fact that 2n−1 < m ≤ 2n, we obtain that:

p(p2,m) ≤ 2m +
(m− n)(m + n + 1)

2
<

(m− log2 m)(m + log2 m + 2)
2

+ 2m

as claimed.

3.1.2. A Lower Bound for p( 1
Π2

, m)

In this part we prove the following result:

p(p2,m) ≥ (m− log2 m)(m− log2 m + 1)
2

. (10)

By Lemma 12, we have to look for distinct words of length m occuring in
WnWn+1 · · ·Wm.

In order to prove this proposition, we use the final blocks of 0 from each Wi.
These blocks are increasing (as we have shown in Lemma 9). First, in the word Wm

we find for the first time the word of length m: 0m.
In the set i(Wm−1, ε,Wm), we find two distinct words of length m that do not

occur previously (10m−1 and 0m−11) since there are no other words containing
blocks of zeros of length m− 1 in i(Wk, ε,Wk+1), for k < m− 1.

More generally, fix k such that n ≤ k ≤ m− 2. Since

WkWk+1 = 1Zk10k

︸ ︷︷ ︸
Wk

1Zk+110k+1

︸ ︷︷ ︸
Wk+1

,

in i(Wk, ε,Wk+1) we find m − k + 1 words of length m of the form αk0kβk. More
precisely, the words we count here are the following Sm−k−110k, Sm−k−210k1,
Sm−k−310k1T1,..., S10k1Tm−k−2, 0k1Tm−k−1, where Si ≺s Zk and Ti ≺p Zk+1,
|Si| = |Ti| = i, for every integer i, 1 ≤ i ≤ m− k − 1.

All these words do not occur before, that is in i(Ws, ε,Ws+1), for s < k, since
there are no blocks of zeros of length k before the word Wk (according to Lemma
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9). Also, in i(Ws, ε,Ws+1), for s > k, we focus on the words αs0sβs and hence they
are different from all the words seen before (because k < s).

Consequently, the total number of subwords of length m of the form αk0kβk

considered before, is equal to

1 + 2 + . . . + (m− n + 1) =
(m− n + 1)(m− n + 2)

2
.

Since 2n−1 < m ≤ 2n we obtain the desired lower bound.

Proof of Part (a) of Theorem 2. Follows from inequalities (9) and (10).

We mention that a consequence of Theorem 2 and Theorem 1 is the following
result on transcendence.

Corollary 13. Let K be a finite field and let (p(2)
n )n≥0 be the sequence defined in

(3). Let us consider the associated formal series over K:

f(T ) :=
∑

n≥0

p(2)
n T−n ∈ K[[[T−1]].

Then f is transcendental over K(T ).

Notice that, if K = F2 then the formal series f coincide with 1/Π2 and hence
Corollary 13 implies Corollary 3.

3.2. Proof of Part (b) of Theorem 2

In this section we study the sequence pq = (p(q)
n )n≥0 defined by the formula (2) in

the case where q ≥ 3. In the following, we will consider the case q = pn, where
p ≥ 3. We will discuss at the end the case q = 2n.

Proposition 14. Let q ≥ 3. For every positive integer m, we have

p(pq,m) ≤ (2q + 4)m + 2q − 5.

In particular, this proves Part (b) of Theorem 2. Indeed, we do not have to find
a lower bound for the complexity function, as the sequence pq is not ultimately
periodic (see Remark 19) and thus, by Morse and Hedlund’s theorem we have

p(pq,m) ≥ m + 1,

for any m ≥ 0.
In order to simplify the notation, we set in the sequel pn := p(q)

n so that pq =
p0p1p2 · · · .
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For every n ≥ 1, we let Wn denote the factor of pq defined in the following
manner

Wn := pqn−1 · · · pqn+1−2.

Let us fix W0 := 0q−2 = 00 · · · 0︸ ︷︷ ︸
q−2

and α0 := q − 2. Thus W0 = 0α0 .

In other words, Wn is the factor of pq occurring between positions qn − 1 and
qn+1 − 2. Notice that |Wn| = qn(q − 1).

With this notation the infinite word pq can be factorized as follows

pq = 100 · · · 0︸ ︷︷ ︸
W0

(−1)00 · · · 0︸ ︷︷ ︸
W1

(−1) · · · 00100 · · · 0︸ ︷︷ ︸
W2

(−1)00 · · · .

Now, we prove some lemmas that we use in order to bound from above the
complexity function of pq.

First, we can deduce from Remark 6 the following properties of pq:

for any k, n ∈ N∗ such that k ∈
[
2(qn − 1), qn+1 − 2

]
, we have pk = 0; (11)

for any k, n ∈ N∗ such that k < qn − 1, we have pk = −pk+(qn−1). (12)

For a word W = a1a2 · · · al ∈ {0, 1,−1}l then set Ŵ := (−a1)(−a2) · · · (−al).

Lemma 15. For every n ≥ 1, we have the following

Wn = (−1)Ŵ0Ŵ1 · · · Ŵn−10αn

with αn = (qn+1 − 1)− 2(qn − 1).

Proof. Obviously, the word Wn begins with −1 since pqn−1 = −1. In order to prove
the relation above, it suffices to split Wn into subwords as follows

Wn = pqn−1︸ ︷︷ ︸
−1

0 · · · 0︸ ︷︷ ︸
W ′

0

p(qn−1)+(q−1) · · · p(qn−1)+(q2−2)︸ ︷︷ ︸
W ′

1

p(qn−1)+(q2−1) · · · p(qn−1)+(q3−2)︸ ︷︷ ︸
W ′

2

· · · p(qn−1)+(qn−1−1) · · · p(qn−1)+(qn−2)︸ ︷︷ ︸
W ′

n−1

p2(qn−1) · · · pqn+1−2︸ ︷︷ ︸
0αn

.

Since p(qn−1)+k = −pk, for every k < qn − 1 (by (12)), we obtain that W ′
i = Ŵi,

for 0 ≤ i ≤ n− 1. The relation (11) ends the proof.

Since the subword Wn ends with 0αn , we can define Un as prefix of Wn such that
Wn := Un0αn , for every n ≥ 1. Notice that |Un| = qn − 1.
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Lemma 16. For every n ≥ 1, we have Un+1 = UnÛn0αn .

Proof. By Lemma 15, Un = (−1)Ŵ0Ŵ1 · · · Ŵn−1. Consequently:

Un+1 = (−1)Ŵ0Ŵ1 · · · Ŵn−1︸ ︷︷ ︸
Un

Ŵn = UnÛn0αn = UnÛn0αn .

Remark 17. Since q ≥ 3 we have αn ≥ |Un| for every n ≥ 1. Moreover (αn)n≥1 is
a positive and increasing sequence.

Lemma 18. For every n ≥ 1, let An := {Un, Ûn, 0αi , i ≥ n}. Then pq ∈ AN
n.

Proof. Let n ≥ 1. By definition of Wn and Un, the infinite word pq can be factorized
as:

pq = 1W0W1 · · ·Wn−1︸ ︷︷ ︸
Vn

WnWn+1 · · · .

By Lemma 15, since Un = (−1)Ŵ0Ŵ1 · · · Ŵn−1 we have that the prefix Vn :=
1W0W1 · · ·Wn−1 = Ûn.

Also, by Lemma 16 Wn+1 = UnÛn0αn0αn+1 , Wn+2 = UnÛn0αnÛnUn0αn+αn+1+αn+2 .
Iterating, Wn can be written as a concatenation of Un, Ûn and 0αi , i ≥ n. More
precisely, pq can be written in the following manner:

pq = Ûn Un0αn

︸ ︷︷ ︸
Wn

UnÛn0αn+αn+1

︸ ︷︷ ︸
Wn+1

UnÛn0αnÛnUn0αn+αn+1+αn+2

︸ ︷︷ ︸
Wn+2

· · · .

Proof of Proposition 14. Let m ∈ N. Then there exists a unique positive integer n,
such that:

qn−1 − 1 ≤ m < qn − 1.

By Lemma 18 and Remark 17, between the words Un and Ûn (when they do
not occur consecutively), there are only blocks of zeros of length greater than αn ≥
|Un| = qn − 1 and, thus, greater than m. Hence, all distinct factors of length m
appear in the following words: UnÛn, ÛnUn, 0αnUn, 0αnÛn, Un0αn and Ûn0αn .

In UnÛn we can find at most |UnÛn|−m + 1 = 2|Un|−m + 1 factors at length
m. In ÛnUn we can find at most (m − 1) new different factors of length m: they
form the set i(Ûn, ε, Un)+.

In 0αnUn (respectively 0αnÛn, Un0αn , Ûn0αn) we can find at most m (respectively
m − 1) new different factors (they belong to i(0αn , ε, Un)+ ∪ {0m}, respectively
i(0αn , ε, Ûn)+, i(Un, ε, 0αn)+ and i(Ûn, ε, 0αn)+).
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Consequently, the number of such subwords is at most 2|Un| + 4m − 3. Since
Un = qn − 1 = q(qn−1 − 1) + q − 1 ≤ qm + q − 1 we obtain that:

p(pq,m) ≤ 2(qm + q − 1) + 4m− 3 ≤ (2q + 4)m + 2q − 5.

Remark 19. It is not difficult to prove that pq is not ultimately periodic. Indeed,
recall that pq = W0W1W2 · · · . Using Lemma 15 and the Remark 17,

pq = A10l1A20l2 · · ·Ai0li · · · , (13)

where Ai, i ≥ 1, are finite words such that Ai ,= 0|Ai| and (li)i≥1 is a strictly
increasing sequence.

Remark 20. This part concerns the case where q ≥ 3. If the characteristic of the
field is 2, that is, if q = 2n, where n ≥ 2, then, in the proof we have −1 = 1, but
the structure of pq remains the same (hence, the proof follows as previously). We
will certainly have a lower complexity, but pq is still of the form (13), and thus
m + 1 ≤ p(pq,m) ≤ (2q + 4)m + 2q − 5.

4. Closure Properties of Two Classes of Laurent Series

The subword complexity offers a natural way to classify Laurent series with coef-
ficients in a finite field. In this section we study some closure properties of the
following classes:

P = {f ∈ Fq((T−1)), there exists K such that p(f,m) = O(mK)},

and
Z = {f ∈ Fq((T−1)), such that h(f) = 0}.

Clearly, P ⊂ Z. We recall that h denotes the topological entropy, as defined in
Section 2. We have already seen, in Theorem 1, that all algebraic Laurent series
belong to P. Also, by Theorem 2, 1/Πq belongs to P. Hence, P, and more generally
Z, seem to be two relevant sets for this classification.

The main result we will prove in this section is Theorem 4. We will also prove
that P and Z are closed under usual operations such as the Hadamard product, the
formal derivative and the Cartier operators.

4.1. Proof of Theorem 4

The proof of Theorem 4 is a straightforward consequence of Propositions 21 and 27
below.
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Proposition 21. Let f and g be two Laurent series belonging to Fq((T−1)). Then,
for every integer m ≥ 1, we have:

p(f,m)
p(g,m)

≤ p(f + g,m) ≤ p(f,m)p(g,m).

Proof. Let f(T ) :=
∑

i≥−i1
aiT−i and g(T ) :=

∑
i≥−i2

biT−i , i1, i2 ∈ N.
By definition of the complexity of Laurent series (see Section (2.1)), for every

m ∈ N:
p(f(T ) + g(T ),m) = p(

∑

i≥0

ciT
−i,m),

where ci := (ai + bi) ∈ Fq. Thus, we may suppose that

f(T ) :=
∑

i≥0

aiT
−i and g(T ) :=

∑

i≥0

biT
−i.

We let a := (ai)i≥0 , b := (bi)i≥0 and c := (ci)i≥0.
For the sake of simplicity, throughout this part, we set x(m) := p(f,m) and

y(m) := p(g,m). Let Lf,m := {U1, U2, . . . , Ux(m)} (resp. Lg,m := {V1, V2, . . . , Vy(m)})
be the set of different factors of length m of the sequence of coefficients of f (resp.
of g). As the sequence of coefficients of the Laurent series f + g is obtained by the
termwise addition of the sequence of coefficients of f and the sequence of coefficients
of g, we deduce that:

Lf+g,m ⊆ {Ui + Vj , 1 ≤ i ≤ x(m), 1 ≤ j ≤ y(m)}

where Lf+g,m is the set of all distinct factors of length m occurring in c, and where
the sum of two words with the same length A = a1 · · · am and B = b1 · · · bm is
defined as

A + B = (a1 + b1) · · · (am + bm)

(each sum being considered over Fq). Consequently, p(f + g,m) ≤ p(f,m)p(g,m).
We shall now prove the first inequality using Dirichlet’s principle.
Notice that if x(m) < y(m) the inequality is obvious.
Now assume that x(m) ≥ y(m). Notice that if we extract x(m) subwords of

length m from b, there is at least one word which appears at least
⌈

x(m)
y(m)

⌉
times.

For every fixed m, there exist exactly x(m) different factors of a. The subwords
of c will be obtained adding factors of length m of a with factors of length m of b.

Consider all distinct factors of length m of a: U1, U2, . . . , Ux(m), that occur in
positions i1, i2, . . . , ixm . Looking at the same positions in b, we have x(m) factors
of length m belonging to Lg,m. Since x(m) ≥ y(m), by the previous remark there
is one word W which occurs at least

⌈
x(m)
y(m)

⌉
times in b.

Since we have Ui + W ,= Uj + W if Ui ,= Uj , the conclusion follows immediately.
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Remark 22. In fact, the first inequality can also be easily obtained from the second
one, but we chose here to give a more intuitive proof. Indeed, if we let f := h1 +h2,
g := −h2, where h1, h2 ∈ Fq((T−1)), the first relation follows immediately, since
p(h2,m) = p(−h2,m), for any m ∈ N.

Remark 23. If f ∈ Fq((T−1)) and A ∈ Fq[T ] then, obviously, there exists a
constant C (depending on the degree of the polynomial A) such that, for any m ∈ N,

p(f + A,m) ≤ p(f,m) + C.

Remark 24. Related to Proposition 21, one can naturally ask if it is possible to
attain the bounds in Proposition 21. By Remark 22, it suffices to show that this is
possible for one inequality. In the sequel, we give an example of two Laurent series
of linear complexity whose sum has quadratic complexity.

Let α and β be two irrational numbers such that 1, α and β are linearly inde-
pendent over Q. For any i ∈ {α,β} we consider the following rotations:

Ri : T1 → T1 x → {x + i},

where T1 is the circle R/Z, identified to the interval [0, 1).
We can partition T1 in two intervals I0

i and I1
i , delimited by 0 and 1− i. We let

νi denote the coding function:

νi(x) =
{

0 if x ∈ I0
i ;

1 if x ∈ I1
i .

We define a := (an)n≥0 such that, for any n ≥ 0,

an = να(Rn
α(0)) = να({nα})

and b := (an)n≥0 such that, for any n ≥ 0,

bn = νβ(Rn
β(0)) = νβ({nβ}).

Let us consider f(T ) =
∑

n≥0 anT−n and g(T ) =
∑

n≥0 bnT−n be two elements
of F3((T−1)). We will prove that, for any m ∈ N, we have

p(f + g,m) = p(f,m)p(g,m). (14)

We thus provide an example of two infinite words whose sum has a maximal com-
plexity, in view of Proposition 21.

A sequence of the form (ν(Rn
α(x)))n≥0 is a particular case of a rotation sequence.

It is not difficult to see that the complexity of the sequence a satisfies p(a,m) = m+1
for any m ∈ N and hence a is Sturmian. For a complete proof, the reader may
consult the monograph [33], but also the original paper of Morse and Hedlund [31],
where they prove that every Sturmian sequence is a rotation sequence.
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Let m ∈ N. Let
La,m := {U1, U2, . . . , Um+1}

and
Lb,m := {V1, V2, . . . , Vm+1}

be the set of distinct factors of length m that occur in a, resp. in b.
In order to prove the relation (14), we show that

La+b,m = {Ui + Vj , 1 ≤ i, j ≤ m + 1}. (15)

Let I := [0, 1). It is well-known (see, for example, Proposition 6.1.7 in [33]) that,
using the definition of the sequence a and b, respectively, we can split I in m + 1
intervals of positive length J1, J2, . . . , Jm+1 (resp., L1, L2, . . . , Lm+1) corresponding
to U1, U2, . . . , Um+1 (resp., V1, V2, . . . , Vm+1) such that:

{nα} ∈ Jk if, and only if, anan+1 · · · an+m−1 = Uk

(resp., {nβ} ∈ Lk if, and only if, bnbn+1 · · · bn+m−1 = Vk).

In other words, {nα} ∈ Jk (resp. {nβ} ∈ Lk) if, and only if, the factor Uk (resp.,
Vk) occurs in a (resp., b) at the position n.

Now we use the well-known Kronecker theorem (see for example [30]) which
asserts that the sequence of fractional parts ({nα}, {nβ})n≥0 is dense in the square
[0, 1)2 since by assumption 1, α and β are linearly independent over Q.

In particular, this implies that, for any pair (i, j) ∈ {0, 1, . . . ,m + 1}2, there
exists a positive integer n such that ({nα}, {nβ}) ∈ Ji × Lk. This is equivalently
to saying that, for any pair of factors (Ui, Vj) ∈ La,m × Lb,m, there exists n such
that Ui = anan+1 · · · an+m−1 and Vk = bnbn+1 · · · bn+m−1. This proves Equality
(15) and more precisely, since we are in characteristic 3 (i.e., 1 + 1 = 2 ,= 0), we
have the following equality

CardLa+b,m = CardLa,m · CardLb,m = (m + 1)2.

We mention that the idea of our construction here appears, briefly, in Theorem
7.6.6 in [8].

We point out the following consequence of Proposition 21.

Corollary 25. Let f1, f2, . . . , fl ∈ Fq((T−1)). Then for every m ∈ N and for every
integer i ∈ [1; l] we have the following

p(fi,m)∏
j '=i,1≤j≤l p(fj ,m)

≤ p(f1 + f2 + · · ·+ fl,m) ≤
∏

1≤j≤l

p(fj ,m).
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Notice that the bounds in these inequalities can be attained, just generalizing the
construction above (choose l Sturmian sequences of irrational slopes α1,α2, . . . ,αl,
such that 1,α1,α2, . . . ,αl are linearly independent over Q).

We shall prove next that the sets P and Z are closed under multiplication by
rational functions. Let us begin with a particular case, that is, the multiplication
by a polynomial.

Proposition 26. Let b(T ) ∈ Fq[T ] and f(T ) ∈ Fq((T−1)). Then there is a positive
constant M (depending only on b(T )), such that for all m ∈ N:

p(bf,m) ≤ M p(f,m).

Proof. Let
b(T ) := b0T

r + b1T
r−1 + · · ·+ br ∈ Fq[T ]

and
f(T ) :=

∑

i≥−i0

aiT
−i ∈ Fq((T−1)), i0 ∈ N.

Then

b(T )f(T ) = b(T )




−1∑

i=−i0

aiT
−i +

∑

i≥0

aiT
−i





= b(T )

( −1∑

i=−i0

aiT
−i

)
+ b(T )




∑

i≥0

aiT
−i



 .

(16)

Now, the product

b(T )(
∑

i≥0

aiT
−i) = T r(b0 + b1T

−1 + · · ·+ brT
−r)(

∑

i≥0

aiT
−i)

:= T r(
∑

j≥0

cjT
−j)

(17)

where the sequence c := (cj)j≥0 is defined as follows

cj =

{
b0aj + b1aj−1 + · · ·+ bja0 if j < r

b0aj + b1aj−1 + · · ·+ braj−r if j ≥ r.

According to the definition of complexity (see Section 2.1) and using (16) and
(17), for every m ∈ N, we have

p (b(t)f(T ),m) = p



b(T )(
∑

i≥0

aiT
−i),m



 = p



(
∑

j≥r

cjT
−j),m



 .
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Our aim is to count the number of words of the form cjcj+1 · · · cj+m−1, when
j ≥ r. By definition of c, we notice that for j ≥ r these words depend only on
aj−raj−r+1 · · · aj+m−1 and on b0, b1, · · · , br, which are fixed. The number of words
aj−raj−r+1 · · · aj+m−1 is exactly p(f,m + r). By Lemma 5 we obtain

p(f,m + r) < p(f, r)p(f,m) = Mp(f,m),

where M = p(f, r). More precisely, we can bound M from above by qr, since this
is the number of all possible words of length r over an alphabet of q letters.

Proposition 27. Let r(T ) ∈ Fq(T ) and f(T ) =
∑

n≥−n0
anT−n ∈ Fq((T−1)).

Then for every m ∈ N, there is a positive constant M , depending only on r(T ) and
n0, such that:

p(rf,m) ≤ Mp(f,m).

Proof. Let f(T ) :=
∑

i≥−i0
aiT−i ∈ Fq((T−1)), i0 ∈ N and m ∈ N. By Proposition

21, we have

p(r(T )f(T ),m) ≤ p

(
r(T )(

−1∑

i=−i0

aiT
−i),m

)
· p



r(T )(
∑

i≥0

aiT
−i),m



 .

Proposition 26 implies that

p

(
r(T )(

−1∑

i=−i0

aiT
−i),m

)
≤ R

where R does not depend on m. Thus, we may assume that f(T ) =
∑

i≥0 aiT−i.
We divide the proof of Proposition 27 into five steps.

Step 1. Since r(T ) ∈ Fq(T ), the sequence of coefficients of r is ultimately periodic.
Thus, there exist two positive integers S,L ∈ N∗ and p1 ∈ Fq[T ] (with degree equal
to S − 1) and p2 ∈ Fq[T ] (with degree equal to L− 1) such that

r(T ) =
P (T )
Q(T )

=
p1(T )
TS−1

+
p2(T )

TS+L−1
(1 + T−L + T−2L + · · · ).

Hence

r(T )f(T ) =
1

TS−1
p1(T )f(T )

︸ ︷︷ ︸
g(T )

+ p2(T )
1

TS+L−1
f(T )(1 + T−L + T−2L · · · )

︸ ︷︷ ︸
h(T )

:=
∑

n≥0

fnT−n.

(18)

We let d = (d(n))n≥0 denote the sequence of coefficients of g(T ) and by e =
(en)n≥0 the sequence of coefficients of h(T ). Clearly f := (fn)n≥0 is such that
fn = dn + en, for every n ∈ N.
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Fix m ∈ N. Our aim is to bound from above p(f,m). First, assume that m is a
multiple of L and set m = kL, where k ∈ N.

In order to bound the complexity of f, we will consider separately the sequences
e and d.
Step 2. We now study the sequence e, defined in (18).

In order to describe the sequence e, we shall first study the product

f(T )(1 + T−L + T−2L + · · · ) = (
∑

i≥0

aiT
−i)(1 + T−L + T−2L + · · · ) :=

∑

j≥0

cjT
−j .

Expanding this product, it is not difficult to see that cl = al if l < L and
ckL+l = al + al+L + · · ·+ akL+l, for k ≥ 1 and 0 ≤ l ≤ L− 1.

By definition of cn, n ∈ N, we can easily obtain

cn+L − cn = an+L.

Consequently, for all s ∈ N, we have

cn+sL − cn = an+sL + an+(s−1)L + · · ·+ an+L. (19)

Our goal is now to study the subwords of c with length m = kL.
Let j ≥ 0 and let cjcj+1cj+2 · · · cj+kL−1 be a finite factor of length m = kL.

Using identity (19), we can split the factor above in k words of length L as follows

cjcj+1cj+2 · · · cj+kL−1 = cjcj+1 · · · cj+L−1︸ ︷︷ ︸
D1

cj+Lcj+L+1 · · · cj+2L−1︸ ︷︷ ︸
D2

· · ·

... cj+(k−1)Lcj+(k−1)L+1 · · · cj+kL−1︸ ︷︷ ︸
Dk

where the words Di, 2 ≤ i ≤ k depend only on D1 and a. More precisely, we have

D2 = (cj + aj+L)(cj+1 + aj+L+1) · · · (cj+L−1 + aj+2L−1)
...

Dk = (cj + aj+L + · · ·+ aj+(k−1)L)(cj+1 + aj+L+1 + · · ·+ aj+(k−1)L+1) · · ·
(cj+L−1 + aj+2L−1 + · · ·+ aj+kL−1).

Consequently, the word cjcj+1cj+2 · · · cj+m−1 only depends on D1, which is a
factor of length L, determined by r(T ), and on the word aj+L · · · aj+kL−1, factor of
length kL− L = m− L of a.

Now, let us return to the sequence e. We recall that

∑

n≥0

enT−n =
p2(T )

TS+L−1

∑

j≥0

cjT
−j . (20)
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Using a similar argument to the one used in the proof of Proposition 26 and using
Identity (20), a factor of the form ejej+1 · · · ej+m−1, j ∈ N∗, only depends on the
coefficients of p2, which are fixed, and on cj−L+1 · · · cj−1cj · · · cj+m−1. Hence, the
number of distinct factors of the form ejej+1 · · · ej+m−1 only depends on the number
of distinct factors of the form aj+1aj+2 · · · aj+(k−1)L and on the number of factors
of length L that occur in c.
Step 3. We now describe the sequence d, defined in (18).

Doing the same proof as for Proposition 26, we obtain that the number of words
dj · · · dj+m−1, when j ∈ N, only depends on the coefficients of p1, which are fixed,
and on the number of distinct factors aj−S+1 · · · aj · · · aj+m−1.
Step 4. We now give an upper bound for the complexity of f, when m is a multiple
of L.

According to steps 2 and 3, the number of distinct factors of the form fjfj+1 · · · fj+m−1,
j ∈ N, depends on the number of distinct factors of the form aj−S+1aj+2 · · · aj+m−1

and on the number of factors of length L that occur in c.
Consequently,

p(rf,m) ≤ p(f,m + S − 1)qL,

and by Lemma 5

p(f,m + S − 1) ≤ p(f,m)p(f, S − 1) ≤ qS−1p(f,m).

Finally,
p(rf,m) ≤ qL+S−1p(f,m).

Step 5. We now give an upper bound for the complexity of f, when m is not a
multiple of L.

In this case, let us suppose that m = kL + l, 1 ≤ l ≤ L− 1. Using Lemma 5 and
according to Step 4:

p(rf,m) = p(rf, kL + l) ≤ p(rf, kL)p(rf, l) ≤ p(rf, kL)p(rf, L− 1)
≤ qL−1p(rf, kL) ≤ qS+2L−2p(f,m).

As a straightforward consequence of Theorem 4, we give a criterion of linear
independence over Fq(T ) for two Laurent series in terms of theirs complexity.

Proposition 28. Let f, g ∈ Fq((T−1)) be two irrational Laurent series such that:

lim
m→∞

p(f,m)
p(g,m)

= ∞.

Then f and g are linearly independent over the field Fq(T ).
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4.2. Other Closure Properties

In this section we prove that both classes P and Z are closed under various natural
operations such as the Hadamard product, the formal derivative and the Cartier
operators.

4.2.1. Hadamard Product

Let f(T ) :=
∑

n≥−n1
anT−n, g(T ) :=

∑
n≥−n2

bnT−n be two Laurent series in
Fq((T−1)). The Hadamard product of f and g is defined as follows

f / g =
∑

n≥−min(n1,n2)

anbnT−n.

As in the case of addition of two Laurent series (see Proposition 21) one can
easily obtain the following.

Proposition 29. Let f and g be two Laurent series belonging to Fq((T−1)). Then,
for every m ∈ N, we have

p(f,m)
p(g,m)

≤ p(f / g,m) ≤ p(f,m)p(g,m).

The proof is similar to the one of Proposition 21. The details are left to the
reader.

4.2.2. Formal Derivative

As an easy application of Proposition 29, we present here the following result. First,
let us recall the definition of the formal derivative.

Definition 30. Let n0 ∈ N and consider f(T ) =
∑+∞

n=−n0
anT−n ∈ Fq((T−1)). The

formal derivative of f is defined as follows

f ′(T ) =
+∞∑

n=−n0

(−n mod p)anT−n+1 ∈ Fq((T−1)).

We now prove the following result.

Proposition 31. Let f(T ) ∈ Fq((T−1)) and k be a positive integer. If f (k) is the
derivative of order k of f , then there exists a positive constant M , such that, for all
m ∈ N, we have

p(f (k),m) ≤ M p(f,m).
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Proof. The derivative of order k of f is “almost” the Hadamard product of this series
and a rational function. By definition of p(f,m), we may suppose that f(T ) :=∑

n≥0 anT−n ∈ Fq[[T−1]]. Then

f (k)(T ) =
∑

n≥k

((−n)(−n− 1) · · · (−n− k + 1)an)T−n−k := T−k
∑

n≥k

bnanT−n,

where bn := (−n)(−n− 1) · · · (−n− k + 1) mod p. Since bn+p = bn, the sequence
(bn)n≥0 is periodic of period p. Hence, let g(T ) denote the series whose coefficients
are precisely given by (bn)n≥0. Thus there exists a positive constant M such that:

p(g,m) ≤ M.

By Proposition 29,

p(f (k),m) ≤ p(g,m)p(f,m) ≤ Mp(f,m),

which completes the proof.

4.2.3. Cartier’s Operators

In the fields of positive characteristic, there are natural operators, called Cartier
operators, that play an important role in many problems in arithmetic in positive
characteristic [19, 20, 25, 34]. In particular, if we consider the field of Laurent series
with coefficients in Fq, we have the following definition.

Definition 32. Let f(T ) =
∑

i≥0 aiT−i ∈ Fq[[T−1]] and r such that 0 ≤ r < q.
The Cartier operator Λr is the linear transformation defined by

Λr(
∑

i≥0

aiT
−i) =

∑

i≥0

aqi+rT
−i.

The classes P and Z are closed under this operator. More precisely, we prove
the following result.

Proposition 33. Let f(T ) ∈ Fq[[T−1]] and 0 ≤ r < q. Then there is M such that,
for every m ∈ N we have the following

p(Λr(f),m) ≤ qp(f,m)q.

Proof. Let a := (an)n≥0 be the sequence of coefficients of f and m ∈ N. In order
to compute p(Λr(f),m), we have to look at factors of the form

aqj+raqj+q+r · · · aqj+(m−1)q+r,

for all j ∈ N. But these only depend on factors of the form

aqj+raqj+r+1 · · · aqj+(m−1)q+r.
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Using Lemma 5, we obtain that:

p(Λr(f),m) ≤ p(f, (m− 1)q + 1) ≤ qp(f,m− 1)q ≤ qp(f,m)q.

5. Cauchy Product of Laurent Series

In the previous section, we proved that P and Z are vector spaces over Fq(T ). This
naturally raises the question whether or not these classes form a ring, i.e., whether
they are closed under the usual Cauchy product. There are actually some particular
cases of Laurent series with low complexity whose product still belongs to P. In
this section we discuss the case of automatic Laurent series. However, we are not
able to prove whether P or Z are or not rings or fields.

5.1. Products of Automatic Laurent Series

A particular case of Laurent series stable by multiplication is the class of k-automatic
series, k being a positive integer:

Autk = {f(T ) =
∑

n≥0

anT−n ∈ Fq((T−n)), a = (an)n≥0 is k-automatic}.

Since any k-automatic sequence has at most a linear complexity, Autk ⊂ P. A
theorem of Allouche and Shallit [9] states that the set Autk is a ring. In particular,
this implies that, if f and g belong to Autk, then p(fg,m) = O(m). Notice also
that, in the case where k is a power of p, the characteristic of the field Fq((T−1)),
the result follows from Christol’s theorem.

Remark 34. However, we do not know whether or not this property is still true
if we replace Autk by ∪k≥2Autk. More precisely, if we consider two Laurent series
f and g, which are respectively k-automatic and l-automatic, k and l being multi-
plicatively independent, we do not know if the product fg still belongs to P. In the
sequel, we give a particular example of two such Laurent series for which we prove
that their product is still in P.

We now focus on the product of series of the form:

f(T ) =
∑

n≥0

T−dn

∈ Fq((T−1)).

It is not difficult to prove that p(f,m) = O(m). The reader may refer to [28] for
more general results concerning the complexity of lacunary series. The fact that the
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complexity of f is linear is also implied by the fact that f ∈ Autd. Notice also that
f is transcendental over Fq(T ) if q is not a power of d. This is an easy consequence
of Christol’s theorem and a theorem of Cobham [22].

In this section we will prove the following result.

Theorem 35. Let d and e be two multiplicatively independent positive integers (that
is log d

log e is irrational) and let f(T ) =
∑

n≥0 T−dn
and g(T ) =

∑
n≥0 T−en

be two
Laurent series in Fq((T−1)). Then we have

p(fg,m) = O(m4).

Let h(T ) := f(T )g(T ). Then h(T ) =
∑

n≥0 anT−n where the sequence a =
(an)n≥0 is defined as follows

an := (the number of pairs (k, l) ∈ N2 that verify n = dk + el) mod p.

The main clue of the proof is the following consequence of the theory of S-unit
equations (see [2] for a proof).

Lemma 36. Let d and e be two multiplicatively independent positive integers. There
is a finite number of solutions (k1, k2, l1, l2) ∈ N4, k1 ,= k2, l1 ,= l2, that satisfy the
equation:

dk1 + el1 = dk2 + el2 .

Obviously, we have the following consequence concerning the sequence a =
(an)n≥0:

Corollary 37. There exists a positive integer N such that, for every n ≥ N we
have an ∈ {0, 1}. Moreover, an = 1 if, and only if, there exists one unique pair
(k, l) ∈ N2 such that n = dk + el.

We now prove Theorem 35. For the sake of simplicity, we consider d = 2 and
e = 3, but the proof is exactly the same in the general case.

Proof. Let b := (bn)n≥2 and c := (cn)n≥2 be the sequences defined as follows

bn =
{

1 if there exists a pair (k, l) ∈ N2 such that n = 2k + 3l, 2k > 3l;
0 otherwise,

cn =
{

1 if there exists a pair (k, l) ∈ N2 such that n = 2k + 3l, 2k < 3l;
0 otherwise.

Let h1(T ) :=
∑

n≥2 bnT−n and h2(T ) :=
∑

n≥2 cnT−n be the series associated
with b and c, respectively. Using Corollary 37, there exists a polynomial P ∈ Fq[T ],
with degree less than N , such that h can be written as follows

h(T ) = h1(T ) + h2(T ) + P (T ).
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By Remark 23, there is C ∈ R such that, for any m ∈ N:

p(h,m) ≤ p(h1 + h2,m) + C.

In the sequel, we will show that p(h1,m) = p(h2,m) = O(m2). Theorem 35 will
then follow by Proposition 21.

We now study the subword complexity of the sequence of coefficients b :=
(bn)n≥2. The proof is similar to the proof of Theorem 2. The complexity of the
sequence c can be treated in essentially the same way as for b.
Step 1. For all n ≥ 1, we let Wn denote the factor of b that occurs between
positions 2n + 1 and 2n+1, that is

Wn := b2n+30b2n+2b2n+31 · · · b2n+1 .

We also set W0 := 1.
Observe that |Wn| = 2n.
With this notation the infinite word b can be factorized as:

b = 1︸︷︷︸
W0

10︸︷︷︸
W1

1010︸︷︷︸
W2

10100000︸ ︷︷ ︸
W3

· · · = W0W1W2 · · · . (21)

Step 2. Let n ≥ 1 and mn be the greatest integer such that 2n + 3mn ≤ 2n+1.
This is equivalent to saying that mn is such that

2n + 3mn < 2n+1 < 2n + 3mn+1.

Notice also that mn = n0log3 21.
With this notation we have (for n ≥ 5)

Wn = 101051 · · · 10αi · · · 10αmn 10βn ,

where αi = 2 · 3i−1 − 1, for 1 ≤ i ≤ mn, and βn = 2n − 3mn ≥ 0.
Let Un denote the prefix of Wn such that Wn := Un0βn .
Notice that (mn)n≥0 is an increasing sequence. Hence (αmn)n≥0 is increasing.

Consequently, Un ≺p Un+1 and more generally, Un ≺p Wi, for every i ≥ n + 1.
Step 3. Let M ∈ N. Our aim is to give an upper bound for the number of distinct
factors of length M occurring in b. In order to do this, we will show that there
exists an integer N such that all these factors occur either in

W0W1 · · ·WN

or

A0 := {Z ∈ AM ; Z is of the form 0jP or 0i10jP, P ≺p UN , i, j ≥ 0, }.
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Let N = 2log2(M + 1)3+ 3. Doing a simple computation we obtain that αmN ≥
M . Notice also that, for any i ≥ N we have

αmi ≥ M.

This follows since (αmn)n≥0 is an increasing sequence.
Let V be a factor of length M of b. Suppose that V does not occur in the prefix

W0W1 · · ·WN . Then, by (21), V must occur in WNWN+1 · · · . Hence, V must
appear in some Wi, for i ≥ N + 1, or in

⋃
i≥N i(Wi, ε,Wi+1).

Let us suppose that V occurs in
⋃

i≥N i(Wi, ε,Wi+1). Since Wi ends with
0αmi 10βi , with αmi ≥ M , and since Wi+1 begins with UN and |UN | = 3mN +1 ≥ M ,
we have

AM ∩ (
⋃

i≥N

i(Wi, ε,Wi+1)) ⊂ A0.

Hence, if V occurs in
⋃

i≥N i(Wi, ε,Wi+1) then V ∈ A0.
Let us suppose that V occurs in some Wi, for i ≥ N + 1. By definition of Wi

and αi, for i ≥ N + 1 and by the fact that we have

Wi = 101051 · · · 10αmN 10αmN +1 · · · 10αmi 10βi = UN0αmN +1 · · · 10αmi 10βi .

By assumption, V does not occur in W0W1 · · ·WN ; hence V cannot occur in UN

which by definition is a prefix of WN . Consequently, V must be of the form 0r10s,
r, s ≥ 0. Indeed, since αmN ≥ M , all blocks of zeros that follow after UN (and
before the last digit 1 in Wi) are all longer than M . But the words of the form
0r10s, r, s ≥ 0 belong also to A0.

Hence, we proved that if V does not occur in the prefix W0W1 · · ·WN , then V
belongs to A0, as desired.
Step 4. In the previous step we showed that all distinct factors of length M occur
in the prefix W0W1 · · ·WN or in the set A0.

Since

|W0W1 · · ·WN | =
N∑

i=0

2i = 2N+1 − 1

and since N = 2log2(M + 1)3+ 3 we have

2N+1 − 1 ≤ 2log2(M+1)+5 − 1 = 32M + 31,

and the number of distinct factors that occur in W0W1 · · ·WN is less than or equal
to 32M + 31.

Also, by an easy computation, we obtain that the cardinality of the set A0 is

CardA0 =
M2

2
+

3M
2

.

Finally, p(b,m) = p(h1,m) = O(m2). In the same manner, one could prove that
p(h2,m) = O(m2). This achieves the proof of Theorem 35, in view of Proposition
21.
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5.2. A More Difficult Case

Set
θ(T ) := 1 + 2

∑

n≥1

T−n2
∈ Fq((T−1)), q ≥ 3.

The function θ(T ) is related to the classical Jacobi theta function. One can easily
prove that:

p(θ,m) = Θ(m2).

In particular this implies the transcendence of θ(T ) over Fq(T ), for any q ≥ 3. Notice
that this also implies the transcendence over Q(T ) of the same Laurent series, but
viewed as an element of Q((T−1)). Since θ(T ) ∈ P, it would be interesting to know
whether or not θ(T )2 belongs also to P. Notice that

θ(T )2 =
∑

n≥1

r2(n)T−n

where r2(n) is the number of representations of n as sum of two squares of integers
mod p. In the rich bibliography concerning Jacobi theta function (see, for instance,
[26, 30]), there is the following well-known formula

r2(n) = 4(d1(n)− d3(n))

where di(n) denotes the number of divisors of n congruent to i modulo 4, for i ∈
{1, 3}, and we can easily deduce that r2(n) is related to a multiplicative function
of n (that is an arithmetic function f which satisfies the property that if m and
n are coprime then f(mn) = f(m)f(n)). Recall that we would like to study the
subword complexity of r2(n)n≥0, that is the number of distinct factors of the form
r2(j)r2(j + 1) · · · r2(j + m− 1), when j ∈ N. Hence, it would be useful to describe
some additive properties of r2(n)n≥0; for instance, it would be interesting to find
some relations between r2(j + N) and r2(j), for some positive integers j and N .
This seems to be a rather difficult question about which we are not able to say
anything conclusive.

6. Conclusion

It would also be interesting to investigate the following general question: is it true
that Carlitz’s analogs of classical constants all have a “low” complexity (i.e., poly-
nomial or subexponential)?

The first clue in this direction are the examples provided by Theorems 1 and 2.
Notice also that a positive answer would reinforce the differences between R and
Fq((T−1)) as hinted at in Section 1. When investigating these problems, we need, in
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general, the Laurent series expansions of such functions. In this context, one has to
mention the work of Berthé [12, 13, 14, 15], where some Laurent series expansions
of Carlitz’s functions are described.
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[12] V. Berthé, Automates et valeurs de transcendance du logarithme de Carlitz, Acta Arith.
LXVI 4 (1994), 369–390.
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[16] H. Cameron and D. Wood, Pm numbers, ambiguity, and regularity RAIRO Inform. Theor.
App., 27 (1993), 261–275.

[17] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math.
J., 1 (1935), 137–168.

[18] J. Cassaigne and F. Nicolas, Factor complexity, in: Combinatorics, Automata and Number
Theory. Encyclopedia of Mathematics and its Applications, vol. 135, Cambridge University,
Press, Cambridge (2010), 179–261.

[19] G. Christol, Ensembles presque périodiques k-reconnaissables, Theoret. Comput. Sci. 9
(1979), 141–145.

[20] G. Christol, Opération de Cartier et vecteurs de Witt, Séminaire Delange-Pisot-Poitou 12
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