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Abstract
In this article I try to explain some aspects of the nature of ergodic theory, and in
particular why results concerning dynamical averages are interesting, and what we
feel to be the natural proofs of convergence of such averages.

1. Introduction

This article is based on a part of several lectures given in the instructional week of
the conference NUMERATION at the University of Leiden in June 2010. In it we
try to explain some aspects of the nature of ergodic theory, and in particular why
results concerning dynamical averages are interesting, and what we feel to be the
natural proofs of convergence of such averages. We have attempted to make the
article accessible to a broad audience.

2. Averages of 0-1 Sequences

Let

x := (x0, x1, · · ·)

be a sequence such that for each nonnegative integer n, xn is either 0 or 1. For
each n ≥ 1 set

an =
x0 + · · · + xn−1

n
.

Then an is the average of the sequence up to time (or position) n. Clearly

a := (a1, a2, . . .)
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is also a sequence, the sequence of averages, and for each n ≥ 1,

0 ≤ an ≤ 1.

In particular,
0 ≤ a = lim inf an ≤ lim sup an = a ≤ 1,

and the limit of this sequence exists if and only if a = a.

3. The Quasi-Cauchy Property of Averages

Averages of 0-1 sequences (and many real sequences otherwise defined) “seem to
converge”. That is, for each n ≥ 1,

(n + 1)an+1 = x0 + · · ·xn = nan + xn,

so
an+1 − an =

1
n

(xn − an+1)

and
|an+1 − an| =

1
n
|xn − an+1| ≤

1
n

.

In particular,
lim(an+1 − an) = 0.

That is, the sequence of averages is a so-called quasi-Cauchy sequence (see [1]).

4. Convergence of Quasi-Cauchy Sequences

Quasi-Cauchy sequences arise in diverse situations, and it is often difficult to deter-
mine whether or not they converge, and if so, to which limit. It is easy to construct
a zero-one sequence such that the quasi-Cauchy average sequence does not con-
verge. The usual constructions have a somewhat artificial feeling. Nevertheless,
there are sequences which seem natural, have the quasi-Cauchy property, and do
not converge. We know of two interesting examples which are not sequences of
averages.

Example 1. Let n be a positive integer. In a group of n people, each person selects
at random and simultaneously another person of the group. All of the selected
persons are then removed from the group, leaving a (random) number n1 < n of
people which form a new group. The new group then repeats independently the
selection and removal thus described, leaving n2 < n1 persons, and so forth until
either one person remains, or no persons remain. Denote by pn the probability that,
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at the end of this iteration initiated with a group of n persons, one person remains.
Then the sequence

p = (p1, p2, · · ·)

is a quasi-Cauchy sequence, and lim pn does not exist (see [8]).

Example 2. Again let n be a positive integer. In a group of n people, each
person selects independently and at random one of three subgroups to which to
belong, resulting in three groups with (random) numbers n1, n2, n3 of members;
n1 + n2 + n3 = n. Each of the subgroups is then partitioned (independently) in
the same manner to form three subsubgroups, and so forth. Subgroups having no
members or having only one member are removed from the process. Denote by tn
the expected value of the number of iterations up to complete removal, starting
initially with a group of n people. Then the sequence

(t1, t2/2, t3/3, · · ·)

is a (bounded) nonconvergent quasi-Cauchy sequence (see [J]).

To our knowledge, it is not easy to prove either of the above claims, nor to
determine the inferior and superior limits of these and similar sequences. At first
sight, one would think that both sequences converge.

5. Dynamical Averages

We next consider a general way in which averages of 0-1 sequences arise.
Let X be any set, and let

S : X → X

be a mapping from the set into itself. Let A be any subset of X. Using this data,
define a zero-one sequence for each x ∈ X by setting xn = 1 if Sn(x) ∈ A and
xn = 0 if not. That is

xn = 1A(Snx).

The corresponding averages are then functions of the point x given by

an(x) =
1
n

n−1∑

k=0

1A(Skx) =
x0 + · · · + xn−1

n
,

for n ≥ 1. We call such averages dynamical averages. Let us note in passing that
as before, for each x ∈ X,

a(x) = lim inf an(x)
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a(x) = lim sup an(x)

then 0 ≤ a(x) ≤ a(x) ≤ 1.
Interesting here is that the asymptotic behaviour for the averages arising from a

point x and its image Sx are the same. That is, for n ≥ 1,

nan(x) =
n−1∑

k=0

1A(Skx)

nan(Sx) =
n∑

k=1

1A(Skx),

so that we have
|an(x)− an(Sx)| ≤ 1

n
.

Hence the values of the functions a and a are the same on the forward orbit x, Sx, · · ·
of x. In particular, convergence of averages is a property of orbits of S.

6. Do Dynamical Averages Converge?

Up to now the discussion has centered on a broad general situation. To motivate
further the interest in this situation, we briefly describe a classical unsolved problem
which falls in this area.

Example 3. Let X := [0, 1). For x ∈ X define Sx := 10x mod 1 and set A :=
[3/10, 4, 10). Consider now the point x :=

√
2− 1 = 0.41421359 · · ·. Then it should

be clear that xn has the value 1 if the n-th digit in the decimal expansion of x
is 3, and otherwise has the value 0. The dynamical average an(x) is then the
proportion of threes in the first n digits of the decimal expansion of x. Computer
calculation rapidly leads us to believe that the limit lim an(x) exists and is equal
to 1/10. However, up to now no one has been able to prove this, or any similar
statement. Even worse, we can’t even show yet that a > 0. The choices of 10 and 3
have no meaning here - replace 10 by any integer greater than one and 3 with any
nonnegative integer less than it, and the difficulty persists. Numbers which possess
the correct frequencies of digits in a given base are said to be simply normal, and
it is unknown whether any irrational algebraic number is simply normal (or not) in
any base.

One could think (and perhaps correctly) that the basic difficulty in the preceding
problem arises from number theoretic complications - we know from many sources
that questions in this area can be very intricate. So here is another example in
which number theory seems to play less of a role.
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Example 4. Instead of defining the sequence we wish to consider in a dynamical
manner, we shall give it directly as a sequence of the symbols 1 and 2 as follows:

x := 22 11 2 1 22 1 22 11 · · ·

In this sequence, ones and twos alternate in groups of lengths either one or two, and
the sequence itself gives the length numbers. So the first 2 indicates that the first
group 22 has length two, the second 2 that the second group 11 has length two, and
so on, which defines the sequence uniquely given that we start with a group of twos.
Again extensive calculation yields the frequency of 1’s (and of 2’s) to have the limit
one-half, but no proof has yet been found. This sequence is called the Kolakowski
sequence; for an interesting discussion see [2].

7. Goals of Ergodic Theory

Dynamical averages have many types of behaviour, and currently problems such
as the ones briefly discussed in the previous section are not within reach. Ergodic
theory is an attempt to prove convergence of dynamical averages not for all points
x in X, but for a “large number” of such points, without explicitly determining for
exactly which points the convergence holds. At the same time, an attempt is made
to give a rule for calculation of this limit, and a large part of the theory also deals
with classification of those dynamical averages which have the same “behaviour”,
coming from different setups. In our discussion we shall first limit our attention to
the simplest basic ergodic theorem, which provides existence and limit identification
for a wide class of dynamical averages. In further sections we try to indicate the
extension of these results to more intricate situations. The field is closely linked
to probability theory and number theory through independence and combinatorics
respectively. In this view, basic ergodic theory is:

• An attempt to prove existence of lim an(x) for a large class of sequences ob-
tained by the above procedure.

• An attempt to calculate the values of such limits, if they exist.

• An attempt to determine, given two different mappings, whether they produce
dynamical sequences which exhibit the same average behaviour.

More generally and less explicitly, ergodic theory is often seen as an attempt to
explain and classify the long-term behaviour of iteratively defined (i.e., dynamical)
systems.
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8. A Case of Success - The Weyl Equidistribution Theorem

If X = R/Z, and if Sx = x + σ, where σ is irrational, then for every interval A
in X and every point x of X, the sequence of averages described above converges
to the length of the interval A. This is the content of the Weyl equidistribution
theorem, which certainly many in this audience have studied. Dynamical systems
which behave in this manner are called Kronecker systems. The generalization
to rotations of compact Abelian groups is quite straightforward. These are the
first examples usually studied in ergodic theory. The reason that we understand
convergence here is the prevalence of functions which transform simply under the
mapping S, namely, the so-called characters of the group. Each such character
is a continuous function f from the group to the complex numbers with modulus
one, which is an eigenfunction under the mapping S, the eigenvalue being the value
of the character on the element which defines the rotation. Thus the sequence
to be averaged consists of successive multiples of a single complex number (the
value of the character at x) by successive powers of a complex number of modulus
one (the value of the character at σ), and the limit of the average is seen to be
either zero or the single complex number. The theorem then follows easily from
the uniform density of linear combinations of characters in the continuous functions
on the group. Interesting here is also that some functions, namely the characters,
have simple behaviour under the mapping S, and that any integrable function can
be closely approximated by such simple functions. This yields also easily almost
everywhere convergence when the set A is any measurable set, and in the following
we shall show that a similar strategy can be carried out for any measure preserving
transformation of a probability space. A further development is provided by so-
called nilmanifolds, to which currently active research is being devoted. If you have
not been exposed to rotations, then it is a worthwhile exercise to verify the above
ideas in detail.

9. Interval Exchange Transformations

In this section we meet the first example of a seemingly natural sequence of dy-
namical averages which does not converge. Let n be an integer greater than one.
Suppose that α is a probability vector of length n and that π is a finite permuta-
tion of {1, · · · , n}. Cut the unit interval X into successive subintervals of lengths
determined by α and rearrange these intervals in the order given by π. This defines
(almost - up to finitely many cut points) a mapping S which is called an interval
exchange transformation. Note that if n = 2 and if π is not the identity, then we ob-
tain (essentially) the transformation at the beginning of the previous section, with
σ being the second coordinate of α. Now previous to the Weyl theorem a simple



INTEGERS: 11B (2011) 7

argument due to Kronecker based on the pigeonhole principle was known (and you
probably have encountered this) showing that if σ is irrational, then the orbit under
S of any point in X is dense in X. When this occurs, we say that the transformation
S is minimal, because then the only closed invariant sets are the empty set and the
entire space X. It is a remarkable fact that if the only rational relation among the
coordinates of α is that their sum is one, and if the permutation π fixes no initial
segment {1, · · · , k} (except when k = n), then the corresponding interval exchange
transformation is minimal - every orbit is dense (see [5]). At first sight, one might
then also expect a proof of the Weyl theorem, and this holds indeed for the case
in which n = 3. However, for n = 4 an example has been constructed of an “irra-
tional” α (with the permutation π which reverses the order of the four intervals)
for which there are points of the space for which the dynamical averages, say, with
A being any of the four intervals, do not converge! (See [6].) In this example, the
vector α can be made explicit, but we don’t seem to be able to determine a point
of nonconvergence, although we know that many such exist.

10. Hypotheses of the Basic Ergodic Theorem

The basic ergodic theorem provides a large class of dynamical sequences for which
the limiting averages exist. Unfortunately, it gives less than satisfactory answers,
as we shall discuss afterwards. But first, we formulate the statement which we can
prove.

Suppose that the set X is provided with a measure-theoretic structure which
makes it into a probability space. That is, there is a σ-algebra A of subsets of X,
called the measurable subsets, and a measure µ assigning a number µ(A) between 0
and 1 to each measurable subset which has the properties of a probability measure.
Suppose also that the mapping S preserves the measure µ, in the sense that for any
measurable set A, we have µ(A) = µ(S−1A).

Basic Ergodic Theorem. For any fixed measurable set A, the averages an(x)
indeed converge, except for an exceptional set of points x of X having µ-measure
zero. That is, for µ-almost every point x ∈ X,

lim
1
n

n−1∑

k=0

1A(Skx)

exists.
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Some Comments

• It can (and often does) occur that although the ergodic theorem is valid, we
cannot decide for any particular point of interest whether lim an(x) exists or
not.

• It can also occur that even when we can prove that the limit exists, we cannot
determine its value.

• If A is an invariant set (i.e., S−1A = A), then clearly the limit is one for
points belonging to A and zero for points not belonging to A; however, often
we have trouble determining the σ-algebra of invariant sets.

• Generalizations do not usually cause trouble. For instance, once the basic
ergodic theorem is properly understood, averages of the form

1
n

n−1∑

k=0

f(Skx),

where the function f is µ-integrable, can be shown to exist.

A mathematically fully equivalent formulation merits attention:

Probabilistic Formulation of The Basic Ergodic Theorem: If xn is a station-
ary sequence of 0-1 valued random variables, then the average sequence an converges
almost surely.

In many situations it is more convenient to use probabilistic language. Here we
choose to remain in the dynamical setting.

11. The Proof

As in our explanation of the Weyl theorem, we shall begin by slightly modifying
the measurable set A to obtain a more “well-behaved” set A∗. Let ε > 0. For each
x ∈ X there is a positive integer N such that

aN (x) ≥ a(x)− ε.

To be specific (although any choice would work), we take N(x) to be the least such
integer. Note that if x ∈ A, then N(x) = 1. Choose now a positive integer M large
enough so that the µ-measure of the set of x /∈ A with N(x) > M is less than ε,
and define

A∗ := A ∪ {x /∈ A : N(x) > M}.



INTEGERS: 11B (2011) 9

Then, using the notation a∗ for averages of visit numbers to A∗, we see that
µ(A∗) ≤ µ(A) + ε and that for every x ∈ X, there is a positive integer M(x) which
is less than or equal to M such that a∗M(x) ≥ a(x)− ε.

It should now be clear that the averages a∗n(x) are well–behaved, in the sense
that for all sufficiently large positive integers n (not depending on the point x),
a∗n(x) ≥ a − 2ε. That is, the amount of time needed to reach the lim sup within
ε using a∗ is bounded by M for any point of the space, so that if n is large with
respect to M , we can break the sequence into pieces all of length at most M and
each of which is close to the lim sup.

Choosing any such integer n, we have therefore for every x ∈ X that

1
n

n−1∑

k=0

1A∗(Skx) = a∗n(x) ≥ a(x)− 2ε.

Integration by µ now yields
∫

adµ− 2ε ≤ µ(A∗) ≤ µ(A) + ε,

and, letting ε tend to zero we obtain
∫

adµ ≤ µ(A).

If the set A is now replaced by its complement and we figure out what the
inequality ∫

adµ ≤ µ(A)

means for the complement, then we see that a for the complement becomes 1 − a
and the measure of the complement becomes 1− µ(A). Hence we obtain

µ(A) ≤
∫

adµ.

So the integrals of a and a must be equal, implying equality of the lim sup and lim
inf µ-almost everywhere.

12. Comments

It is fortunate that we have been able to prove convergence in a simple manner for
a large set of starting points and every measurable set. However, the situation is
far from being satisfactory:
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• It can (and often does) occur that we cannot decide for a particular point of
interest and a specific set of interest whether the limiting average exists (see
Examples 1 and 2 above).

• Even when we know that the limit exists, we may not be able to determine
its value.

• If A is an invariant set (i.e., s−1A = A), then clearly for each n andx,

an(x) = 1A(x).

But it is often unknown which sets are invariant. In particular, S is said to be
ergodic if the only invariant sets are those of measures 0 or 1. The situation
sketched above for interval exchange transformations with four intervals arises
because of non-ergodicity, and it is in many situations not clear whether an
S is ergodic or not.

On the other hand, there is little trouble in extending the basic ergodic theorem to
iteration of functions instead of sets. For instance, if f is a µ-integrable function on
X, the same proof essentially shows that

1
n

n−1∑

k=0

f(Skx)

converges for µ-almost every x ∈ X. (Hint: if we denote the lim sup by f , then
the basic inequality works using min f,K for any nonnegative integrable f and
nonnegative constant K.) Another case which works well is the subadditive ergodic
theorem (see [4] for the first proof) which follows almost trivially using the argument
given here.

The original idea of simplifying the set appeared in [3]; a similar, perhaps more
convoluted description was given earlier by [7]. Previous proofs are elegant and
sometimes very short, but somehow do not convey the essence of why such a theorem
is true, in our opinion.

13. More General Actions

Finally, we’d like to briefly discuss the situation in which we have two mappings
S and T , both taking X to itself and preserving the measure µ; let us suppose in
addition that S and T commute. So for each pair (m,n) of nonnegative integers
and each x ∈ X, we have a point SmTnx ∈ X, and we’d like to investigate the
convergence of sums of the form

1
MN

m−1∑

k=0

n−1∑

l=0

1A(SkT lx)
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as M and N tend to infinity. It seems that the same procedure should work, but
there is one difficulty, namely, the point in the proof where, after having found a
“well–behaved” set close to A, we need to actually show that the sums for this set
reach the lim sup minus ε for all large MN . To accomplish this, we must produce
a collection of rectangles over each of which the average is close to the lim sup, and
which are pairwise disjoint and almost cover sufficiently large rectangles. If one uses
a so-called greedy algorithm to choose the largest possible rectangle sequentially,
then it is easy to see that roughly one-quarter of the large rectangle will be covered.
In order to get more, one repeats this procedure on different scales, using the prop-
erty of the lim sup that it is attained within ε infinitely often. A detailed description
involves a number of pages of definitions and calculations, which are omitted. This
can be carried out for actions of discrete (countable) amenable groups, with some
effort.
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