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Abstract

The main aim of this paper is to describe a procedure for calculating the number of
cubes that have coordinates in the set {0, 1, . . . , n}. For this purpose we continue
and, at the same time, revise some of the work begun in a sequence of papers about
equilateral triangles and regular tetrahedra all having integer coordinates for their
vertices. We adapt the code that was included in a paper by the first author and was
used to calculate the number of regular tetrahedra with vertices in {0, 1, . . . , n}3.
The idea is based on the theoretical results obtained by the first author with A.
Markov. We then extend the sequence A098928 in the Online Encyclopedia of
Integer Sequences to the first one hundred terms.

1. Introduction

In this paper we consider cubes in R3 whose vertices have only integer coordinates.
Very often we will refer to this property by saying that the various objects are in
Z3. Strictly speaking these geometric objects are defined as being more than the
set of their vertices that determines them. However, we are simply going to think of
these objects as sets of vertices. So, for instance, an equilateral triangle is going to
be a set of three points in Z3 for which the Euclidean distances between every two
of these points are the same. The main purpose of our paper is to take a close look
at the cubes in Z3. One can easily imagine such cubes by taking the faces parallel
to the planes of coordinates. However, it is less obvious that there exist many more
other cubes sitting in space as in Figure 1 (a). As a curiosity, our counting shows
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that there are precisely 242,483,634 cubes with vertices in {0, 1, . . . , 100}3. One
non-trivial example of these cubes is given by the points

C :={[0, 56, 59],[21, 68, 3],[24, 0, 56],[45, 12, 0],[52, 77, 83],[73, 89, 27],[76, 21, 80],[97, 33, 24]}.

In [14] we proved the following theorem.

Figure 1(a): Non−trivial cube Figure 1(b): Regular tetrahedron inscribed: OABC

Theorem 1 Every regular tetrahedron in Z3 can always be completed to a cube in
Z3 (See Figure 1 (b)).

This theorem implies that there is a one-to-two correspondence between the cubes
and the regular tetrahedra in Z3. In [11] we developed a Maple code to compute the
number of regular tetrahedra in {0, 1, 2, . . . , n}3. Here, we basically use the same
idea and introduce some updates based on important theoretical observations. The
problem of finding the number of cubes in space with coordinates in {0, 1, 2, . . . ., n}
has also been studied in [17]. We list here a few more terms in the sequence A098928.

n 1 2 3 4 5 6 7 8 9 10 11
A098928 1 9 36 100 229 473 910 1648 2795 4469 6818

n 12 13 14 15 16 17 18
A098928 10032 14315 19907 27190 36502 48233 62803 .

It is clear that A098928 ≤ A103158. For n ≥ 4 we actually have a strict inequality,
A098928 < A103158, and this is due to the fact that some of the tetrahedra inside
of the grid {0, 1, .., n}3 extend beyond the grid’s boundaries to the unique cube
containing it described above. In Figure 2 we are including the graphs of the
sequences A098928 and A103158 up to n = 100.
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Figure 2: Tetrahedra versus cubes

2. Theoretical Background

Let us review some of the facts that we are using. Regular tetrahedra are going to
be obtained from equilateral triangles. Equilateral triangles in Z3 are obtained in
the following way. Given an odd integer d there is a precise number of primitive
solutions for the Diophantine equation (see [11])

a
2 + b

2 + c
2 = 3d2

, with 0 < a ≤ b ≤ c and gcd(a, b, c) = 1, (1)

which is given by

π�(d) =
Λ(d) + 24Γ2(d)

48
, (2)

where

Γ2(d) =






0 if d is divisible by a prime factor of the form 8s + 5 or 8s + 7, s ≥ 0
1 if d is 3

2k

�
where k is the number of distinct prime factors of d

of d of the form 8s + 1 or 8s + 3 (s > 0),
(3)

Λ(d) := 8d
�

p|d,p prime

�
1−

(−3

p )
p

�
, (4)

and (−3

p ) is the Legendre symbol. We remind the reader that, if p is an odd prime
then
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(
−3
p

) =






0 if p = 3

1 if p ≡ 1 or 7 (mod 12)

−1 if p ≡ 5 or 11 (mod 12)

. (5)

In particular, this counting shows that the equation (1) has primitive solutions
for every odd d ≥ 1. We took advantage of this simple way of calculating π�(n),
and we found experimentally (see Figure 3) that

lim
k→∞

�k
i π�(2i + 1)

k
≈ 0.34131 .

Figure 3: Graph of k → π�(2k + 1), k = 1, 2, . . . , 10000

As an example, for the prime d = 2011 = 251(8) + 3 = 167(12) + 7, we get Λ(d) =
16080 and Γ2(d) = 48, and so π�(2011) = 16080+48

48
= 336. There is only one

primitive solution, in this case, for which the three values of a, b, and c are not all
distinct: a = 139 and b = c = 2461.

For each solution of (1) we have the following lattice of points in Z3:

Pa,b,c := {(α,β, γ) ∈ Z3| aα + bβ + cγ = 0, a2 + b2 + c2 = 3d2,

gcd(a, b, c) = 1, a, b, c, d ∈ Z}.
(6)
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Figure 4: The sub-lattice Peq
a,b,c

This lattice is in general much richer than the sub-lattice, Peq
a,b,c, of all points

which are vertices of equilateral triangles with one of the vertices being the origin
(see Figure 4). Such an equilateral triangle, say �OPQ, can be given in terms of
two vectors

−→
ζ and −→η described by the next formulae:

−−→
OP = m

−→
ζ − n

−→
η ,

−−→
OQ = n

−→
ζ − (n−m)−→η , (7)

with
−→
ζ = (ζ1, ζ1, ζ2) , and −→η = (η1, η2, η3) given by






ζ1 = −rac + dbs

q
,

ζ2 =
das− bcr

q
,

ζ3 = r,

,






η1 = −db(s− 3r) + ac(r + s)
2q

,

η2 =
da(s− 3r)− bc(r + s)

2q
,

η3 =
r + s

2
,

(8)

where q = a2 +b2 and (r, s) is a suitable solution of 2q = s2 +3r2 that makes all the
numbers in (8) integers. The sides-lengths of�OPQ are equal to d

�
2(m2 −mn + n2).

One way to give a more precise construction of a good choice of (r, s) is to
compute the greatest common divisor, s + i

√
3r, of A − i

√
3B and 2q in the ring

Z[i
√

3], where A = ac and B = bd. Indeed, let us observe that

A
2 + 3B2 = (ac)2 + 3(bd)2 = a

2
c
2 + b

2(a2 + b
2 + c

2) = (a2 + b
2)(c2 + b

2)

which shows that 2q divides A2+3B2 = (A+i
√

3B)(A−i
√

3B). Since 2q = 4(4k+1)
for some integer k, we are thinking of 4 as (1 + i

√
3)(1− i

√
3), so the prime factors

of 2q here are given by 1 + i
√

3, 1− i
√

3 and all the others which are either primes
of the form 6k−1 or of the form 6k+1. The factors of the form 6k−1 must appear
to even power and those of the form 6k + 1 can be decomposed into prime factors
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u + i
√

3v and u− i
√

3v (by Fermat’s Theorem, see [4] and [16]). As a result, each
of these factors can be found either in the factorization of A + i

√
3B or in the one

for A − i
√

3B. The product of these common factors with A − i
√

3B gives, say,
s + i

√
3r. By construction A− i

√
3B = (s + i

√
3r)(u + i

√
3v) and it turns out that

2q = (s+ i
√

3r)(s− i
√

3r). This implies that (A− i
√

3B)(s− i
√

3r) = 2q(u+ i
√

3v).
Hence we get the relations

2q = s
2 + 3r2

, As− 3Br = 2qu and Ar + Bs = −2qv.

These relations show that ζ1 and η1 in (8) are integers. Lagrange’s identity shows
that

ζ
2

1 + ζ
2

2 =
(a2 + b2)((rc)2 + (ds)2)

q2
=

(rc)2 + (ds)2

a2 + b2
,

which in turn gives

ζ
2

1 + ζ
2

2 + ζ
2

3 =
r2(a2 + b2) + r2c2 + d2s2

a2 + b2
=

d2(s2 + 3r2)
q

= 2d2
.

This implies in particular that ζ2 must be an integer and that |
−→
ζ | = d

√
2.

It is clear that r and s must be either both odd or both even. This implies that η3

is an integer. Using again Lagrange’s identity we get

η
2

1 + η
2

2 =
(a2 + b2)[c2(r + s)2 + d2(s− 3r)2]

4q2
=

c2(r + s)2 + d2(s− 3r)2

4(a2 + b2)
,

which implies

η
2

1+η
2

2+η
2

3 =
(r + s)2(a2 + b2 + c2) + d2(s− 3r)2

4(a2 + b2)
=

d2[3(r + s)2 + (s− 3r)2]
4q

= 2d2
.

As before, this proves that η2 is an integer and |−→η | = d
√

2. In order to find the dot
product of

−→
ζ , −→η we observe that

ζ1η1 + ζ2η2 =
(a2 + b2)[c2(r2 + rs) + d2(s2 − 3rs)]

2q2

which implies

−→
ζ ·−→η =

c2(r2 + rs) + d2(s2 − 3rs)
2q

+
r2 + rs

2
=

d2(3r2 + 3rs + s2 − 3rs)
2q

= d
2
.

Hence the angle between the vectors
−→
ζ , −→η is arccos(

−→
ζ ·−→η

|−→ζ ||−→η |
) = 60◦.
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Using these relations, we can easily calculate

|−−→OP |2 = m
2|
−→
ζ |2 − 2

−→
ζ ·−→η mn + n

2|−→η |2 = 2d2(m2 −mn + n
2), and

|−−→OQ|2 = n2|
−→
ζ |2 − 2

−→
ζ ·−→η n(n−m) + (n−m)2|−→η |2 =

2d2[n2 − n(n−m) + (n−m)2] = 2d2(m2 −mn + n2).

The dot product of
−−→
OP and

−−→
OQ is then equal to

−−→
OP ·−−→OQ = mn|

−→
ζ |2 − [m(n−m) + n2]

−→
ζ ·−→η + n(n−m)|−→η |2 =

d2(2mn−mn + m2 − n2 + 2n2 − 2mn) = d2(m2 −mn + n2).

These relations show that the triangle �OPQ is indeed equilateral and its side
lengths are equal to d

�
2(m2 −mn + n2).

Next, one can easily check that

aζ1 + bζ2 + cζ3 = aη1 + bη2 + cη3 = 0,

which implies that �OPQ is indeed contained in the plane of normal −→n = (a,b,c)

d
√

3
.

The natural question now is, whether or not there are other equilateral triangles
with integer coordinates contained in this same plane, or in other words, is the
parametrization given by (7) and (8) exhaustive ? The answer to the first ques-
tion is negative and we showed this in [2]. However, we include here a new and
relatively simpler argument which has a geometric flavor. Let us assume, by way
of contradiction, that there exists one triangle, say �OAB, which is not covered
by the parametrization. We may assume that O is the origin (otherwise we use
a translation with integer coordinates to accomplish that). Because the vectors
−→
ζ and −→η form a basis for the space of vectors perpendicular to −→n , the equation−→
OA = m

−→
ζ − n

−→
η can be solved uniquely for real numbers m and n. Let us then

consider the vectors
−−→
OB

� = n
−→
ζ − (n−m)−→η ,

−−→
OB

�� = (m− n)
−→
ζ −m

−→
η .

With the same computations as before, we obtain that �OAB� and �OAB�� are
equilateral in the same plane of normal −→n . Because there are only two equilateral
triangles sharing the side OA in the given plane, we must have either B� = B or
B�� = B. Without loss of generality, let us assume that B� = B. From the formulae
in (8) we get that

mr − r + s

2
n = u ∈ Z, and nr − r + s

2
(n−m) =

r + s

2
m +

r − s

2
n = v ∈ Z.
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If we look at these two relations as a system of equations in m and n, we get by
Cramer’s formula, a unique solution in terms of u and v, which are rational numbers.
Hence, m and n are fractions with denominators equal to

r
r − s

2
+

r + s

2
r + s

2
=

s2 + 3r2

4
=

q

2
=

a2 + b2

2
≥ 1.

Similar calculations as before show that the side lengths of �OAB are equal to
� = d

�
2(m2 −mn + n2). We consider similar constructions for b and c, and for a

and c, instead of a and b. We get that

�
2 = 2d2(m2 −mn + n

2) = 2d2(m2

1 −m1n1 + n
2

1) = 2d2(m2

2 −m2n2 + n
2

2) (9)

with m1, n1, m2, n2 rational numbers having b2+c2

2
and a2

+c2

2
as denominators,

respectively. Since gcd(a, b, c) = 1, it is easy to see that gcd(a2
+b2

2
,

b2+c2

2
,

a2
+c2

2
) =

1. Hence, in (9) the number m2−mn+n2 = m2
1−m1n1 +n2

1 = m2
2−m2n2 +n2

2 as
a fraction in the reduced form, cannot have a denominator greater than one since
any prime dividing it, divides gcd(a2

+b2

2
,

b2+c2

2
,

a2
+c2

2
) = 1. So, we proved that

the triangle �OAB (or any other triangle with integer coordinates in the plane of
normal −→n passing through the origin) has sides at least d

√
2.

Now, if m and n are not integers, then A and B fall strictly inside of the tessella-
tion with equilateral triangles generated by the two vectors

−→
ζ and −→η (see Figure 5).

Because the tessellation is invariant to 60◦ rotations, the position of B in the inte-
rior of one of the equilateral triangles is perfectly similar to the position of A inside
of the corresponding equilateral triangle containing it. This creates two vectors of
the same length, one being the rotation of the other by 60◦. Using translations
with integer coordinates the two vectors show the existence of an equilateral trian-
gle with the origin as one of its vertices, �OCD, having integer coordinates and
side lengths strictly less than d

√
2. This contradiction shows that A and B must

be vertices of the tessellation generated by
−→
ζ and −→η , and so the parametrization

(8) is exhaustive.

Figure 5: Two distinct tessellations
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We have given then another proof of Theorem 1 in [10].
Let us illustrate how this parametrization works in a particular situation. For

d = 2011 we have seen the particular solution of (1) in which b = c: a = 139
and b = c = 2461. If we do the parametrization with q = a2 + b2 = (2)(3037921)
(3037921 is prime), since A = ac = (23)(107)(139) and B = (23)(107)(2011), we
get

A− iB = (23)(107)(1−
√

3i)(1543− 468
√

3i)

and
2q = (1−

√
3i)(1543− 468

√
3i)(1 +

√
3i)(1543 + 468

√
3i)

which gives s + r
√

3i = (1−
√

3i)(1543− 468
√

3i) = 139− 2011
√

3i. Therefore, we
have






ζ1 = 0
ζ2 = 2011
ζ3 = −2011

and






η1 = −2461
ζ2 = 1075
ζ3 = −936.

One can check that, in fact, in the case b = c we may always take





ζ1 = 0
ζ2 = d

ζ3 = −d

and






η1 = −b

η2 = a+d
2

η3 = a−d
2

.

(10)

We summarize all these facts that we have shown so far.

Theorem 2 The sub-lattice Peq
a,b,c is generated by two vectors

−→
ζ and −→η in the

following sense: T m,n
a,b,c := �OPQ with P , Q in Pa,b,c, is equilateral if and only if

for some integers m, n

−−→
OP = m

−→
ζ − n

−→
η ,

−−→
OQ = n

−→
ζ + (m− n)−→η , with

−→
ζ = (ζ1, ζ1, ζ2),−→ς = (ς1, ς2, ς3),−→η =

−→
ζ +

−→ς
2

,

(11)






ζ1 = −rac + dbs

q

ζ2 =
das− bcr

q

ζ3 = r

,






ς1 =
3dbr − acs

q

ς2 = −3dar + bcs

q

ς3 = s

, (12)

where q = a2+b2 and r, s can be chosen so that all six numbers in (12) are integers.
The sides-lengths of �OPQ are equal to d

�
2(m2 −mn + n2). Moreover, r and s

can be constructed in such a way that the following properties are also verified:
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(i) r and s satisfy 2q = s2 +3r2 and similarly 2(b2 +c2) = ς2
1 +3ζ2

1 and 2(a2 +c2) =
ς2
2 + 3ζ2

2

(ii) r = r�ωχ, s = s�ωχ where ω = gcd(a, b), gcd(r�, s�) = 1 and χ is the product of
the prime factors of the form 6k − 1 of (a2 + b2)/ω2

(iii) |
−→
ζ | = d

√
2, |−→ς | = d

√
6, and

−→
ζ ·−→ς = 0

(iv) s + i
√

3r = gcd(A− i
√

3B, 2q), in the ring Z[i
√

3], where A = ac and B = bd.

In [13], we have shown that the only equilateral triangles, in Z3, which can be
completed to a regular tetrahedron in Z3, are the ones (given as in (11) and (12))
for which m2 −mn + n2 = k2 for some k ∈ Z. More precisely, if k is divisible by 3
then one can accomplish this on either side of the plane containing the triangle and
if k is not divisible by 3 then this can be done on only one side. By the way, this
is saying in particular that, there are a lot more equilateral triangles than regular
tetrahedra in Z3.

The coordinates for the fourth vertex, assuming the equilateral triangle’s vertices
are as in (7) and (12), are given by

�
(2ζ1 − η1)m− (ζ1 + η1)n ± 2ak

3
,
(2ζ2 − η2)m− (ζ2 + η2)n ± 2bk

3
,

(2ζ3 − η3)m− (ζ3 + η3)n ± 2ck
3

�
.

(13)

As we already mentioned in Theorem 1, as long as the coordinates in (13) are
integers then the tetrahedron can be completed to a cube in Z3. We are using
this formula mostly for k = 1 (let us choose m = 1 and n = 0) although there
is a need for the general case for big values of d because, as pointed out in [11],
there are irreducible regular tetrahedra which cannot be constructed from a face as
above, by simply taking k = 1. However for small � (� < 5187 = 3(7)(13)(19)) one
can find a face of a given regular tetrahedron of sides equal to �

√
2 which has the

corresponding k as in (13) equal to 1.

Figure 6: Eight tetrahedra and essentially one cube
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If one takes all the possible values for m and n such that m2 −mn + n2 = 1,
there are six regular tetrahedra generated this way, from a plane (colored blue in
Figure 6), three on one side and the other three on the other side, but if one looks
at the Figure 6, one might observe that in fact there are eight regular tetrahedra
all generating essentially the same cube (up to translations of integer coordinates).
So, our code needs to take into acount this property and we will only use one of the
choices for the values for m and n. Summarizing, there are in general four planes
containing the center of a given cube in Z3, corresponding to normals given by the
directions of the four big diagonals in the cube which may generate the cube as
before, some may have a value of k > 1. For this reason, one needs to check for
repetitions when writing the code. For this purpose, our approach is to generate
an exhaustive list, L, of cubes in N3

0 (N0 = N ∪ {0}) which are irreducible (cannot
be scaled to a smaller cube in Z3). One other property of each cube in L is that it
cannot be translated in the negative direction along any of the axes of coordinates
and remain in N3

0. Unfortunately, the cubes in L are not uniquely defined this
way, because of the possible symmetries involved here. These 48 symmetries form
a group which can be identified with the symmetry group of a regular octahedron
(see [14]).

3. The Minimal List and Other Considerations

Figure 7: First cubes in L

A dozen cubes (listed in non-decreasing order of their side-lengths) in the list L
that we found using our code, are included in the table below. The first column
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represents the side-lengths, the second column gives the dimension of the smallest
cube Cm := [0,m]3 containing the cube in column three.

n m A cube k-values invariants

1 1
[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1],
[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]

1 [1, 1, 0, 0]

3 5
[0, 3, 2], [1, 1, 4], [2, 2, 0], [2, 5, 3],
[3, 0, 2], [3, 3, 5], [4, 4, 1], [5, 2, 3]

1,3 [4, 4, 0, 0]

5 7
[0, 0, 4], [0, 5, 4], [3, 0, 0], [3, 5, 0],
[4, 0, 7], [4, 5, 7], [7, 0, 3], [7, 5, 3]

1 [12, 18, 4, 0]

7 11
[0, 6, 8], [2, 9, 2], [3, 0, 6], [5, 3, 0],
[6, 8, 11], [8, 11, 5], [9, 2, 9], [11, 5, 3]

1,7 [8, 8, 0, 0]

9 15
[0, 5, 5], [4, 4, 13], [4, 13, 4], [7, 1, 1],
[8, 12, 12], [11, 0, 9], [11, 9, 0], [15, 8, 8]

1,3 [24,108, 48, 16]

11 19
[0, 11, 13], [2, 2, 7], [6, 17, 6], [8, 8, 0],
[9, 9, 19], [11, 0, 13], [15, 15, 12], [17, 6, 6]

1 [24, 108, 48, 16]

13 19
[0, 12, 15], [3, 16, 3], [4, 0, 12], [7, 4, 0],
[12, 15, 19], [15, 19, 7], [16, 3, 16], [19, 7, 4]

1, 13 [8, 8, 0, 0]

13 17
[0, 0, 12], [0, 13, 12], [5, 0, 0], [5, 13, 0],
[12, 0, 17], [12, 13, 17], [17, 0, 5], [17, 13, 5]

1 [12, 30,8, 0]

15 25
[0, 5, 10], [2, 19, 15], [10, 0, 20], [11, 7, 0],
[12, 14, 25], [13, 21, 5], [21, 2, 10], [23, 16, 15]

1, 3 [48, 360, 176, 64]

17 29
[0, 20, 9], [1, 8, 21], [12, 12, 0], [12, 29, 17],
[13, 0, 12], [13, 17, 29], [24, 21, 8], [25, 9, 20]

1 [24, 60, 16, 0]

17 23
[0, 0, 15], [0, 17, 15], [8, 0, 0], [8, 17, 0],
[15, 0, 23], [15, 17, 23], [23, 0, 8], [23, 17, 8]

1 [12, 42, 12, 0]

19 31
[0, 16, 10], [6, 6, 25], [10, 31, 16], [15, 10, 0],
[16, 21, 31], [21, 0, 15], [25, 25, 6], [31, 15, 21]

1, 19 [8, 8, 0, 0]

Table 1

In the fourth column we list the values of k which can be used in the construction
described in Section 2 to generate the cube in column three. The list of invariants
in the last column are as follows. First, we have the number of cubes in the orbit
obtained by applying the group of 48 transformations, determined by the orthogonal
matrices (3 by 3) with coefficients 0 and ±1, to the cube in column three. Let us
denote this number by α0. We observe that α0 is a divisor of 48 as expected
(Lagrange’s Theorem). We expect that in general such a cube will have no special
symmetry and so, more often than otherwise we will get α0 = 48. The second
number in the invariants list is the number of cubes in the generalized orbit, obtained
by the previous orbit together with all its integer translations along the axes of
coordinates that remain in Cm, a number that we are going to denote by α. The
third number in the list, β, is the cardinality of the intersection between this former
orbit and its translation along (0, 0, 1). Finally, the last number, γ, is defined by
the cardinality of the generalized orbit with its translation along (0,−1, 1). It turns
out that these last three numbers are enough to determine the number of cubes
that one can fit by translating the given cube in all possible ways within a bigger
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cube of size k ≥ m. This fact has been essentially proved in Theorem 2.2 ( [10]).
The formula that gives this number is

(k −m + 1)3α− 3(k −m)(k −m + 1)2β + 3(k −m + 1)(k −m)2γ. (14)

One other observation that we make, about Table 1, is that this set of invariants
is not complete, since we see that the same numbers appear for various irreducible
cubes. The most surprising are those cubes in rows six and seven. A good problem
here is to determine the exact number of such cubes, which go into a certain side-
length n, in terms of n. We see that the first n for which we have two such cubes
is n = 13. Let us also observe that in column four we see a 1 for each cube. As we
mentioned earlier, this is not always the case.

Also, each cube in Table 1 with side-lengths n, gives rise to an orthogonal ma-
trix with rational coefficients having denominators in 1

nZ (obtained by taking the
normalized vectors along the sides of the cube that form an orthogonal basis). In
[14] we computed a few of them:

T3 :=
1
3




1 −2 2
2 −1 −2
−2 −2 −1



 , T5 :=
1
5




4 0 3
3 0 −4
0 −5 0



 , T7 :=
1
7




−2 −3 6

3 −6 −2
−6 −2 −3



 ,

T9 :=
1
9




−7 −4 4

4 1 8
−4 8 1



 , T11 :=
1
11




2 −9 −6
9 −2 6
−6 −6 7



 ,

T13 :=
1
13




−4 −12 −3
12 −3 −4
3 −4 12



 , T̂13 :=
1
13




0 −13 0

12 0 5
−5 0 12



 .

The next matrix can be obtained by multiplying T3 with T5. We notice a multi-
plicative structure on this set of matrices. For the next two sizes (prime numbers)
we have essentially two orthogonal matrices in each case.

T17 :=
1
17




12 −8 −9
12 9 8
1 −12 12



 , T̂17 :=
1
17




15 0 8
8 0 −15
0 −17 0



 ,

T19 :=
1
19




6 −18 1

17 6 6
−6 −1 18



 , T̂19 :=
1
19




15 −6 −10
10 15 6
6 −10 15



 .

From T5, T̂13, and T̂17 it is clear that there is a natural imbedding of the primitive
Pythagorean Triples into this sequence of orthogonal matrices (well known in the
literature). One essential property of the list L is that each cube in the list generates
under translations and rotations cubes in Ck and two different cubes cannot generate



INTEGERS: 12A (2012) 14

the same cube. We accomplish this by making sure that the four planes given by
diagonals are different for two different cubes in the list. So, in order to count all
the cubes in Ck, we first compute the list of irreducible cubes in L, up to the side
length k, and then for each one we use the formula (14) to find out how many
are generated by each cube in the L that are in Ck. This operation is not enough
though since there are cubes in Ck which are reducible. So, in the end we multiply
each cube in the list L by an integer factor in such a way the resulting cube still fits
in Ck. Then, we recalculate the invariants on this cube and use the same formula
(14) to find the contribution of the reducible cubes. In the end, we add up all these
numbers and that gives, NC(k), the number of cubes in Ck .

The first 100 values of NC(n) are:

1, 9, 36, 100, 229, 473, 910, 1648, 2795, 4469, n =1. . . 10
6818, 10032, 14315, 19907, 27190, 36502, 48233, 62803, 80736, 102550, n =11. . . 20
128847, 160271, 197516, 241314, 292737, n =21. . . 25
352591, 421764, 501204, 592257, 696281, n =26. . . 30
814450, 948112, 1098607, 1267367, 1456292, n =31. . . 35
1666998, 1901633, 2162179, 2450440, 2768346, n =36. . . 40
3117935, 3501389, 3923178, 4384792, 4889323, n =41. . . 45
5439155, 6037660, 6687358, 7391669, 8154671, n =46. . . 50
8979750, 9870158, 10830095, 11862711, 12972046, n =51. . . 56
14161848, 15436931, 16801993, 18263634, 19825948, n =57. . . 60
21493019, 23269647, 25160816, 27171482, 29308957, n =61. . . 65
31577319, 33986616, 36540004, 39244371, 42106267, n =66. . . 70
45131996, 48327502, 51700279, 55258019, 59011634, n =71. . . 75
62965766, 67132037, 71515527, 76127374, 80973598, n =76. . . 80
86062187, 91401297, 96999986, 102866282, 109014085, n =81. . . 85
115457359, 122206348, 129266410, 136648555, 144364071, n =86. . . 90
152426724, 160843660, 169626467, 178787563, 188347314, n =91. . . 95
198309846, 208694461, 219509943, 230767760, 242483634. n =96. . . 100

In [15], an earlier version of this paper, we included the code of our algorithm
written for Mathematica, together with the necessary explanations for each step.
For further studies we are going to look into the problem of counting the number of
regular octahedra in Ck (see [12]) and of course one may ask similar questions about
other polyhedra with integer vertices, semi-regular or with various other properties.
Our techniques easily adapt to other similar situations. This opens a wide range of
investigations which seem appropriate for undergraduate research projects.
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