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Abstract. In this paper we prove a series of results on the size of distance sets corresponding to
sets in the Euclidean space. These distances are generated by bounded convex sets and the results

depend explicitly on the geometry of these sets. We also use a diophantine mechanism to convert

continuous results into distance set estimates for discrete point sets.
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Introduction

Let E be a compact subset of R
d. Let ∆(E) = {|x−y| : x, y ∈ E}, where | · | denotes the usual

Euclidean metric. The celebrated Falconer conjecture says that if the Hausdorff dimension of E
is greater than d

2
, then ∆(E) has positive Lebesgue measure. Falconer ([Falconer86]) obtained

this conclusion if the Hausdorff dimension of E is greater than d+1
2

. His result was improved by
Bourgain in [Bourgain94]. The best known result in the plane is due to Tom Wolff who proved
in [Wolff99] that the distance set has positive Lebesgue measure if the Hausdorff dimension of
E is greater than 4

3 .
All these results are based on the curvature of the unit circle of the Euclidean metric. For

if the Euclidean metric is replaced by the l∞ metric, for example, the situation becomes very
different. To see this, let E = C2m ×C2m, m > 1 an even integer, where C2m is the Cantor-type
subset of [0, 1] consisting of numbers whose base 2m expansions contain only even numbers. One
can check that the distance set with respect to the l∞ metric has measure 0 for any m, whereas
the Hausdorff dimension of this set is 2 log(m)

log(2m) → 2 as m → ∞.
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The curvature is not the end of the story. The aforementioned results of Falconer, Bourgain
and Wolff also used the smoothness of the unit circle. Falconer did so explicitly by using the
formula for the Fourier transform of the characteristic function of an Euclidean annulus, whereas
Bourgain and Wolff utilized it implicitly by using a reduction to circular averages which again
relies on asymptotics of the Fourier transform of the Lebesgue measure on the unit circle of the
distance which does not hold in the absence of smoothness. See [Mattila87] and [Sjölin93] for a
background on these reductions.

The purpose of this paper to study the Falconer conjecture in the absence of smoothness
using geometric features of the Fourier transforms of characteristic functions of convex sets in
Euclidean space. We also develop a conversion mechanism based on diophantine approximation
which allows us to obtain geometric combinatorial results from analogous facts in a continuous
setting.

Continuous results: variants of the Falconer distance problem

Definition. Let K be a bounded convex set in R
d symmetric about the origin, and let || · ||K

be the norm induced by K. The K-distance set of a set E ⊂ R
d is the set ∆K(E) = {||x − y||K :

x, y ∈ E}.

Our main results are the following.

Theorem 0.1. Let E ⊂ [0, 1]d. Let K be a bounded convex set in R
d and let σK denote the

Lebesgue measure on ∂K.
i) Suppose that |σ̂K(ξ)| ≤ C|ξ|−γ for some γ > 0, and the Hausdorff dimension of E is greater

than d − γ. Then ∆K(E) has positive Lebesgue measure.
ii) Let d = 1. Assume that we have an estimate∫

S1
sup
R>1

Rγ |σ̂K(Rω)|dω ≤ C

and the Hausdorff dimension of E is greater than 2 − γ for some γ > 0. Then ∆K(ρE) has
positive Lebesgue measure for almost every ρ ∈ S1, viewed (in the obvious way) as an element
of SO(2).

iii) Suppose that

(0.1) |σ̂K(ξ)| ≤ Cγ(|ξ|−1),

where γ is a convex function with γ(0) = 0, and σK is the Lebesgue measure on ∂K. Let
E ⊂ [0, 1]d. Suppose that there exists a Borel measure on E such that

(0.2)
∫

|µ̂(ξ)|2γ(|ξ|−1)dξ < ∞.

Then ∆K(E) has positive Lebesgue measure.
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Corollary 0.2. Let K be a bounded symmetric convex set in R
d.

i) Let d = 2. Let Sθ = supx∈K x·ω, where ω = (cos(θ), sin(θ)), and denote by l(θ, ε) the length
of the chord C(θ, ε) = {x ∈ K : x · ω = Sθ − ε}. Suppose that ∂K has everywhere non-vanishing
curvature in the sense that there exists a positive uniform constant c such that

(0.3) l(θ, ε) ≤ c
√

ε.

Let E ⊂ [0, 1]2 be a set of Hausdorff dimension α > 1
2
. Then the Hausdorff dimension of

∆K(E) is at least min(1, α − 1
2). If furthermore α > 3

2 , then ∆K(E) has positive Lebesgue
measure.

ii) Suppose that E ⊂ [0, 1]d is a set of Hausdorff dimension α > d+1
2 , and that ∂K is smooth

and has non-vanishing Gaussian curvature. Then ∆K(E) has positive Lebesgue measure.

Corollary 0.3. Let E ⊂ [0, 1]d.
i) Assume that d = 2. Let K be a symmetric convex polygon, and assume that the Hausdorff

dimension of E is greater than 1. Then ∆K(ρE) has positive Lebesgue measure for almost every
ρ ∈ S1. Moreover, this result is sharp in the sense that for every α < 1 there exists a set E ⊂ R

2

of Hausdorff dimension α such that ∆K(E) has Lebesgue measure 0 with respect to every convex
body K.

ii) Let K be a bounded symmetric convex body in R
2 (with no additional regularity assump-

tions). Suppose that the Hausdorff dimension of E is greater than 3
2 . Then ∆K(ρE) has positive

Lebesgue measure for almost every ρ ∈ S1.
iii) Suppose that E is radial in the sense that E = {rω : ω ∈ Sd−1; r ∈ E0}, where E0 ⊂ [0, 1].

Suppose that the Hausdorff dimension of E is greater than d+1
2 . Suppose that K is any symmetric

bounded convex set in the plane or a symmetric bounded convex set in higher dimensions with a
finite type boundary in the sense defined above. Then ∆K(E) has positive Lebesgue measure.

Discrete theorems and Continuous → Discrete conversion mechanism

Definition. We say that S ⊂ R
d is well-distributed if there exists a C > 0 such that every cube

of side-length C contains at least one element of S.

Definition. We say that a set S ⊂ R
d is separated if there exists a constant c > 0 such that

|a − a′| ≥ c for every a, a′ ∈ A.

Definition. Let K be a bounded symmetric convex set and let 0 < αK ≤ d. We say that the
(K, αK) Falconer conjecture holds if for every compact E ⊂ R

d of dimension greater than αK ,
∆K(E) has positive Lebesgue measure.

The essence of the conversion mechanism is captured by the following result and its proof.

Theorem 0.4. Let S be a well-distributed and separated subset of R
d. Let Sq = S ∩ [0, q]d.

Suppose that (K, αK) Falconer conjecture holds. Then there exists a constant c > 0 such that
#∆K(Sq) ≥ cq

d
αk .

In view of Theorem 0.4, every result stated above in Theorem 0.1 and Corollaries 0.2–0.3 has
a discrete analog. Moreover, we have the following application.
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Corollary 0.5. Let S be a well-distributed and separated subset of R
d.

i) Let K be a bounded symmetric convex set. Suppose that

(0.4)
∣∣∣∣∫

∂K

e−2πix·ξdσK(x)
∣∣∣∣ ≤ Cγ(|ξ|−1),

where γ is a convex increasing function with γ(0) = 0 and σK is the Lebesgue measure on ∂K.
Then ∆K(S) is not separated.

ii) Let K be any bounded symmetric convex set in R
2. Then ∆K(ρS) is not separated for

almost every ρ ∈ SO(2).

This complements the following result, proved in [Io�La2002] for d = 2 and in [Kol2003] for
d ≥ 3.

Theorem 0.6. Let S be well-distributed subset of R
d, and let ∆K,N (S) = ∆K(S) ∩ [0, N ].

(i) Assume that d = 2 and limN→∞#∆K,N (S) · N−3/2 = 0. Then K is a polygon (possibly
with infinitely many sides). If moreover #∆K,N (S) ≤ CN1+α for some 0 < α < 1/2, then the
number of sides of K whose length is greater than δ is bounded by C′δ−2α.

(iii) Let d ≥ 2. If #∆K,N(S) ≤ CN (in particular, this holds if ∆K(S) is separated), then
K is a polytope with finitely many faces.

Stationary phase tools

In the proofs of our results, we shall make use of the following estimates on the Fourier
transform of the surface carried measure, which we collect in a single theorem.

Theorem 0.7. Let K be a bounded convex set in R
d, and let σK denote the Lebesgue measure

on ∂K.
i) Suppose that ∂K is smooth and has everywhere non-vanishing Gaussian curvature. Then

(see e.g. [Herz62])

(0.5) |σ̂K(ξ)| ≤ C|ξ|− d−1
2 .

ii) Suppose that d = 2 and ∂K has everywhere non-vanishing curvature in the sense of part
i) of Corollary 0.3. Then (0.5) holds without any additional smoothness assumptions. See, e.g.
[BRT98].

iii) (See [BHI02]) Without any additional assumptions,(∫
Sd−1

|σ̂K(Rω)|2dω

) 1
2

≤ CR− d−1
2 ,

(0.6)
(∫

Sd−1
|χ̂K(Rω)|2dω

) 1
2

≤ CR− d+1
2 .
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iv) (See [BCIPT03]). If d = 2 and K is any bounded convex set, then

(0.7)
(∫

S1
sup
R>1

R
1
2 |σ̂K(Rω)|2dω

) 1
2

≤ C.

v) (See [BCT97]) Suppose that K is a polyhedron. Then

(0.8)
∫

Sd−1
|σ̂K(Rω)|dω ≤ C logd−1(R)R−(d−1).

Moreover, the same proof shows that the maximal version holds, namely there is a k such that

(0.9)
∫

Sd−1
sup
R>1

Rd−1|σ̂K(Rω)|dω � logk(R).

Proof of Theorem 0.1, Corollary 0.2, and Corollary 0.3

Let AR,δ = {x ∈ R
d : R ≤ ||x||K ≤ R+δ} denote an annulus of radius R and width δ, δ 	 R.

Since the Hausdorff dimension of E is greater than d − γ, there is a non-zero Borel measure
µ on E such that the following energy integral is finite:

(1.1)
∫

|ξ|−γ |µ̂(ξ)|2dξ < ∞.

For the existence of such a measure, see, for example, [Falconer85].
Cover ∆K(E) by intervals {[Ri, Ri + δi]}. It follows that

0 < (µ × µ)(E × E) ≤
∑

(µ × µ){(x, y) : Ri ≤ ||x − y||K ≤ Ri + δi}

≤ C
∑

i

∫
χARi,δi

(x − y)dµ(x)dµ(y) ≤ C
∑

i

∫
χ̂ARi,δi

(ξ)|µ̂(ξ)|2dξ

(1.2) ≤ C′∑
i

δi

∫
|ξ|−γ |µ̂(ξ)|2dξ,

where the last line follows by the decay assumption and the definition of Lebesgue measure on
a hyper-surface. By (1.1), the last expression in (1.2) is bounded by C′′∑

i δi.

Proof of Theorem 0.1(ii): draft.
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Suppose that |∆ρK(E)| = 0 for all ρ ∈ U , where U is a subset of S1 of positive (1-dimensional)
measure. It follows from the construction of µ (or can be deduced from (1.1)) that µ({x}) = 0
for any x, hence from Fubini’s theorem we have µ × µ{(x, x) : x ∈ E} = 0. Thus

0 < µ × µ(E × E) =
∑

k

µ × µ{(x, y) ∈ E × E : 2−k ≤ ‖x − y‖ρK ≤ 2−k+1}.

Denote the sets on the right by Xρ,k. For each ρ, there are k(ρ) and n(ρ) such that µ ×
µ(Xρ,k(ρ)) > 1/n(ρ). Finally, we choose k, n so that |Uk,n| > 0, where

Uk,n = {ρ : k(ρ) = k, n(ρ) = n}.
We now restrict our attention to ρ ∈ Uk,n; in fact, we will assume without loss of generality that
U = Uk,n. Rescaling the set if necessary, we may also assume that k = 0.

Fix a small ε > 0, to be determined later. For every ρ ∈ U we may then choose a covering of
∆ρK(E)∩ [1, 2] by intervals Iρ

i such that
∑

i |Iρ
i | < ε. Let Aρ

i = {x : ‖x‖ρK ∈ Iρ
i }. We may take

Iρ
i ⊂ [1, 2]. Then there is a constant c0 such that for each ρ ∈ U ,

0 < c0 < (µ × µ)(Xρ,k) ≤
∑

(µ × µ){(x, y) ∈ E × E : ||x − y||ρK ∈ Iρ
i }

≤ C
∑

i

∫
χAρ

i
(x − y)dµ(x)dµ(y) ≤ C

∑
i

∫
|χ̂Aρ

i
(ξ)||µ̂(ξ)|2dξ

(1.3) ≤ Cε

∫
sup

1≤R≤2
|σ̂R(ρK)(ξ)||µ̂(ξ)|2dξ.

Observe that
|σ̂R(ρK)(ξ)| = |R2σ̂ρK(Rξ)| = |R2σ̂K(ρ(Rξ))|

for R as above.
Integrating this over U , we get

0 < c0|U | < Cε

∫
U

dρ

∫
sup

1≤R≤2
|σ̂K(ρ(Rξ))||µ̂(ξ)|2dξ

(1.4) ≤ Cε

∫
dξ|µ̂(ξ)|2|ξ|−γ

∫
U

sup
1≤R≤2

|σ̂K(ρ(Rξ))| |Rξ|γdρ.

We claim that the last integral (in ρ) is bounded by a constant independent of ξ. Indeed, for
|ξ| < 1 this is trivial, since then the integrand is uniformly bounded. For |ξ| ≥ 1, we let t = R|ξ|
and ω = ξ/|ξ|, then the integral is bounded by∫

S1
sup
t≥1

|σ̂K(ρ(tω))| | t

R
|γdρ ≤ C

∫
S1

sup
t≥1

|σ̂K(tω)| tγ dω.
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At the last line we changed variables and used the lower bound on R. But this is bounded by
our assumption on K.

Returning to (1.4), we conclude that

0 < c0|U | < Cε

∫
|µ̂(ξ)|2|ξ|−γ dξ ≤ C′ε,

a contradiction if ε was chosen small enough.

The third part follows by an identical argument.

Proof of Corollary 0.2. The second part of Corollary 0.2 follows from the first part of Theorem
0.1 and the first part of Theorem 0.7. We now prove the first part. We shall need the following
classical result. See, for example, [BRT98] for a simple proof.

Lemma 1.1. Let K ⊂ R
2 be a convex body. Let ω = (cos(θ), sin(θ)). As before, let Sθ =

supx∈K x · ω, and denote by l(θ, ε) the length of the chord C(θ, ε) = {x ∈ K : x · ω = Sθ − ε}.
Let σK denote the Lebesgue measure on ∂K. Then, for a constant C independent of smoothness
and curvature, we have

(1.6) |χ̂K(tω)| � C

t

(
l

(
θ,

1
2t

)
+ l

(
−θ,

1
2t

))
.

Lemma 1.2. Let K be a convex bounded symmetric set in the plane. Assume, in addition, that
∂K has non-vanishing curvature in the sense of Corollary 0.2 (i). Let AR,δ = {x : R ≤ ||x||K ≤
R + δ}. Then for R, |ξ| > 1, δ 	 1 we have

(1.7)
∣∣χ̂AR,δ

(ξ)
∣∣ ≤ CR

1
2 |ξ|− 1

2 min{|ξ|−1, δ},
where C is a constant that depends only on K.

We shall prove Lemma 1.2 in a moment. We first complete the proof of the first part of
Corollary 0.2.

Fix β so that 0 ≤ β ≤ 1 and α > 1
2

+β, where α is the Hausdorff dimension of E. Then there
is a non-zero Borel measure µ supported on E such that the following energy integral is finite:

(1.8)
∫

|ξ|− 3
2+β |µ̂(ξ)|2dξ < ∞

(cf. the proof of Theorem 0.1).
Let K be a convex bounded symmetric planar set satisfying the assumptions of Corollary 0.3

(i), and let AR,δ be as above. We have by Lemma 1.2,∫ ∫
χAR,δ

(x − y)dµ(x)dµ(y) =
∫

χ̂AR,δ
(ξ)|µ̂(ξ)|2dξ



8 INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A08

≤ CR
1
2

(∫
|ξ|>δ−1

|ξ|− 3
2 |µ̂(ξ)|2dξ + δ

∫
|ξ|≤δ−1

|ξ|− 1
2 |µ̂(ξ)|2dξ

)

≤ CR
1
2

(
δβ

∫
|ξ|>δ−1

|ξ|− 3
2+β |µ̂(ξ)|2dξ + δ · δβ−1

∫
|ξ|≤δ−1

|ξ|− 3
2+β |µ̂(ξ)|2dξ

)

(1.9) ≤ CR
1
2 δβ.

It follows that

(1.10) (µ × µ){(x, y) : R ≤ ||x − y||K ≤ R + δ} ≤ CR
1
2 δβ .

Cover ∆K(E) by intervals {[Ri, Ri + δi]}. Suppose, without loss of generality, that Ri ≤ 10.
It follows that

(1.11) 0 < (µ × µ)(E × E) ≤
∑

(µ × µ){(x, y) : Ri ≤ ||x − y||K ≤ Ri + δi} ≤ C
∑

i

δβ
i .

This shows that the β-dimensional Hausdorff measure of ∆K(E) is non-zero for any β <
min(1, α− 1

2
), so that the Hausdorff dimension of ∆K(E) is at least min(1, α− 1

2
). If furthermore

α > 3
2 , we may take β = 1 and thus deduce that ∆K(E) has positive Lebesgue measure.

We now prove Lemma 1.2. For a fixed ξ, let

(1.12) F (s) = s2χ̂K(sξ).

We have

(1.13) χ̂AR,δ
(ξ) = F (R + δ) − F (R).

By the mean value theorem,

(1.14) |F (R + δ) − F (R)| ≤ δ sup
s∈(R,R+δ)

|F ′(s)|.

Now,

(1.15) F ′(s) = 2sχ̂K(sξ) + s2

∫
K

e−2πisξ·x(−2πiξ · x)dx = I + II.

By Lemma 1.1 and the non-vanishing curvature assumption,

(1.16) I ≤ Cs|sξ|− 3
2 ≤ C|ξ|− 3

2 .

On the other hand, following word for word the proof of Lemma 1.1 given in [BRT98] we
obtain that

(1.17) II ≤ Cs2|ξ||sξ|− 3
2 ≤ CR

1
2 |ξ|− 1

2 .

This proves the second estimate in (1.7). The first estimate follows from the inequality

(1.18) |F (R + δ) − F (R)| ≤ |F (R + δ)| + |F (R)| ≤ CR2|Rξ|− 3
2 ≤ CR

1
2 |ξ|− 3

2 ,

where we again used Lemma 1.1 and the non-vanishing curvature assumption.
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Proof of Corollary 0.3. Part i) follows from part ii) of Theorem 0.1 and part v) of Theorem
0.7. The sharpness result can be obtained as follows. Let 0 < s ≤ d. Let q1, q2, . . . , qi . . . be a
sequence of positive integers such that qi+1 ≥ qi

i . Let Ei = {x ∈ R
d : 0 ≤ xj ≤ 1, |xj − pj/qi| ≤

q
− d

s
i for some integers pj , j = 1, 2}. It is not hard to see (see e.g. [Falconer85], Chapter 8, or

[Wolff02]) that the Hausdorff dimension of E = ∩∞
i=1Ei is s. Also, ∆(E) ⊂ ⋂∞

i=1 ∆(Ei).

Let K be a bounded symmetric convex set in R
d, and let Pi = {p = (p1, p2, . . . , pd) : 0 ≤

pj ≤ qi}. Then {‖p − p′‖K : p, p′ ∈ Pi} ⊂ {‖p‖K : p ∈ Pi}, by translational invariance. The
cardinality of the latter set can be estimated trivially by #Pi ≤ (qi + 1)d. We conclude that

∆(Ei) is contained in at most C(qi + 1)d intervals of length bounded by C′q−
d
s

i . It follows that
the Hausdorff dimension of ∆(E) is at most s. Thus if s < 1, ∆(E) has Lebesgue measure 0.

Part ii) follows from Theorem 0.1 (ii) and Theorem 0.7 (iv).
Part iii) of Corollary 0.3 requires a bit of work. Let µ be a probability measure supported on

E with the following energy integral finite:∫
|ξ|− d−1

2 |µ̂(ξ)|2dξ < ∞.

Averaging over rotations if necessary, we may assume that µ is rotation-invariant. Thus µ̂ is
also rotation-invariant. Let F (s) = |µ̂(sω)|, ω ∈ Sd−1, and define AR,δ as in Lemma 1.2. We
first claim that

(1.19)
∫

Sd−1
|χ̂AR,δ

(rω)|dω < Cδr−
d−1
2 .

Indeed, by (0.6) and Cauchy-Schwarz we have∫
Sd−1

|χ̂K(rω)|dω < Cr−
d+1
2 .

Now the claim follows by the same calculation as in the proof of Lemma 1.2, with the above
inequality substituted for Lemma 1.1; the term analogous to II in the proof of Lemma 1.2 is
estimated by following the proof of (0.6) in [BHI02] and using Cauchy-Schwarz again.

We now have ∫ ∫
χAR,δ

(x − y)dµ(x)dµ(y) =
∫

χ̂AR,δ
(ξ)|µ̂(ξ)|2dξ

=
∫ ∫

Sd−1
χ̂AR,δ

(rω)|µ̂(rω)|2dωrd−1dr

≤
∫ ∫

|χ̂AR,δ
(rω)|dωF 2(r)rd−1dr

≤ Cδ

∫
r−

d−1
2 F 2(r)rd−1dr
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(1.20) = Cδ

∫
|ξ|− d−1

2 |µ̂(ξ)|2dξ ≤ C′δ

if α > d+1
2 where α is the Hausdorff dimension of E. The fourth line in (1.20) follows by (1.19).

The rest of the proof is exactly like that of Theorem 0.1.

Proof of Theorem 0.4 and Corollary 0.5.

Let p = (p1, . . . , pd). Let qi denote a sequence of positive integers such that qi+1 ≥ qi
i . This

sequence will be specified more precisely below. Let 0 < s ≤ d. Let

(2.1) Ei = {x ∈ [0, 1]d : |xj − pj/qi| ≤ q
− d

s
i for some p ∈ S}.

Let E =
⋂

i Ei. A standard calculation (see e.g. [Falconer85], Ch. 8) shows that the Hausdorff
dimension of E is s. Also, ∆(E) ⊂ ⋂i ∆(Ei).

Let Sq be defined as in the statement of Theorem 0.2. Suppose that #∆K(Sqi
) ≤ Cqβ

i for
a sequence qi going to infinity. By refining this sequence we can make sure that it satisfies the
growth condition above. It follows that ∆(Ei) can be covered by at most Cqβ

i intervals of length

C′q−
d
s

i . It follows that the Hausdorff dimension of ∆K(E) is at most sβ
d

.
On the other hand, by assumption, (K, αK) Falconer conjecture holds. Letting s = αK , we

see that αKβ
d ≥ 1, so that β ≥ d

αk
and we are done.

To prove Corollary 0.5 observe that the proof of Theorem 0.4 shows that if (0.4) holds, then
∆K(S∩[0,R]d)

Rd → ∞ as R → ∞. This shows that that ∆K(S) cannot be separated.
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