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Abstract
In Rademacher’s proof [Rad42] of the Ramanujan identities modulo 5 and 7, the function
k—1 1
Li(z) = n(kz) ) {Tw}
= \n(=%*)

appears. This is a modular function on T'g(k), provided that (k,6) = 1. The basic
identities

p(5n +4) = 0 mod 5,
p(7Tn+5) =0 mod 7,

(as well as some generalizations to higher powers of 5 and 7) are proved by examining
the coefficients of the expansions of Ls and L; at infinity. The two identities above
immediately imply the following identity:

p(35n + 19) = 0 mod 35.

Rademacher asked if there was a corresponding modular identity. Such an identity is
derived in this paper. Also, another identity is obtained from the expansion of Ls5 at 0.

1. Generalities

1.1 Basics

Throughout, p(n) refers to the unrestricted partition function. Euler proved the identity

o0

> pn)g" =] n _1qm-

m=1
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We will see that this ties the partition function intimately to certain types of modular
functions (and forms). Let I'(1) = PSLy(Z), which is the special linear group modulo its
center (£1). I'(1) is generated by the two transformations

=(Go) m=6)

We’ll have need also for the product T'ST', which we will call W. Then in I'(1), we have:

(%)

['(1) acts faithfully on the upper half plane H = {z € C: (z) > 0} via linear fractional
transformation. Throughout, we will identify a linear fractional transformation and its
matrix.

We let ¢ = ¢*™* throughout. In what follows, Dedekind’s function 7(z) will be used,
so we remind the reader of some known facts. Recall n(z) = e [[°2, (1 — €2™™*), and
note that 7(z) is periodic of period 24. It is pole-free and zero-free throughout H. It is
a modular form of weight one half, and has a multiplier which is a 24" root of unity in
its transformation equation. The root of unity e(a, b, ¢, d) is determined by the following
formulas (provided ¢ # 0):

e(a,b,c,d) = exp {m' (%l + s(—d, c))},
o-£i- 18- 0

where [ ] is the greatest integer function. For properties of the Dedekind s(h, k) sum see

[RW41, RG72]. We will often write just ¢ in place of the more cumbersome £(a, b, ¢, d).
Thus, for any A = (Z 2) € T'(1), n(Az) = e(cz + d)Y/?n(z). There is a relationship

between 7 and p. Namely,

[e'e] . qi
nzzop(n)q =@

Also, L has g-expansion given by:

k o0 o0
Li(2) = kg" 1= TT (1 = ¢") " plkn + A)g
n=0

m=1

A least positive solution of 24n =1 mod k. (2)

It is clear that Lj has all its poles located at the cusps of T'g(k). Note that when k =
35 (resp. 5,7), A = 19 (resp. 4,5). This explains the form for the identities listed
earlier. That Lg(z) is a modular function on I'y(k) may be seen as follows. One can show
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that (ZZ)) is a modular function on T'J(k) using known facts about Dedekind sums (see

N %

particularly Theorems 17 and 18 of [RW41]). The matrices ((1) 2?”) ,(0<u<k-1)

form a set of coset representatives for I')(k) in T'g(k). Therefore, when we sum over this
set of coset representatives to obtain Ly(z), we obtain a modular function on T'g(k).

Let w € QJ{ioo} be a cusp for I'g(k). We will let H,, be the set of modular functions
on I'y(k) having poles only at w. It is with this space of functions that we will work. In
particular we will consider functions in H,, where w = 0 or 700.

We mention also the Fricke involution Si(z) = ;—; Let F denote the set of modular
functions on I'g(k), and f € F. Sk(z) is an operator from F to itself. Moreover, it
interchanges the polar orders of f at ico and 0 in the appropriate uniformizing variables
(i.e, the expansion of f(Sk(z)) at ioco has the same order in the variable ¢, as the expansion
of f(z) at zero has in the variable q%). For the rest of section 1, let k& = pQ, where p
and @ are two distinct primes strictly greater than 3. Then Sy (z) interchanges the polar
orders of f at the cusps ]13 and é as well.

1.2 Evaluation at 0

Pursuant to our task, we need to determine the order of L, at each of the cusps. We
determine the expansion about 0. To do so we subject L to the transformation S; and
then compute the expansion as usual.

= [(0 IEB(CE D)

pn=0
We need to factor the inner matrix as the product of a unimodular matrix and an upper
triangular matrix. Upon factoring and applying the transformation identities we obtain:

k—1

1
(SkZ )
Z 24p 3k 51/2n(522+%)

u:O 6 2740

where § = (u, k), and the matrix inside factors as:

Con 2 (v i)

for some integers b, d and y such that
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o 4]

Together, the two equations yield that y = —d (in the case p = 0 this is clear). Thus we
obtain the following expression:

00 k—1 ’ 2, 00 . , -1
Li(Spz) = ik H (1—q¢™) Z {55% 677112%“6 q524 H <1 _ 627r25ynq6 n)} ‘ (3)

Now, since 1 = 0 is the only term of the sum in which § = k, and this yields the largest
negative power of ¢, we see that ordy(Ly) > (1 — k?)/24. We will return to equation 3
later.

1.3 Evaluation at all other cusps

Since k is square-free, all the other cusps of I'g (k) occur at the points {1/1| 1 < < k, l|k },
in other words, at 110 and é To determine the order of L at 1/I, we subject it to the

transformation W =" and then evaluate. Thus, we obtain

Ed

[ 6N BRI )

In

hi
o

Now, let 6 = (1 — 24pul, k/l). Then the matrix inside factors as

(" D@ )

for integers b, d and y such that

1—24ul . bk
S AL SRy
T
1—24ul bk
s LV
— U+ 1,
L
s YTy T

The final equation above yields —ly + d = ¢. Using this fact we see that

2, k—1 2 -1
Le(W(2) = 7 /TTk (7Z - k) > {65”277 (75 — 5”)}

=0

=
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o0

2
=e 121”,/[/]{;” ( (kl )X
k—1 bt 822 o) 2 -1 .
551/2p v q 2k | | <1 _péynq?n> ’ <p _ 6%) ‘

2. Specialization to k = 35

2.1 Obtaining an explicit polynomial identity at ico

Now, we take k = 35 for the remainder of this paper. We see from the results above
that Lss(2) has a zero of order 2 at ico in the variable ¢, a pole of order 51 at 0 in the
variable q% , is holomorphic at 1/5 in q%, and has a zero of order at least 1 at 1/7 in
the variable ¢5. We refer the reader to [New57] for an explicit construction of the basis
functions with which we will work, and for an account of the functions Ag and By (as
well as other similar functions used in deriving the basis of functions at infinity). In
summary, the basis functions By, Bs, Bg, and By all have poles only at ico in the same
order as the value of their respective subscript. Similarly, A9 and Bg have poles of order
9 and 8, respectively, at ico, and Ag has zeroes of orders 5, 1, and 3 at 0,1/5 and 1/7
respectively, while Bg has zeros of orders 6 and 2 at 0 and 1/7 respectively.

Suffice it to say that G(z) = Ag(2)B§(z)L35(2) is pole-free in H and has order —71
at i0o, 2 at 0, 0 (or possibly greater) at 1/5, and 20 at 1/7. So we have:

Theorem 1. G(z) € C[By, B, Bg, By].

The proof follows from the work in the previous section and the fact that the B; do
form a polynomial basis for the set of modular functions in H;...

Since the order at 700 is known, the polynomial is determined, using Mathematica to
calculate the coefficients. Among the possible ways of choosing an appropriate form, it
was determined to use B; to keep the total degree (as a polynomial in the B;) as small
as possible. For instance the terms matching ¢=%°, ¢=%, ¢7% are BEBsB,, BSB?, B?
respectively. Call the polynomial that we obtain P.,. Then Ls(z) = Ag' Bg®Px.

Theorem 2. Let ¢; be the coefficient on the term of Ps, corresponding to q'. Then the
polynomial Py is determined by the coefficients in the appendix in table 1, where c¢; is
the given i'" coefficient multiplied by 1225 (= 352).

Corollary 3. p(35n + 19) = 0 mod 35.

Remark 1. This identity also shows how the genus dramatically affects a polynomial
identity associated with such an identity for the partition function. For the cases k =5
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and k = 7, where the genus is 0, Rademacher obtains a linear polynomial and a quadratic
polynomial, respectively, in the respective basis function. Here, the genus is 3 and a
polynomial of degree 11 in the four basis functions is obtained. In a similar manner,
modular identities for the congruences for 55 and 77 may surely be constructed. It is
expected that more basis functions and a higher-degree polynomial will be necessary.

2.2 An Identity at 0

We return to equation 3. Recalling the connection with the partition function p, and
separating into cases depending on ¢, we have :

)= S S e [0 -0

4|35 m=1

When we group the outer sum into terms by J, we obtain Gauss sums for the Jacobi-
Legendre symbol of the appropriate modulus. We have the following terms:

o

1
5 =35- 35q51 H Zp 1225n
EEEEES | (RYEDY (" 5 4) p(m)g™",

m=1 n=0
1 5 . [(n—5
=5 - 1—qg™ ( >pnq25n’
5qwﬂ( )nz% = ) p(n)
st o= (n— 19 n
o=1: J[O=am) (5 )rma",
m=1 n=0

where (-) indicates the Jacobi-Legendre symbol.

Now, Ls5(S352) has order —51 (resp. 2,1, —1) at ico (resp. 0,1/5,1/7). For the last
two points we really only know that the order at each of these points is greater than or
equal to the given value. Nevertheless, this is sufficient to determine that the function
h(z) = Bs(z)Ls5(S352) has its only pole at 700, and the order of the pole there is 59.
Thus, h(z) € C[By, Bs, Bs, Br|.

To clear fractions, multiply by 35 and then note 35L35(S352) = B8_1P0, where Fj is a
polynomial to be determined in the four basis functions. So

¢ =g = Tg ' +35+ .. =PBg' Y p(n)g

This yields the following:

Theorem 4. 35L35(5352) is a polynomial in the basis functions By, Bs, Bg, By, with in-
tegral coefficients given in table 2 of the appendiz.
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Corollary 5.

i {p(n)q1225" -5 (n ; 4) p(n)g*+

n—>9 n—19 n

= ¢"'RBg" Y p(n)g".
n=0

I would like to thank my doctoral advisor, Morris Newman, who suggested this prob-
lem to me, and Bruce Berndt and the referee for their helpful comments.

3. Appendix: tables

Table 1: Coefficients for P,

coeflicient 1 coeflicient

-69
-68
-67
-66
-65
-64
-63
-62
-61
-60
-99
-08
-57
-56
-55
-54
-93
-52
-51
-50
-49
-48
-47
-46

14 | -33 -10569223238228513913405

10487 | -34 -29246449555394872646896

1050000 | -33 -30752043774402282243297

37305717 | -32 -10500761656485195685244

689742738 | -31 -63994584518030323125
6710739396 | -30 747396610368371686739
66723377634 | -29 41866861538739825786329
306529775888 | -28 | -154825275874629072148111
944992220254 | -27 | -330675045299039974754087
8032835276603 | -26 | -330675045299039974754087
41786228768706 | -25 | -195434688782712582767044
163674979606784 | -24 106519373950966952221
201541582793635 | -23 -4489388038461810926594
1192164476376773 | -22 93815803283069768407781
2133885512377322 | -21 | -868861692593019875600320
-224422822302317 | -20 | -780240652273282530768564
9311212319487067 | -19 | -903341606561540466301311
53104246090438488 | -18 | -575916410654649291605538
174875061214811942 | -17 -72387387334271714225
59790513579741686 | -16 5279005749531844180716
418363890733605649 | -15 | -329709784193546752041430
1123804424169272601 | -14 | -754715959977583205060136
-1849756259047888932 | -13 | 2673409023878484316383343
-3961615256484350591 | -12 | 3038512747510492176975342

continued on next page
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Table 1: continued

i coeflicient i coeflicient
-45 1372328949965814202 | -11 | 1778681601887609961535840
-44 19742808525931603996 | -10 16760790778989818745
-43 2177933533113105157 | -9 -1894749705906830722098

-42 23516820211582241283 | -8 189938163107999640927156
-41 | 123390318981474451231 | -7 | 4789820626890790384933368
-40 | -271841378745461882544 | -6 | -1532454919226226734377599
-39 | -T77621797568622505476 | -5 | -1735248899286586237586336
-38 | -673143178730309518022 | -4 | -997109474512591275870705

-37 | 268511875093390021788 | -3 0
-36 10323721732692166606 | -2 0
-35 | 334287613007887666292 | -1 0

-34 | 3963341600197861903691 | 0 | -3000539263195134467759624

Table 2: Coefficients for F,

1 | coefficient | 1 | coefficient
-59 1(-29 101856
-58 -5 | -28 | -1088550
-57 13 | -27 -779536
-56 -24 | -26 -868518
-55 -124 | -25 -638720
-54 -167 | -24 183785
-53 -100 | -23 310027
-52 186 | -22 | -1009582
-51 82 | -21 -5533
-50 -784 | -20 8917982
-49 1899 | -19 | 10010374
-48 7839 | -18 6789719
-47 9103 | -17 -21976
-46 5400 | -16 113545
-45 -531 | -15 35220
-44 2196 | -14 | 21729982
-43 -786 | -13 -703140
-42 13705 | -12 -920456
-41 -1006 | -11 -843856
-40 -4690 | -10 -236844
-39 1882 | -9 -376949
-38 -6611 | -8 1365595
-37 -16039 | -7 -4046123
-36 44380 | -6 | -12312578
-35 -84846 | -5 | -13942378

continued on next page
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Table 2: continued

1 | coefficient | 1 | coefficient
-34 -393717 | -4 | -9425016
-33 -427964 | -3 0
-32 -282747 | -2 0
-31 -17208 | -1 0
-30 -53917 | 0 | -30151150

9
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