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Abstract

Five simple guidelines are proposed to compute the generating function for the nonnegative
integer solutions of a system of linear inequalities. In contrast to other approaches, the
emphasis is on deriving recurrences. We show how to use the guidelines strategically to
solve some nontrivial enumeration problems in the theory of partitions and compositions.
This includes a strikingly different approach to lecture hall-type theorems, with new q-series
identities arising in the process. For completeness, we prove that the guidelines suffice to
find the generating function for any system of homogeneous linear inequalities with inte-
ger coefficients. The guidelines can be viewed as a simplification of MacMahon’s partition
analysis with ideas from matrix techniques, Elliott reduction, and “adding a slice.”

1. Introduction

This continues our work in [18, 19] studying nonnegative integer solutions to linear inequal-
ities as they relate to the enumeration of integer partitions and compositions. Define the
weight of a sequence λ = (λ1,λ2, . . . ,λn) of integers to be |λ| = λ1 + · · ·+ λn. If sequence λ
of weight N has all parts nonnegative, we call it a composition of N ; if, in addition, λ is a
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nonincreasing sequence, we call it a partition of N .

Given an r × n integer matrix C = [ci,j], we consider the set SC of nonnegative integer
sequences λ = (λ1,λ2, . . . ,λn) satisfying the constraints

ci,0 + ci,1λ1 + ci,2λ2 + . . . + ci,nλn ≥ 0, 1 ≤ i ≤ r. (1)

We seek the full generating function

FC(x1, x2, . . . , xn) =
∑

λ∈SC

xλ1
1 xλ2

2 · · ·xλn
n , (2)

which can be viewed as an encapsulation of the solution set SC : the coefficient of qN in
FC(qx1, qx2, . . . , qxn) is a listing (as the terms of a polynomial) of all nonnegative integer
solutions to (1) of weight N and the number of such solutions is the coefficient of qN in
FC(q, q, . . . , q).

Variations of this problem arise in other areas of mathematics, e.g., solving systems of
linear equations, finding volume of polytopes, as well as in enumeration. In the papers [18, 19]
we demonstrated that in the area of partition and composition enumeration many familiar
sets of linear constraints can be easily handled a matrix inversion: for homogeneous systems,
if the constraint matrix C is an n×n invertible matrix, and if all entries of C−1 = B = [bi,j]
are nonnegative integers then by Theorem 1 in [19]:

FC(x1, x2, . . . , xn) =
n∏

j=1

1

(1− x
b1,j

1 x
b2,j

2 · · ·xbn,j
n )

.

This theorem (in its full generality) suffices to handle the enumeration of such families as
Hickerson partitions [22], Santos’ interpretation of Euler’s family [28], Sellers’ generaliza-
tion of Santos [29, 30], partitions with nonnegative second differences [3], super-concave
partitions [31], partitions with r-th differences nonnegative [3, 14, 33], partitions with mixed
difference conditions [3], and examples (0-5) of Pak in [27]. The theorem provides bijections
as well as generating functions.

However, it is easy to find simple examples where the “C matrix” technique fails. In
Section 2, we propose five simple guidelines for computing the generating function FC of a
system C of linear diophantine inequalities. The guidelines can be viewed as a simplification
of MacMahon’s partition analysis [25], with ideas from matrix methods, Elliott reduction
[20], and “adding a slice” (e.g. [23]).

Our focus is on the use of the guidelines to derive a recurrence for the generating function
FCn of an infinite family {Cn|n ≥ 1} of constraint systems. This is in contrast to the focus
of the Omega package [6], a software implementation of partition analysis, well-designed to
compute the generating function of a given fixed, finite system of linear constraints. The
advantage of a recurrence for FCn is a program which computes FCn for any given n. But
more significantly, if the recurrence can be solved, it provides a closed form for the generating
function for the infinite family.
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In Sections 3-6, we show how to use the guidelines of Section 2 strategically to solve some
nontrivial enumeration problems in the theory of partitions and compositions. Sections 3 and
4 address well-studied problems, included as “warm-up” exercises to illustrate the approach
and the handling of the recurrences that result. Sections 5 and 6 apply the method to
the problem of enumerating anti-lecture hall compositions [16] and truncated lecture hall
partitions [17], giving a simpler approach than in [16, 17]. For completeness, in Section 7 we
prove that the guidelines suffice to find the generating function for the nonnegative integer
solutions of any homogeneous system of linear inequalities with integer coefficients.

This work was inspired by the the work of Andrews, Paule, and Riese in the sequence
of papers [2, 3, 6, 4, 12, 7, 8, 9, 5, 10, 11], which illustrate many applications of partition
analysis. The Omega Package software [6] was an invaluable tool in our early investigations.
As illustrated in papers such as [2, 3, 12, 9, 10], recurrences can certainly be derived using
partition analysis. However, we found that the task became easier with a simpler set of tools
which appear to be no less powerful. In Section 8 we discuss MacMahon’s partition analysis
and show how the proposed guidelines can be be viewed as essential ideas underlying his
theory.

2. The Five Guidelines

Let C be a set of linear constraints in n variables, λ1, . . . ,λn, each constraint c ∈ C of the
form

c : [a0 +
n∑

i=1

aiλi ≥ 0],

for integer values a0, a1, . . . , an.

Let SC be the set of nonnegative integer sequences λ = (λ1, . . . ,λn) satisfying all con-
straints in C. Since we are only interested here in nonnegative integer solutions, we will
always assume that C contains the constraints [λi ≥ 0] for 1 ≤ i ≤ n. Define the full
generating function of C to be:

FC(x1, . . . , xn) !
∑

λ∈SC

xλ1
1 xλ2

2 · · ·xλn
n .

If c is the constraint: [a0+
∑n

i=1 aiλi ≥ 0] define the negation of c, ¬c, to be the constraint
[−a0 −

∑n
i=1 aiλi ≥ 1]. Then any sequence (λ1, . . . ,λn) satisfies c or ¬c, but not both. A

constraint c is implied by the set of constraints C if SC∪{¬c} = ∅. A constraint c is redundant
if SC∪{c} = SC.

Let Cλi←λi+aλj denote the set of constraints which results from replacing λi by λi + aλj

in every constraint in C. Note that if constraint c is implied by C then cλi←λi+aλj is implied
by Cλi←λi+aλj . Thus observe that if C contains the constraints [λk ≥ 0], 1 ≤ k ≤ n, and if
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[λi−aλj ≥ 0] is implied by C, then all of the constraints [λk ≥ 0], 1 ≤ k ≤ n, are also implied
by Cλi←λi+aλj .

Lemma 1 Let C be a set of linear constraints on variables λ1, . . . ,λn which contains the
constraints [λk ≥ 0], 1 ≤ k ≤ n. Let a be any integer (possibly negative). Suppose [λi−aλj ≥
0] is implied by C and let C′ = Cλi←λi+aλj . Then

β = (β1, . . . ,βn) ∈ SC iff β′ = (β1, . . . ,βi−1,βi − aβj,βi+1, . . . ,βn) ∈ SC′ .

Proof. By the remarks preceding the lemma, the constraints C and C′ guarantee that SC
and SC′ contain only nonnegative integer solutions. So, it suffices to show that β satisfies a
constraint in C iff β′ satisfies the corresponding constraint in C′.

Let c(λ) = c0 +
∑n

t=1 ctλt and assume [c(λ) ≥ 0] ∈ C. Under the substitution λi ←
λi + aλj, c(λ) becomes c′(λ) defined by

c′(λ) = c0 +
n∑

t=1

ctλt + ciaλj = c(λ) + ciaλj

and [c′(λ) ≥ 0] ∈ C′. Thus
c(β) = c′(β)− ciaβj = c′(β′),

so c(β) ≥ 0 iff c′(β′) ≥ 0. !

Finally, to simplify notation, we will let Xn refer to the parameter list x1, . . . , xn, so that
F (Xn) denotes F (x1, . . . , xn). Let F (Xn; xi ← xixa

j ) denote the function F (Xn) with all
occurrences of xi replaced by xixa

j .

Theorem 1 (The Five Guidelines)

1. If C = {[λ1 ≥ t]}, for integer t ≥ 0, then

FC(x1) =
xt

1

1− x1
.

2. If C1 is a set of constraints on variables λ1, . . . ,λj and C2 is a set of constraints on
variables λj+1, . . . ,λn, then

FC1∪C2(x1, . . . , xn) = FC1(x1, . . . xj)FC2(xj+1, . . . , xn).

3. Let C be a set of linear constraints on variables λ1, . . . ,λn and assume C contains the
constraints [λi ≥ 0], 1 ≤ i ≤ n. Let a be any integer (possibly negative). If [λi − aλj ≥ 0] is
implied by C,

FC(Xn) = FCλi←λi+aλj
(Xn; xj ← xjx

a
i ).
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4. Let c be any constraint with the same variables as the set C. Then

FC(Xn) = FC∪{c}(Xn) + FC∪{¬c}(Xn).

5. Let c ∈ C. Then

FC(Xn) = FC−{c}(Xn)− FC−{c}∪{¬c}(Xn).

Proof.

1. This is clear since FC(x1) = xt
1 + xt+1

1 + · · · .

2. The sequence (λ1, . . . ,λn) ∈ SC1∪C2 iff (λ1, . . . ,λj) ∈ SC1 and (λj+1, . . . ,λn) ∈ SC2 .

3. Let C′ = Cλi←λi+aλj . By Lemma 1,

(λ1, . . . ,λn) ∈ SC′ iff (λ1, . . . ,λi−1,λi + aλj,λi+1, . . . ,λn) ∈ SC.

So,

FC′(Xn; xj ← xjx
a
i ) =

∑

λ∈SC′

xλ1
1 xλ2

2 · · ·xλj−1

j−1 (xjx
a
i )

λjx
λj+1

j+1 · · ·xλn
n

=
∑

λ∈SC′

xλ1
1 xλ2

2 · · ·xλi−1

i−1 x
(λi+aλj)
i xλi+1

i+1 · · ·xλn
n

=
∑

λ∈SC

xλ1
1 xλ2

2 · · ·xλi
i · · ·xλn

n

= FC(Xn).

4. SC can be partitioned into those λ that satisfy c and those that do not.

5. By guideline 4, FC−{c}(Xn) = FC−{c}∪{c}(Xn)+FC−{c}∪{¬c}(Xn). Then C−{c}∪{c} = C,
since c ∈ C. !

3. Minc’s Partition Function and Cayley Compositions

Minc’s partition function ν(d,N) is the number of compositions of N in which the first part
is d and each part is at most twice the size of the preceding part [26]. For example, in the
special case d = 1, these are called Cayley compositions [15, 1, 12]. In this section we compute
the generating function ν(q) =

∑
d,N≥0 ν(d,N)qN = q + 2q2 + 4q3 + 7q4 + 13q5 + 24q6 + · · · .

For example, the coefficient of q5 is 13, since of the 16 compositions of 5, only these three
violate the constraints: (1, 4), (1, 3, 1), and (1, 1, 3).
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Let Cn be the set of constraints Cn = {λi ≥ 1
2λi+1 > 0 | 1 ≤ i < n} and let Cn(x1, . . . , xn)

be the generating function of Cn. Focusing on the constraint c = [λn−1 ≥ 1
2λn], after noting

that [λn−1 > 0] is redundant, we can write Cn as

Cn =





λ1 ≥ 1
2λ2

λ2 ≥ 1
2λ3

...
λn−2 ≥ 1

2λn−1

λn−1 ≥ 1
2λn

λn > 0





=





λ1 ≥ 1
2λ2

λ2 ≥ 1
2λ3

...
λn−2 ≥ 1

2λn−1

λn−1 ≥ 1
2λn

λn−1 > 0

λn > 0





=





λ1 ≥ 1
2λ2

λ2 ≥ 1
2λ3

...
λn−2 ≥ 1

2λn−1

λn−1 > 0

λn > 0





−





λ1 ≥ 1
2λ2

λ2 ≥ 1
2λ3

...
λn−2 ≥ 1

2λn−1

λn > 2λn−1

λn−1 > 0





,

where c has been removed from the next-to-last system, making it Cn−1∪ [λn > 0], and c has
been replaced by ¬c in the last system. By guidelines 1 and 2, xnCn−1(x1, . . . , xn−1)/(1−xn)
is the generating function for Cn−1 ∪ [λn > 0]. Note further that the substitution λn ←
λn + 2λn−1 in the last system results Cn−1 ∪ [λn > 0], so by guideline 3, the last system has
generating function xnCn−1(x1, . . . , xn−1x2

n)/(1 − xn). Putting this together with guideline
5 and the initial condition C1(x1) = x1/(1− x1) gives the recurrence

Cn(x1, . . . , xn) =
xn

1− xn
(Cn−1(x1, . . . , xn−1)− Cn−1(x1, . . . , xn−2, xn−1x

2
n)).

Let Cn(q, s) = Cn(q, q, . . . , q, s). Then the above recurrence gives C1(q, s) = s/(1 − s) and
for n ≥ 2,

Cn(q, s) =
s

1− s
(Cn−1(q, q)− Cn−1(q, qs

2)).

Set C(q, s) =
∑∞

n=1 Cn(q, s) and use the recurrence for Cn(q, s) to get

C(q, s) =
∞∑

n=1

Cn(q, s) =
s

1− s
+

∞∑

n=2

Cn(q, s) =
s

1− s
(1 + C(q, q)− C(q, qs2)).

Iterating the recurrence for C(q, s) gives

C(q, s) = (1 + C(q, q))
∞∑

i=1

(−1)i−1
i−1∏

j=0

q2j−1s2j

(1− q2j−1s2j)
.
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Let C(q) = C(q, q), then

ν(q) = 1 + C(q) =
1

1 +
∑∞

i=1
(−1)iq2i+1−i−2

(1−q)(1−q3)(1−q7)···(1−q2i−1)

.

4. Two-Rowed Plane Partitions

This example illustrates the advantage of guideline 3 of Theorem 1 when a < 0. The two-
rowed plane partitions are those integer sequences (a1, b1, . . . , an, bn) satisfying the constraints

Pn = [ai ≥ bi ≥ 0, 1 ≤ i ≤ n; ai ≥ ai+1, bi ≥ bi+1, 1 ≤ i ≤ n− 1] .

It is well-known that the generating function for Pn is [24]

Pn(q) =
1

(q; q)n(q2; q)n
. (3)

In [3], Andrews shows how MacMahon’s partition analysis can be used to compute Pn(q) by
considering an intermediate family Gn. We will use this approach, but with a slight twist,
to show how the generating function for Pn, can be computed via Gn from the guidelines of
Theorem 1.

We will use the convention that when a constraint system is represented by a calligraphic
letter, its generating function is represented by the corresponding roman letter. Also, to
keep notation simple, when the meaning is clear from context, we will use the same letter to
refer to multivariable and single variable forms of the generating function.

Define Gn to be the set of constraints below:

Gn =





a1 + a2 + · · ·+ an ≥ b1 + b2 + · · ·+ bn

a2 + · · ·+ an ≥ b2 + · · ·+ bn
...

...
...

an−1 + an ≥ bn−1 + bn

an ≥ bn

ai, bi ≥ 0, i = 1, . . . , n





.

Denote the full generating functions for Pn and Gn by

Pn(x1, y1, . . . , xn, yn) !
∑

(a1,b1,...,an,bn)∈SPn

xa1
1 yb1

1 . . . , xan
n ybn

n ,

Gn(x1, y1, . . . , xn, yn) !
∑

(a1,b1,...,an,bn)∈SGn

xa1
1 yb1

1 . . . , xan
n ybn

n .
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Note that Pn can be transformed into Gn by the sequence of substitutions:

ai ← ai + ai+1; bi ← bi + bi+1; i = 1, 2, . . . n− 1.

We focus on Gn. Since for 1 ≤ i ≤ n− 1, ai − ai+1 ≥ 0 and bi − bi+1 ≥ 0 in P, by guideline
3 of Theorem 1, Pn is obtained from Gn by the sequence of substitutions:

xi ← xixi−1; yi ← yiyi−1 i = n, n− 1, n− 2, . . . , 2.

Thus
Pn(x1, y1, . . . , xn, yn) = Gn(x1, y1, x1x2, y1y2, . . . , x1x2 · · ·xn, y1y2 · · · yn).

In particular, the generating function (3) for two-rowed plane partitions is obtained by setting
xi = yi = q in Pn for i = 1, . . . , n:

Pn(q, q, q, . . . , q) = Gn(q, q, q2, q2, . . . , qn, qn). (4)

Since an − bn ≥ 0 in Gn, by guideline 3, we can do the substitution an ← an + bn in Gn to
get Fn and recover Gn from Fn as shown below.

Fn =





a1 + a2 + · · ·+ an ≥ b1 + b2 + · · ·+ bn−1

a2 + · · ·+ an ≥ b2 + · · ·+ bn−1
...

...
...

an−1 + an ≥ bn−1

ai, bi ≥ 0, i = 1, . . . , n




,

Gn(x1, y1, . . . , xn, yn) = Fn(x1, y1, . . . , xn, yn; yn ← xnyn).

Since an−1 + an ≥ 0 in Fn, by guideline 3, we can substitute an−1 ← an−1 − an in Fn to get
Hn and recover Fn from Hn as shown.

Hn =





a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1

a2 + · · ·+ an−1 ≥ b2 + · · ·+ bn−1
...

...
...

an−1 ≥ bn−1

an−1 ≥ an

ai, bi ≥ 0 i = 1, . . . , n





,

Fn(x1, y1, . . . , xn, yn) = Hn(x1, y1, . . . , xn, yn; xn ← xn/xn−1).

Summarizing to this point, we have

Gn(x1, y1, . . . , xn, yn) = Hn(x1, y1, . . . , xn−1, yn−1, xn/xn−1, xnyn). (5)
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Now apply guideline 5 to Hn using the constraint c = [an−1 ≥ an]. Then Hn = Kn − Ln,
where Kn = Hn − {[an−1 ≥ an]} and Ln = Hn − {[an−1 ≥ an]} ∪ {[an ≥ an−1 + 1]}, that is,

Kn =





a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1

a2 + · · ·+ an−1 ≥ b2 + · · ·+ bn−1
...

...
...

an−1 ≥ bn−1

ai, bi ≥ 0 i = 1, . . . , n





and

Ln =





a1 + a2 + · · ·+ an−1 ≥ b1 + b2 + · · ·+ bn−1

a2 + · · ·+ an−1 ≥ b2 + · · ·+ bn−1
...

...
...

an−1 ≥ bn−1

an ≥ an−1 + 1
ai, bi ≥ 0 i = 1, . . . , n





,

so that

Hn(x1, y1, . . . , xn, yn) = Kn(x1, y1, . . . , xn, yn)− Ln(x1, y1, . . . , xn, yn). (6)

Now observe that
Kn = Gn−1 ∪ {[an ≥ 0], [bn ≥ 0]},

so by guidelines 1 and 2,

Kn(x1, y1, . . . , xn, yn) =
Gn−1(x1, y1, . . . , xn−1, yn−1)

(1− xn)(1− yn)
. (7)

Returning to Ln, since an − an−1 ≥ 0 in Ln, we can do the substitution an ← an + an−1,
resulting in

(Ln)an←an+an−1 = Gn−1 ∪ {[an ≥ 1], [bn ≥ 0]},

so by guidelines 1, 2, and 3,

Ln(x1, y1, . . . , xn, yn) =
xnGn−1(x1, y1, . . . , xn−1, yn−1; xn−1 ← xn−1xn)

(1− xn)(1− yn)
. (8)

Combining (6),(7), and (8), we have

Hn(x1, y1, . . . , xn, yn) =
Gn−1(x1, y1, . . . , xn−1, yn−1)

(1− xn)(1− yn)
− xnGn−1(x1, y1, . . . , xn−2, yn−2, xn−1xn, yn−1)

(1− xn)(1− yn)
.

Finally, substituting this expression for Hn into (5) gives a recurrence for Gn:

Gn(x1, y1, . . . , xn, yn) =
Gn−1(x1, y1, . . . , xn−1, yn−1)− xn

xn−1
Gn−1(x1, y1, . . . , xn−2, yn−2, xn, yn−1)

(1− xn/xn−1)(1− xnyn)
, (9)
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with initial condition G1(x1, y1) = 1/(1− x1)/(1− x1y1).

Let G∗
n(q, s) = Gn(q, q, q2, q2, . . . , s, qn). Then from the recursion (9),

G∗
n(q, s) =

G∗
n−1(q, q

n−1)− (s/qn−1)G∗
n−1(q, s)

(1− s/qn−1)(1− sqn)
.

It is straightforward to show by induction that G∗
n(q, s) satisfies

G∗
n(q, s) =

1

(1− s)(1− sq)(q; q)n−1(q2; q)n−1
.

Substituting s = qn gives

Pn(q) = Gn(q, q, q2, q2, . . . , qn, qn) = G∗
n(q, qn) =

1

(q; q)n(q2; q)n
,

the desired generating function for 2× n plane partitions.

5. Anti-Lecture Hall Compositions

In [16], we considered the set of sequences λ = (λ1, . . . ,λn) satisfying the constraints

An =

[
λ1

1
≥ λ2

2
≥ . . . ≥ λn

n
≥ 0

]
.

We referred to these as anti-lecture hall compositions and showed that the generating function
is

An(q) !
∑

λ∈An

q|λ| =
n∏

i=1

1 + qi

1− qi+1
. (10)

Here we show how to apply the guidelines of Theorem 1 to get a recurrence for the full
generating function An(x1, x2, . . . xn) and use it to give an “easy” proof of (10). The idea is
easily extended to the truncated anti-lecture hall compositions studied in [17]. We start with
Bn, a slight variation of An.

Lemma 2 The full generating function for the integer sequences defined by the constraints

Bn =

[
λ1

1
≥ λ2

2
≥ · · · ≥ λn−1

n− 1
≥ λn

1
≥ 0

]
. (11)

satisfies Bn(x1, . . . , xn) =
An−1(x1 . . . , xn−1)

1− x1x2
2x

3
3 · · ·xn−1

n−1xn
.
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Proof. The following sequence of substitutions transforms Bn into An−1 ∪ {[λn ≥ 0]}, as
illustrated in Figure 1: λi ← λi + iλn, i = n − 1, . . . , 1. Note that the constraint λi−1 ≥
(i − 1)λn is implied at each stage, so by guidelines 1,2, and 3, Bn is recovered from An by
performing the sequence of substitutions on An−1(x1,...,xn−1)

(1−xn) : xn ← xnxi
i, i = 1, . . . , n− 1. !





λ1 ≥ 1
2λ2

λ2 ≥ 2
3λ3

...
λn−3 ≥ n−3

n−2λn−2

λn−2 ≥ n−2
n−1λn−1

λn−1 ≥ (n− 1)λn

λn ≥ 0





→





λ1 ≥ 1
2λ2

λ2 ≥ 2
3λ3

...
λn−3 ≥ n−3

n−2λn−2

λn−2 ≥ n−2
n−1λn−1 + (n− 2)λn

λn−1 ≥ 0

λn ≥ 0





→





λ1 ≥ 1
2λ2

λ2 ≥ 2
3λ3

...
λn−3 ≥ n−3

n−2λn−2 + (n− 3)λn

λn−2 ≥ n−2
n−1λn−1

λn−1 ≥ 0

λn ≥ 0





→ . . . →





λ1 ≥ 1
2λ2

λ2 ≥ 2
3λ3 + 2λn

...
λn−3 ≥ n−3

n−2λn−2

λn−2 ≥ n−2
n−1λn−1

λn−1 ≥ 0

λn ≥ 0





→





λ1 ≥ 1
2λ2 + λn

λ2 ≥ 2
3λ3

...
λn−3 ≥ n−3

n−2λn−2

λn−2 ≥ n−2
n−1λn−1

λn−1 ≥ 0

λn ≥ 0





→





λ1 ≥ 1
2λ2

λ2 ≥ 2
3λ3

...
λn−3 ≥ n−3

n−2λn−2

λn−2 ≥ n−2
n−1λn−1

λn−1 ≥ 0

λn ≥ 0





Figure 1. Transformation of Bn into An−1 ∪ {[λn ≥ 0]} in proof of Lemma 2.

Proposition 1 The full generating function for anti-lecture hall compositions satisfies:

An(x1, . . . xn) =
An−1(x1, . . . , xn−1)

1− xn
−An−1(x1, . . . , xn−2, xnxn−1)

(
1

1− xn
− 1

1− x1x2
2x

3
3 · · ·xn

n

)

with initial condition A1(x1) = 1/(1− x1).

Proof. Using guideline 5 with c = [λn−1 ≥ n−1
n λn],

An(x1, . . . , xn) = Cn(x1, . . . , xn)−Dn(x1, . . . , xn),
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where

Cn =

[
λ1

1
≥ λ2

2
≥ . . . ≥ λn−1

n− 1
≥ 0; λn ≥ 0

]
; (12)

Dn =

[
λ1

1
≥ λ2

2
≥ . . . ≥ λn−1

n− 1
≥ 0;

λn

n
>

λn−1

n− 1

]
. (13)

Note that Cn = An−1 ∪ {[λn ≥ 0]}, so by guideline 2, Cn has generating function

Cn(x1 . . . , xn) =
An−1(x1 . . . , xn−1)

1− xn
. (14)

Since λn ≥ λn−1 is implied by Dn in (13), by guideline 3, substituting λn ← λn +λn−1 in Dn

gives

En =

[
λ1

1
≥ λ2

2
≥ . . . ≥ λn−1

n− 1
≥ 0; λn >

λn−1

n− 1

]
(15)

and
Dn(x1, . . . , xn) = En(Xn; xn−1 ← xn−1xn),

where Xn represents the argument list x1, . . . , xn. Using guideline 5 again, with c = [λn >
λn−1

n−1 ], gives
En(Xn) = Cn(Xn)−Bn(Xn),

where Cn is (12) and where Bn is (11). Putting this all together, we have

An(Xn) = Cn(Xn)−Dn(Xn)

= Cn(Xn)− En(Xn; xn−1 ← xn−1xn)

= Cn(Xn)− Cn(Xn; xn−1 ← xn−1xn) + Bn(Xn; xn−1 ← xn−1xn)

Substituting from (14) and Lemma 2 gives the result. !

In order to make use of the recurrence of Proposition 1 to prove the generating func-
tion (10) for anti-lecture hall compositions, let An(q, s) ! An(q, q, q, . . . , q, s). Then the
recurrence of Proposition 1 becomes

An(q, s) =
An−1(q, q)

1− s
−An−1(q, qs)

s(1− sn−1q(
n
2))

(1− s)(1− snq(
n
2))

, (16)

with initial condition A0(q, s) = 1. If we were to proceed as with two-rowed plane partitions,
we would (i) “guess” the form of An(q, s), (ii) prove by induction that it satisfies (16), and
then (iii) show that setting s = q gives (10). This would be the easiest proof and it would give
a refinement of the anti-lecture hall generating function, enumerating solutions according to
both the weight and the size of the last part:

∑

λ∈SAn

q|λ|sλn = An(q, qs).
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Since we have not succeeded in guessing An(q, s), we follow a different approach. Iterating
the recurrence of (16) gives:

An(q, s) =
n−1∑

i=0

(−1)iAn−1−i(q, q)s
iq(

i
2) 1− sn−iq(

n
2)−(i

2)

(s; q)i+1(1− snq(
n
2))

. (17)

Now, setting s = q gives a recurrence independent of s:

An(q, q) =
n−1∑

i=0

(−1)iAn−1−i(q, q)
q(

i+1
2 ) − q(

n+1
2 )

(q; q)i+1(1− q(
n+1

2 ))
. (18)

We show by induction that the solution to (18) is

An(q, q) =
(−q)n

(q2)n
.

Assume inductively that An−1−i = (−q)n−1−i/(q2)n−1−i. Then we need to prove that

Bn(q)− q(
n+1

2 )Cn(q)

1− q(
n+1

2 )
=

(−q)n

(q2)n
;

with

Cn(q) =
n−1∑

i=0

(−1)i (−q)n−1−i

(q2)n−1−i(q)i+1

and

Bn(q) =
n−1∑

i=0

(−1)iqi(i+1)/2 (−q)n−1−i

(q2)n−1−i(q)i+1

We will prove that

B2n+1(q) =
(−q)2n+1

(q2)2n+1
C2n+1(q) =

(−q)2n+1

(q2)2n+1

B2n(q) =
(−q)2n

(q2)2n
− q(

2n+1
2 )

(q2)2n
; C2n(q) =

(−q)2n

(q2)2n
− 1

(q2)2n

Therefore, we need to prove the following identities for Cn :

2n∑

i=0

(−1)i (−q)2n−i

(q2)2n−i(q)i+1
=

(−q)2n+1

(q2)2n+1
. (19)

2n−1∑

i=0

(−1)i (−q)2n−1−i

(q2)2n−1−i(q)i+1
=

(−q)2n

(q2)2n
− 1

(q2)2n
. (20)
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A few q-series manipulations show that the two previous equations are equivalent to:

n∑

j=0

(−1)j(−1; q)j

[
n
j

]

q

= (−1)n (21)

Recalling that [
n
j

]

q

=
(q−n)j(−1)jqnj−j(j−1)/2

(q)j
,

we see that the identity follows from the case a = −1, c → ∞ of q-Chu Vandermonde
summation (1.5.2 in [21]),

n∑

j=0

(a)j(q−n)j(cqn/a)j

(c)j(q)j
=

(c/a)n

(c)n
. (22)

Now we need
2n∑

i=0

(−1)iq(
i+1
2 ) (−q)2n−i

(q2)2n−i(q)i+1
=

(−q)2n+1

(q2)2n+1
. (23)

2n−1∑

i=0

(−1)iqi(i+1)/2 (−q)2n−1−i

(q2)2n−1−i(q)i+1
=

(−q)2n

(q2)2n
+

q(
2n+1

2 )

(q2)2n
. (24)

The same q-series manipulations show that the two previous equations are equivalent to:

n∑

j=0

(−1)j(−1; q)j

[
n
j

]

q

q(
n−j

2 ) = (−1)nq(
n
2) (25)

This follows in a similar way from the “other” q-Chu Vandermonde summation (1.5.3 in
[21]),

n∑

j=0

(a)j(q−n)jqj

(c)j(q)j
=

an(c/a)n

(c)n
, (26)

under the substitutions a = −1, c = 0. !

6. Lecture Hall Partitions

In [13], Bousquet-Mélou and Eriksson studied the set of integer sequences λ = (λ1, . . . ,λn)
satisfying the constraints

Ln =

[
λ1

n
≥ λ2

n− 1
≥ . . . ≥ λn

1
≥ 0

]
.
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They referred to these as lecture hall partitions and showed that the generating function is

Ln(q) !
∑

λ∈SLn

q|λ| =
n∏

i=1

1

1− q2i−1
. (27)

In [2], Andrews showed how to use partition analysis to derive a recurrence for the full
generating function of Ln. However, substantial new ideas, outside of partition analysis,
were required to move from this to the solution (27).

In this section, we show that by strategic application of Theorem 1, we can derive a
recurrence for the full generating function of a generalization of Ln that will reduce the
proof of (27) to a q-series calculation (albeit nontrivial). Our derivation here via the five
guidelines is both simpler and more elementary than the approach in [17] (at the expense of
a more challenging q-series calculation).

In [17], we defined truncated lecture hall partitions to be the integer sequences satisfying:

Ln,k =

[
λ1

n
≥ λ2

n− 1
≥ . . . ≥ λk

n− k + 1
≥ 0

]
.

We showed that if

L̄n,k =

[
λ1

n
≥ λ2

n− 1
≥ . . . ≥ λk

n− k + 1
> 0

]
, (28)

that is, all parts must be positive, the generating function is

L̄n,k(q) = q(
k+1
2 )

[
n
k

]

q

(−qn−k+1; q)k

(q2n−k+1; q)k
. (29)

It can be checked that setting k = n and dividing by q(
n+1

2 ) gives (27).

Proposition 2 The generating function for truncated lecture hall partitions (28) satisfies

L̄n,k(x1, . . . , xk) =
xkL̄n,k−1(x1, . . . , xk−1)

1− xk
− L̄n,k−1(x1, . . . , xk−2, xk−1xk)

1− xk

−zn,kL̄n,k−1(x1, . . . , xk−2, xk−1xk)

1− zn,k
.

with zn,k = xn
1x

n−1
2 . . . xn−k+1

k .

Proof. Note that λk−1 > λk is implied by L̄n,k, so by guideline 4, L̄n,k = L̄n,k∪{[λk−1 > λk]}.
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Now apply guideline 5 with c = [λk−1 ≥ n−k+2
n−k+1λk] to get L̄n,k = D − E :

L̄n,k =





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk−1 ≥ n−k+2
n−k+1λk

λk−1 > λk

λk > 0





=





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk−1 > λk

λk > 0





−





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk > n−k+1
n−k+2λk−1

λk−1 > λk

λk > 0





(30)
The first system on the right, D, implies the constraint λk−1 > 0, so it can be added. Now
apply guideline 5 to D using c = [λk−1 > λk] to get:

D =





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk−1 > λk

λk−1 > 0

λk > 0





=





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk−1 > 0

λk > 0





−





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk ≥ λk−1

λk−1 > 0

λk > 0





. (31)

The first system on the right of (31) is just L̄n,k−1 ∪ {[λk > 0]}. The second system on the
right becomes L̄n,k−1 ∪ {[λk ≥ 0]} after the substitution λk ← λk + λk−1. So, by Theorem 1
and summarizing so far, we have

L̄n,k(x1, . . . , xk) =
xkL̄n,k−1(x1, . . . , xk−1)

(1− xk)
− L̄n,k−1(x1, . . . , xk−1xk)

(1− xk)
− E(x1, . . . , xk), (32)

where E(x1, . . . , xk) is the generating function for the last constraint system, E , in (30).
Apply λk−1 ← λk−1 + λk to E followed by λk ← λk + (n − k + 1)λk−1 as illustrated below
E → E ′ → F :

(33)
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



λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk−1

λk > n−k+1
n−k+2λk−1

λk−1 > λk

λk > 0





→





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2(λk−1 + λk)

λk > (n− k + 1)λk−1

λk−1 > 0

λk > 0





→





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk

+(n− k + 3)λk−1

λk > 0

λk−1 > 0





.

By guideline 3,
E(x1, . . . , xk) = E′(x1, . . . , xk−1, xk−1xk),

E′(x1, . . . xk) = F (x1, . . . , xk−2, xk−1x
n−k+1
k , xk),

so
E(x1, . . . , xk) = F (x1, . . . , xk−2, x

n−k+2
k−1 xn−k+1

k , xk−1xk). (34)

Finally, starting from F , the last set of constraints in (33), perform the following sequence
of substitutions

λi ← λi + (n− i + 1)λk−1; i = k − 2, . . . 1,

as illustrated below:

F →





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2 + (n− k + 4)λk−1

λk−2 ≥ n−k+3
n−k+2λk

λk > 0

λk−1 > 0





→ . . .→





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3 + (n− 1)λk−1

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk

λk > 0

λk−1 > 0





−→





λ1 ≥ n
n−1λ2 + nλk−1

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk

λk > 0

λk−1 > 0





−→





λ1 ≥ n
n−1λ2

λ2 ≥ n−1
n−2λ3

...
λk−3 ≥ n−k+4

n−k+3λk−2

λk−2 ≥ n−k+3
n−k+2λk

λk > 0

λk−1 > 0





= G. (35)

The resulting system of constraints, G, in (35) can be viewed as Ln,k−1, where λk−1 has been
replaced by λk, together with the constraint [λk−1 > 0]. Thus,

G(x1, . . . , xk) =
xk−1Ln,k−1(x1, . . . , xk−2, xk)

(1− xk−1)
. (36)
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By guideline 3, the generating function for F is obtained from G by the sequence of substi-
tutions

xk−1 ← xk−1x
n−i+1
i ; i = 1 . . . k − 2,

giving
F (x1, . . . , xk) = G(x1, . . . , xk−2, x

n
1x

n−1
2 · · ·xn−k+3

k−2 xk−1, xk). (37)

Returning to E in (34) and using (36) and (37),

E(x1, . . . , xk) = F (x1, . . . , xk−2, x
n−k+2
k−1 xn−k+1

k , xk−1xk)

= G(x1, . . . , xk−2, x
n
1x

n−1
2 · · ·xn−k+3

k−2 xn−k+2
k−1 xn−k+1

k , xk−1xk)

=
xn

1x
n−1
2 · · ·xn−k+1

k Ln,k−1(x1, . . . , xk−2, xk−1xk)

1− xn
1x

n−1
2 · · ·xn−k+1

k

. (38)

Combining (38) with (32) gives the result. !

Let L̄n,k(q, s) = L̄n,k(q, q, . . . , q, s). Setting xk = s and xi = q for i < k in Proposition 2
gives

L̄n,k(q, s) =
s

1− s
L̄n,k−1(q, q)− L̄n,k−1(q, sq)

(
1

1− s
+

zn,k

1− zn,k

)
, (39)

where zn,k = sn−k+1q(
n+1

2 )−(n−k+2
2 ). One would hope to prove (29) now by finding a closed

form for L̄n,k(q, s), proving that it satisfies the recurrence (39) and then setting s = q to get
(29). Since we were unable to guess L̄n,k(q, s), we proceed as for anti-lecture hall compositions
to iterate the recurrence (39) and get

L̄n,k(q, s) =
∑

j≥1

(−1)j−1 sqj−1

(s; q)j
· 1− sn−k+jq(n−k+j)(j−2)+(n+1

2 )−(n−k+j
2 )

1− sn−k+1q(
n+1

2 )−(n−k+2
2 )

· L̄n,k−j(q, q).

Now setting s = q we need only a single argument:

L̄n,k(q) =
∑

j≥1

(−1)j−1 qj

(q; q)j
· 1− qk(n−k+j)+(k−j+1

2 )

1− q(
n+1

2 )−(n−k+1
2 )

· L̄n,k−j(q).

It remains to prove that this recurrence is satisfied by (29). We defer the details until a later
report; our main point was to show that strategic application of the guidelines reduce the
truncated lecture hall theorem to a q-series computation.

7. The Five Guidelines Suffice

Let C be the set of inequalities

ci,0 + ci,1λ1 + ci,2λ2 + . . . + ci,nλn ≥ 0, 1 ≤ i ≤ r. (40)
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and let SC be the set of of nonnegative integer sequences satisfying all constraints in C.
In this section we show that the five guidelines of Theorem 1 are powerful enough to find
the generating function of SC for any integers ci,j. We will assume that all constraints are
homogeneous, i.e., that ci,0 = 0. Otherwise, introduce a new variable λ0 and let C′ be the
same as C, except that for every i, the ith constraint is now:

ci,0λ0 + ci,1λ1 + ci,2λ2 + . . . + ci,nλn ≥ 0.

Then FC(x1, . . . xn) is the coefficient of x0 in FC′(x0, x1, . . . xn). We also generalize the claim
a bit to allow any of the constraints of C to be equalities.

Theorem 2 The five guidelines of Theorem 1 are sufficient to find the full generating func-
tion for any homogeneous system of linear inequalities and equalities.

Proof. Let C be a homogeneous system of linear inequalities and equalities with variables
λ1, . . . ,λn. Since we require nonnegative integer solutions, we can assume that for each
variable λi, C contains a constraint bi of the form [λi ≥ 0] or [λi = 0]. Call these constraints
bi basic. Write C in the form

C = [c1, c2, . . . , cr; b1, b2, . . . , bn],

where c1, c2, . . . , cr is an ordered list of the non-basic constraints in C. If r = 0, all constraints
are basic and the generating function follows from guidelines 1 and 2 (and F[λi=0](xi) = 1).

Otherwise, define:

M : the largest positive coefficient of c1 (0, if none);

emax: the number of occurrences of M among the coefficients of c1;

m: the smallest negative coefficient of c1 (0, if none);

emin: the number of occurrences of m among the coefficients of c1.

When r > 0 we show that we can use the guidelines to reduce the computation of the
generating function of C to the computation of the generating function of one or more
systems C′ in which at least one of the statistics {r,M, emax, |m|, emin} has been reduced.

If m = 0, all coefficients of c1 are nonnegative, so c1 is redundant and can be deleted.
Otherwise, if M = 0, all coefficients of c1 are nonpositive and so we get an equivalient system
replacing λj by 0 in c1, . . . , cr and setting bj = [λj = 0]. In so doing we have decreased |m|
or emin.

Otherwise, m < 0 and M > 0; we do a version of Elliott reduction [20]. Let i and j be
such that m is the coefficient of λi in c1 and M is the coefficient of λj. We would like to
use guideline 3 and reduce to a system with smaller M or emax or |m| or emin. First use
guideline 4 with c = [λi ≥ λj]:

FC(Xn) = FC∪[λi≥λj ](Xn) + FC∪[λj>λi](Xn).
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For the first term, FC∪[λi≥λj ](Xn), do the substitution λi ← λi+λj into constraints c1, c2, . . . , cr

in C. This decreases the coefficient of λj, thereby decreasing M or emax. By guideline 3, the
substitution xj ← xjxi in the generating function of the resulting constraint system gives
FC∪[λi≥λj ](Xn).

For the second term, FC∪[λj>λi](Xn), if bj = [λj = 0], there are no solutions and the
generating function is 0. Otherwise, bj = [λj ≥ 0]. Substitute λj ← λj + λi into constraints
c1, c2, . . . , cr in C to get C′. This increases the coefficient of λi, thereby decreasing |m| or
emin. Substituting λj ← λj + λi into [λj > λi] gives [λj > 0]. By guideline 3,

FC∪[λj>λi](Xn) = FC′∪[λj>0](Xn; xi ← xixj).

However, we disallow strict inequalities. So, use guideline 5 with c = [λj > 0] and observe
that bj = [λj ≥ 0] ∈ C′. Let C′′ denote C′ with bj ← [λj = 0]. Then

FC′∪[λj>0](Xn) = FC′(Xn)− FC′∪[λj≤0](Xn) = FC′(Xn)− FC′′(Xn).

!

(Note that we have optimized the proof for simplicity at the expense of algorithmic efficiency.)

It follows from Theorem 2 and its proof that the full generating function of (40) can
be built up from the functions 1/(1 − xi) by a finite number of additions, subtractions,
and substitutions. We get then as a corollary the following well-known result: The full
generating function for the nonnegative integer solutions to any system of linear inequalities
in n variables with integer coefficients has the form

p(x1, . . . , xn)

(1− α1)(1− α2) · · · (1− αt)
,

where t ≥ 0, p is a polynomial in x1, . . . , xn and each αi is a monomial in x1, . . . , xn.

8. Relationship to MacMahon’s Partition Analysis

We give a brief introduction to partition analysis in order to highlight the fact that the
guidelines of Theorem 1 underlie the work of MacMahon. Indeed, they were distilled from
partition analysis by a study of MacMahon’s work in [25] and its application by Andrews,
Paule and Riese in the series of papers [2, 3, 6, 4, 12, 7, 8, 9, 5, 10, 11].

Consider the set of constraints C = {c1, . . . cr} where

ci = [ai,1λ1 + · · ·+ ai,nλn ≥ 0].

We seek the full generating function for the set SC of nonnegative integer sequences λ =
(λ1, . . . ,λn) satisfying ci, 1 ≤ i ≤ r:

FC(x1, . . . , xn) =
∑

λ∈SC

xλ1
1 xλ2

2 · · ·xλn
n .
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The method of partition analysis, developed by MacMahon in [25] is to view the problem as
follows. Let

P (x1, x2, . . . , xn, c1, c2, . . . , cn) =
n∏

j=1

1

1− xjc
a1,j

1 c
a2,j

2 · · · car,j
r

. (41)

Expanding P gives

P (x1, x2, . . . , xn, c1, c2, . . . , cn) =
∑

λ1,...λn≥0

n∏

j=1

(xjc
a1,j

1 c
a2,j

2 · · · car,j
r )λj

=
∑

λ1,...λn≥0

(
xλ1

1 xλ2
2 · · ·xλn

n

r∏

i=1

c
ai,1λ1+···ai,nλn

i

)
. (42)

Observe that λ ∈ SC iff in the term corresponding to λ in the sum (42) every ci, 1 ≤ i ≤ r, has
nonnegative exponent. Thus FC(x1, . . . , xn) is recovered from P (x1, x2, . . . , xn, c1, c2, . . . , cn)
by deleting all terms in which some ci has a negative exponent and then setting c1 = c2 =
· · · = cr = 1. MacMahon uses the Omega operator to express this process:

FC(x1, . . . , xn) = Ω
≥

P (x1, x2, . . . , xn, c1, c2, . . . , cn).

The core of partition analysis is a system of Omega-rules designed to be applied strategically
to transform P (x1, x2, . . . , xn, c1, c2, . . . , cn) step-by-step into FC(x1, . . . , xn). This view con-
verts the combinatorial problem into an algebraic one, opening the possibility, for example,
of a partial fraction decomposition of (41) to assist in the transformation from P to F . A
list of basic Omega-rules appears in [25](pp. 103-106) and [2].

This approach has proven both powerful and systematic in the computer solution of
systems of inequalities. However, for deriving recurrences for infinite families, we found that
a return to some of the basic underlying ideas simplified the process. We note the roots of
guidelines 3-5 of Theorem 1 in the work of MacMahon [25].

Our use of guideline 3 (which performs limited column operations on the constraint
matrix) is used to much the same effect as the following Omega-rule:

Ω
≥

1

(1− xic)(1− xj

ca )
=

1

(1− xi)(1− xjxa
i )

.

The utility of guideline 4 was recognized by MacMahon. He writes in [25], p. 103, “A
very useful principle is that of adding an inequality which is àfortiori true.” It is also used
in a decomposition shown at the beginning of [25], Section 379, p. 131. Guideline 5 is one
of MacMahon’s Omega-rules, found in [25], Section 351, p. 104 (slightly transformed):

Ω
≥

P (c) = P (1)− Ω
≥

P (1/c).
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9. Concluding Remarks

The “five guidelines” of Theorem 1 provide a unified setting for computing the full gen-
erating function for many challenging families of constraints. However, even though they
are guaranteed to be sufficient to find the generating function for any homogeneous linear
system, we are not necessarily guaranteed to be able to use them to devise a recurrence for
a parametrized family of constraint sets.

In continuing work we consider the case when all constraints have the form λi ≥ λj

or λi > λj, forming a directed graph. We show how to get a recurrence by strategically
manipulating the diagrams. Many examples are presented, including two- and three-rowed
plane partitions, plane partitions with diagonals, plane partition diamonds, and hexagonal
plane partitions.

Finally, we note that in [32], Xin offers a speed-up to the Omega package for implementing
MacMahon’s partition analysis. Xin’s method uses the theory of iterated Laurent series and
partial fraction decompositions.

Acknowledgement. We are grateful to the referee for a careful reading of the manuscript
and detailed suggestions to improve the presentation.
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