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Abstract

We give short proofs of Fraenkel’s Partition Theorem and Brown’s Decomposition.
Denote the sequence (b(n− α′)/αc)∞n=1 by B(α, α′), a so-called Beatty sequence. Fraenkel’s
Partition Theorem gives necessary and sufficient conditions for B(α, α′) and B(β, β′) to
tile the positive integers, i.e., for B(α, α′)∩B(β, β′) = ∅ and B(α, α′)∪B(β, β′) = N. Fix
α ∈ (0, 1), and let ck = 1 if k ∈ B(α, 0), and ck = 0 otherwise, i.e., ck = b(k + 1)αc−bkαc.
For a positive integer m let Cm be the binary word c1c2c3 · · · cm. Brown’s Decomposition
gives integers q1, q2, . . . , independent of m and growing at least exponentially, and inte-
gers t, z0, z1, z2, . . . , zt (depending on m) such that Cm = Czt

qtC
zt−1
qt−1
· · ·Cz1

q1
Cz0
q0

. In other
words, Brown’s Decomposition gives a sparse set of initial segments of C∞ and an explicit
decomposition of Cm (for every m) into a product of these initial segments.

1 Introduction

In 1894, Rayleigh [10] observed that

“If x be an incommensurable number less than unity, one of the series of
quantities m/x,m/(1− x), where m is a whole number, can be found which
shall lie between any given consecutive integers, and but one such quantity
can be found.”

S. Beatty [2] posed this as a Monthly problem in 1926, and it has come to be known
as Beatty’s Theorem.

The Beatty sequence with density α and offset α′ is defined by

B(α, α′) :=

(⌊
n− α′
α

⌋)∞
n=1

, (1)
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where bxc is the floor of x. When the second argument is 0 we omit it from our notation,
i.e., B(α) := B(α, 0). We write {x} := x − bxc for the fractional part of x, and dxe for
the smallest integer larger than or equal to x. We say that two sequences tile a set S if
they are disjoint and their union is S.

For example, we now state Beatty’s Theorem in this language.

Beatty’s Theorem: The sequences B(α) and B(β) tile N if and only if 0 < α < 1,
α + β = 1, and α is irrational.

Beatty sequences arise in a number of areas, including Computer Graphics, Signal
Processing, Automata, Quasicrystals, Combinatorial Games, and Diophantine Approxi-
mation. They are natural counterparts to Kronecker’s fractional part sequences. There
is the obvious connection of B(α, α′) to

({
n−α′
α

})∞
n=1

, but also a more subtle connection
to ({nα + α′})∞n=1 which we exploit here to give simple proofs of Fraenkel’s Partition and
Brown’s Decomposition.

Beatty sequences generalize arithmetic progressions, which correspond to the special
case α−1 ∈ Z. Most work on Beatty sequences has the aim of extending some known
result on APs. For example, the Chinese Remainder Theorem identifies precisely when
APs are disjoint; Fraenkel’s Partition (stated precisely in Section 2) identifies precisely
when two Beatty sequences are disjoint and have union N. The situation for more than
2 sequences is inadequately understood; see [15] and [14] for an up-to-date survey of
knowledge in that direction.

Fraenkel proved his elegant generalization of Beatty’s Theorem in 1969. Although his
argument is well motivated and geometric, it is rather long and hampered by unfortunate
notation. Skolem [12] attempted to deal with the special case of Beatty sequences with
irrational densities. Alas, both his statement of the theorem and his proof are incorrect
(this is discussed in [5]). Borwein & Borwein [3] give “a new proof of a theorem of
Fraenkel”. They write, “Our proof, once we have developed the other machinery of this
paper, is considerably shorter.” Their proof is indeed short and the “other machinery”
consists only of two straightforward functional equations relating a pair of generating
functions. Unfortunately, the “theorem of Fraenkel” that they prove is a very special
case of Fraenkel’s Partition. In Section 2, we give the statements put forward by Skolem,
Fraenkel, and Borwein & Borwein.

Skolem’s work is incorrect, Fraenkel’s proof is long, and the Borwein brothers shied
away from proving the full theorem. For these reasons, the author feels that there is room
in the literature for another proof of Fraenkel’s Partition, provided that it is correct, short,
and complete. We state Fraenkel’s Partition in Section 2, define some relevant notation
in Section 4, and give the proof in Section 5. Because of the theorem’s history of incorrect
proofs and inadequate statements, we have perhaps erred on the side of including too
much detail. To ease the work of a casual reader, the main ideas are given in Section 5.1.
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We now introduce Brown’s Decomposition. Fix an α ∈ (0, 1), and set

ck :=

{
1, k ∈ B (α);
0, otherwise,

and let Cm be the binary word c1c2 . . . cm. The word C∞ is called the characteristic word
with density α. If α−1 = q ∈ N, then ck = 1 if and only if k ≡ b−qα′c (mod q). In

particular, ck = cq+k for every k, whence Cm = C
bm/qc
q Cm−qbm/qc. In fact, if α = a

q
, then

the sequence c1, c2, . . . is periodic with period q and so Cm = C
bm/qc
q Cm−qbm/qc.

If α is irrational, then the sequence c1, c2, . . . is not periodic. But α is near to
rationals, and so an initial segment of the sequence will appear to be periodic. Brown’s
Decomposition (stated precisely in Section 3) is a quantitative description of this, given
in terms of the convergents of the continued fraction of α.

We comment that this ‘almost-periodicity’ is precisely what makes Beatty sequences
interesting to quasicrystallographers. If α 6∈ Q, then C∞ is the prototypical example of
a Sturmian Word. Much of the literature on Beatty sequences is couched in the equiva-
lent (and often more convenient) language of Sturmian Words, especially the literature
analyzing quasicrystallographic properties.

The first steps toward Brown’s Decomposition were made in the oft-cited work of Sto-
larsky [13]. He was studying functions h for which c1c2 · · · = h(c1)h(c2) · · · . A nontrivial

example is worth a thousand words: set α =
√

5−1
2

, in which case

c1c2c3 · · · = 101 101 011 011 010 · · ·

is the “Fibonacci word”. With h defined by h(1) = 10, h(0) = 1 we have

h(c1)h(c2)h(c3) · · · = h(1)h(0)h(1) · · ·
= 10 1 10 · · ·
= c1c2c3c4c5 · · · .

In the early 1990s, T. C. Brown found the useful and succinct decomposition of Cm using
morphisms. His proof is nicely exposited in the new book of Allouche & Shallit [1]. We
remark that the properties of morphisms received a great deal of attention throughout
the 1990s. Excellent accounts of the current theory are given in both [1] and in the recent
book of Lothaire [8, Chapter 2].

Here, we give a short direct proof of Brown’s Decomposition. Our proof relies on the
same characterization of B(α) in terms of the fractional part sequence {kα} that we use
in our proof of Fraenkel’s Partition. We also need a well-known theorem from continued
fractions (which is also used in Brown’s proof). The Decomposition is stated precisely in
Section 3, some notation is introduced in Section 4, and the proof is given in Section 6.
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2 Statement of Fraenkel’s Partition

Fraenkel’s Partition Theorem: The sequences B(α, α′) and B(β, β′) tile N if and only
if the following five conditions are satisfied.

1. 0 < α < 1.

2. α + β = 1.

3. 0 ≤ α + α′ ≤ 1.

4. If α is irrational, then α′ + β′ = 0 and kα + α′ 6∈ Z for 2 ≤ k ∈ N.

5. If α is rational (say q ∈ N is minimal with qα ∈ N), then 1
q
≤ α + α′ and dqα′e +

dqβ′e = 1.

We note first Conditions 1–5 are symmetric in α and β. At first glance this is not the
case; for example, it is not clear that Conditions 1–5 imply that 0 ≤ β + β′ ≤ 1. Our
proof of Fraenkel’s Partition begins by proving the claimed symmetry.

Note also that if one divides the equation in Condition 5 by q, and then takes the
limit as q → ∞, one obtains the equation α′ + β′ = 0 of Condition 4. This hints that
the irrational case can be derived as a limit of the rational case. However, the presence
of the additional clause “kα+α′ 6∈ Z” of Condition 4 indicates that this approach is not
trivial. The proof given here handles the two cases separately. In Section 5.5, we derive
the irrational case from the rational case using nonstandard analysis.

If one wishes to consider tilings of {N + 1, N + 2, . . . } instead of {1, 2, . . . }, it is
not difficult to adapt our statement. Indeed, B(α, α′) and B(β, β′) tile N if and only if
B(α, α′ −Nα) and B(β, β′ −Nβ) tile {N + 1, N + 2, . . . }. A similar adjustment allows
one to easily change the range of n in the definition of B.

Skolem [12] stated (incorrectly) that if α, β are positive irrationals, then B(α, α′) and

B(β, β′) tile {n ∈ Z : n ≥ min{
⌊

1−α′
α

⌋
,
⌊

1−β′
β

⌋
}} if and only if α+ β = 1 and α′+ β′ ∈ Z.

Borwein & Borwein [3] assume that 0 < α < 1, α irrational, 0 < α+ α′ ≤ α, and n−α′
α

is
never integral. Under these hypotheses, they prove (correctly) that B(α, α′) and B(β, β′)
tile N if and only if α + α′ = 1 and α′ + β′ = 0.

Fraenkel’s statement (using a simplified form of his notation) is as follows. Let α and
β be positive real numbers, either both rational or both irrational, and let γ and δ be
arbitrary real numbers. Let S and T be the sets of integers of the form φn = [nα+γ] and
ψn = [nβ+δ], respectively, where n ranges over N. Further, assume that φ1 ≤ ψ1. If α, β
are irrational, then S and T tile {n : n ≥ φ1} if and only if 1

α
+ 1

β
= 1, γ

α
+ δ

β
= φ1 − 1,

and
nβ + δ = K, n,K integral implies n < 1.
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If α, β are rational, then S and T tile {n : n ≥ φ1} if and only if 1
α

+ 1
β

= 1 and

γ

α
+
δ

β
= φ1 − 1− a−1 + η + ρ,

where α = a
c
, gcd(a, c) = 1, γ

α
≡ η (mod a−1), 0 ≤ η < a−1, β = b

d
, gcd(b, d) = 1,

δ
β
≡ ρ (mod b−1), 0 ≤ ρ < b−1. It is remarkable how much simplification we purchase by

considering
⌊
n−α′
α

⌋
in place of bnα + γc. Our less-obvious definition leads to a somewhat

simpler statement, and a much simpler proof. (Note: our additional restriction to 0 ≤
α + α′ ≤ 1 in the irrational case and 1

q
≤ α + α′ ≤ 1 in the rational case correspond to

insisting that φ1 = 1.)

3 Statement of Brown’s Decomposition

Before stating Brown’s Decomposition, we must define the continued fraction expansion
of a natural number. Let [0; a1, a2, . . . ] be the continued fraction expansion of α, and
denote the continuants (the denominators of the convergents to α) by q0, q1, . . . , i.e.,
q0 := 1, q1 := a1, and qi := aiqi−1 + qi−2. For a positive integer m, define z0, z1, . . . by
writing m greedily as a sum of qi (that is, always use the largest qi possible):

m = ztqt + zt−1qt−1 + . . . z1q1 + z0q0.

We call (ztzt−1 · · · z1z0)α the continued fraction expansion of m with respect to α. The
standard reference for this and other systems of numeration is [6].

We can now state Brown’s Decomposition.

Brown’s Decomposition: Let α = [0; a1, a2, . . . ] have continuants q0, q1, q2, . . . , and
let m = (zt · · · z1z0)α. Then for i ≥ 2

Cqi = Cai
qi−1

Cqi−2
and Cm = Czt

qtC
zt−1
qt−1
· · ·Cz1

q1
Cz0
q0
.

An avid reader may enjoy proving that z0, z1, . . . is the unique sequence of nonnegative
integers such that m =

∑
i≥0 ziqi, 0 ≤ zi ≤ ai, and (zi = ai)⇒ (i ≥ 1 and zi−1 = 0). We

remark that this is sometimes referred to as the Ostrowski expansion, and sometimes as
the Zeckendorf expansion, especially when q0, q1, . . . are Fibonacci numbers.

4 Preliminaries

Much of our work will take place in R/Z. While there is no natural linear ordering of
R/Z, there is a natural ‘ternary’ order: we say that real numbers w, x, y are in order
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if there is a nondecreasing function f : [0, 1] → R with {f(0)} = {w},
{
f(1

2
)
}

= {x},
{f(1)} = {y}, and f(1)− f(0) < 1.

This definition is precise but awkward; there is a geometric description that is con-
ceptually simpler. Let τ : R → C be defined by τ(z) = e2πiz. The range of τ is the
circle D := {z : |z| = 1}, and the group (D, ·) is isomorphic to R/Z (in fact, τ is one
isomorphism). We say that w, x, y are in order if τ(x) is on the counter-clockwise arc
from τ(w) to τ(y). We write x ≡ y when τ(x) = τ(y), i.e., when x− y ∈ Z.

We define the arcs (w, y), (w, y], and [w, y) to be ∅ if w ≡ y, and otherwise define the
arcs through

(w, y) := {x ∈ R : x 6≡ w, x 6≡ y, and w, x, y are in order.}
(w, y] := {x ∈ R : x 6≡ w, and w, x, y are in order.}
[w, y) := {x ∈ R : x 6≡ y, and w, x, y are in order.}

Our proofs of both Fraenkel’s Theorem and Brown’s Decomposition rely heavily on
the following lemma.

Lemma 1. Let k be an integer, and 0 < α < 1. Then k ∈ B(α, α′) if and only if

(kα + α′ > 0) AND
(
kα ∈ (−α− α′,−α′]

)
.

Proof.

k ∈ B(α, α′)⇔ ∃n ∈ N
(
k ≤ n−α′

α
< k + 1

)
⇔ ∃n ∈ N (kα + α′ ≤ n < (k + 1)α + α′)

⇔ (kα + α′ > 0) AND
(

(k + 1)α + α′ ∈ (0, α]
)

⇔ (kα + α′ > 0) AND
(
kα ∈ (−α− α′,−α′]

)

5 Proof of Fraenkel’s Theorem

5.1 Spirit of Proof

In this section we prove a theorem whose statement and proof are similar to Fraenkel’s
Theorem, but for which the technical details are considerably reduced. We note that
Fraenkel [5] also proved this result. Set

Sα :=
(⌊

n−α′
α

⌋)∞
n=−∞ and Sβ :=

(⌊
n−β′
β

⌋)∞
n=−∞

.
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Theorem 2. Let α, β be positive irrationals. The sequences Sα and Sβ tile Z if and only
if α + β = 1, α′ + β′ ∈ Z, and kα + α′ is never an integer (for k ∈ Z).

The additional difficulty of proving Fraenkel’s Partition is in dealing with the ‘edge
effects’ introduced by restricting the index n in the definition of Sα and Sβ to n ≥ 1, and
in dealing with rational α. The proof of Fraenkel’s Theorem given below is self-contained;
this subsection is included only to give the look-and-feel of our approach.

Proof. First, we note that the density of Sα is α, and that of Sβ is β; it is clearly necessary
that α + β = 1. From this point forward, we assume that α + β = 1.

Next, observe that k ∈ Sα exactly if there is an n ∈ Z with k ≤ n−α′
α

< k + 1, which
is the same as

kα + α′ ≤ n < kα + α′ + α.

This, in turn, is the same as kα + α′ ∈ (−α, 0]. Thus (arguing identically for β),

Sα =
{
k : kα ∈ (−α− α′,−α′]

}
and Sβ =

{
k : kβ ∈ (−β − β′,−β′]

}
.

But kβ = k(1− α) ≡ −kα, so that Sβ is also given by

Sβ =
{
k : kα ∈ [β′, β + β′)

}
.

Thus, k ∈ Sα if kα ∈ (−α− α′,−α′] =: A and k ∈ Sβ if kα ∈ [β′, β + β′) =: B. Since
({kα})∞k=−∞ is dense in [0, 1), if A and B intersect in an arc, there are infinitely many k
in both Sα and Sβ; and if A and B both omit some arc, there are infinitely many k in
neither Sα nor Sβ. It follows that the right endpoint of A is the left endpoint of B, i.e.,
−α′ ≡ β′, which is the same as α′+ β′ ∈ Z. The only point in A∩B is −α′ ≡ β, so that
if kα ≡ −α′ ≡ β, then k is in both Sα and Sβ. This happens if and only if kα+ α′ is an
integer.

5.2 Without loss of generality ...

5.2.1 Fraenkel’s Partition is symmetric in α and β.

We first note that the Theorem is symmetric in α and β. Obviously, “The sequences
B(α, α′) and B(β, β′) tile N” has the claimed symmetry. Combining Conditions 2 and 3,
we find 0 < β < 1, the symmetric counterpart to Condition 1. Condition 2 is symmetric
as stated. We return to Condition 3 in the next paragraph. In Condition 4, the equation
α′ + β′ = 0 is already symmetric; and “kα + α′ 6∈ Z” implies that kβ + β′ = k(1− α) +
(−α) = k− (kα+α′) 6∈ Z (using Condition 2 and α′+β′ = 0). Thus Condition 4 implies
its symmetric counterpart. If α is rational, then β = 1 − α (from Condition 2 ) is also,
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and moreover both α and β have the same denominator. Thus Condition 5 implies its
symmetric counterpart also.

If α is irrational, then α = 1−β (from Condition 2 ) and α′ = −β′ (from Condition 4 ),
so 0 ≤ α + α′ ≤ 1 (from Condition 3 ) implies 0 ≤ β + β′ ≤ 1, the symmetric twin
of Condition 3. Now suppose that α is rational, say qα ∈ N. Then the inequalities
1
q
≤ α+ α′ ≤ 1 (from Conditions 3 and 5 ) yield 1 ≤ qα+ qα′ ≤ q, and since 1, qα, q are

all integers, this yields 1 ≤ qα+ dqα′e ≤ q. Now from Condition 2, α = 1− β, and from
Condition 5, dqα′e = 1 − dqβ′e, so the inequalities imply 1 ≤ q(1 − β) + 1 − dqβ′e ≤ q,
which simplifies to 1 ≤ qβ+ dqβ′e ≤ q. Now, since qβ = q− qα ∈ N, and 1, q are integers
also, the inequalities become 1 ≤ qβ + qβ′ ≤ q, or more simple 1

q
≤ β + β′ ≤ 1. This

gives the symmetric counterpart to Condition 3 (since 1
q
> 0) and to Condition 5.

5.2.2 If α is rational, then α, α′, β, β′ are all rational with the same denomi-
nator.

We now observe that if α is rational (with denominator q), we can assume without loss
of generality that α′ is also rational with denominator q. For 0 ≤ α+α′ ≤ 1 if and only if

0 ≤ α+ dqα
′e
q
≤ 1 and clearly

⌈
q dqα

′e
q

⌉
+
⌈
q dqα

′e
q

⌉
= dqα′e+dqβ′e, and so the Conditions 1–5

are unaffected by replacing α′ with dqα
′e
q

. By Lemma 3 below, the sequence B(α, α′) is also
unaffected. Thus, we assume from this point on that if α is rational with denominator
q, then so is α′. Further, if β is rational with denominator q, we assume that β′ is too.
The equation in Condition 5 now simplifies to α′ + β′ = 1

q
.

When α, β are known to be positive rationals with α + β = 1, we define natural
numbers q, a, a′, b, b′ by the conditions

α =
a

q
, gcd(a, q) = 1, α′ =

a′

q
, β =

b

q
, β′ =

b′

q
.

Lemma 3. For any a, q ∈ N and α′ ∈ R, B(a
q
, α′) = B(a

q
, dqα

′e
q

).

Proof. Set α = a
q
. We have kα + α′ > 0 ⇔ ka + qα′ > 0, and since ka ∈ Z, we have

ka+ qα′ > 0⇔ ka+ dqα′e > 0⇔ kα + dqα′e
q

> 0.

Now kα is rational with denominator q, and there are no such numbers in (− dqα′e
q
,−α′]

or in (−α− dqα′e
q
,−α− α′]. Thus

kα ∈ (−α,−α− α′]⇔ kα ∈ (−α− dqα′e
q
,− dqα′e

q
].

Apply Lemma 1 to finish the proof.
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A

B

Figure 1: The partition of N into B(3 − e, 2
5
) = {2, 5, 9, 13, 16, . . . } and B(e − 2,−2

5
) =

{1, 3, 4, 6, 7, 8, . . . }.

5.2.3 The sets A and B are important.

We define
A := (−α− α′,−α′] and B := [β′, β + β′).

Lemma 4. Suppose α + β = 1. Then k ∈ B(α, α′) if and only if

(kα + α′ > 0) AND (kα ∈ A) .

Further, k ∈ B(β, β′) if and only if

(kβ + β′ > 0) AND (kα ∈ B) .

Figure 1 gives an example of Fraenkel’s Partition with α = e − 2, α′ = 2
3
, β = 3− e

and β′ = −2
3
. Shown in the figure are the circle |z| = 1 and the angles that correspond

to the sets A and B. Also shown are the points τ(kα) (0 ≤ k ≤ 16), labelled “k”.

Proof. The condition for k ∈ B(α, α′) is simply a restatement of Lemma 1. To prove the
condition for k ∈ B(β, β′), we must show that

kβ ∈ (−β − β′,−β′]⇔ kα ∈ [β′, β + β′).

This is obvious since kβ = k(1−α) ≡ −kα, and from the observation that −w,−kα,−y
are in order if and only if y, kα, w are too.
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5.3 Conditions 1–5 are Sufficient

Suppose that α, α′, β, β′ satisfy Conditions 1–5. We have n−α′
α
≥ 1−α′

α
≥ 1 (using Con-

dition 3 ), so B(α, α′) ⊆ N, and likewise (by the symmetry proved in Section 5.2.1)
B(β, β′) ⊆ N.

We now show the equivalence (for k ∈ N)

k ∈ B(α, α′)⇔ k 6∈ B(β, β′),

i.e., we show that the two sequences tile N. We break the work into four cases: k = 1 or
k > 1, and α ∈ Q or α 6∈ Q.

5.3.1 k = 1.

Since α ∈ (0, 1) and β = 1− α ∈ (0, 1), the two sequences are strictly increasing. Since
B(α, α′) and B(β, β′) are in N (as proved above), we have for x ∈ {α, β}

1 ∈ B(x, x′)⇔ 1− x′
x

< 2.

Specifically, we have

1 ∈ B(α, α′)⇔ 1− α′
α

< 2⇔ 1 < 2α + α′ (2)

and

1 6∈ B(β, β′)⇔ 1− β′
β
≥ 2⇔ 1 ≥ 2β + β′ (3)

If α is irrational then, by Condition 4, 2α+α′ 6= 1 and so 1 < 2α+α′ ⇔ 1 ≤ 2α+α′.
By Condition 2, α = 1− β, and by Condition 4, α′ = −β′. Thus,

1 < 2α + α′ ⇔ 1 ≤ 2α + α′ ⇔ 1 ≥ 2β + β′,

connecting the equivalences in Lines (2) and (3).

Now suppose that α is rational, and recall that we may assume that α, α′, β, β′ are
all rationals with denominator q, as per the discussion in Section 5.2.2. Using α = 1− β
and α′ = 1

q
− β′, we have

1 < 2α + α′ ⇔ 2β + β′ < 1 +
1

q
⇔ 2β + β′ ≤ 1,

the last equivalence following from β, β′ being rationals with denominator q. This con-
nects the equivalences in Lines (2) and (3).
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0 ≡ 1

A

B

−α− α′ ≡
β + β′

−α′ ≡ β′

Figure 2: A and B, with α irrational

5.3.2 k > 1.

Suppose that k > 1, so that kα + α′ > α + α′ ≥ 0 (by Condition 3 ), and by symmetry
kβ + β′ > 0.

Lemma 4 reduces to

k ∈ B(α, α′)⇔ kα ∈ A and k ∈ B(β, β′)⇔ kα ∈ B.

Thus, to prove k ∈ B(α, α′) ⇔ k 6∈ B(β, β′) it will suffice to show that kα 6∈ A ∩ B and
kα 6∈ Ac ∩Bc.

The next two paragraphs are accompanied by Figures 2 and 3. In these figures the
point τ(z) is labelled “z”. These figures show the circle τ(R) (the outer circle with the
point τ(0) = τ(1)), and display the angles corresponding to τ(A) and τ(B) as arcs inside
the circle. Also labelled are the points τ(−α′), τ(β′), τ(−α− α′), and τ(β + β′).

If α is irrational (see Figure 2), then B := [β′, β + β′) = [−α′,−α− α′). We have
A ∩ B = {y : y ≡ −α′}. Since kα + α′ 6≡ 0 by Condition 4, we know that kα 6∈ A ∩ B.
We have Ac ∩ Bc = {y : y ≡ −α − α′}. If kα ∈ Ac ∩ Bc then kα ≡ −α − α′. Thus
(k + 1)α + α′ ∈ Z, but this is forbidden by Condition 4.

If α is rational (see Figure 3), then B := [β′, β + β′) = [1
q
− α′, 1

q
− α− α′). We have

A ∩ B = (−α− α′, β + β′) = (−a−a
′

q
, −a−a

′+1
q

) and Ac ∩ Bc = (−α′, β′) = (−a
q
, −a+1

q
),

neither of which contain a rational with denominator q. Since kα is rational with de-
nominator q, we know that kα 6∈ A ∩B and kα 6∈ Ac ∩Bc.
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0 ≡ 1

A

B

−α− α′

β + β′

−α′

β′

Figure 3: A and B, with α rational

5.4 Conditions 1–5 are Necessary

We now assume that B(α, α′) and B(β, β′) tile N, and prove Conditions 1–5.

We define k0 := max{0,−α′/α,−β′/β}. For k > k0, then both kα + α′ and kβ + β′

are positive, and this will simplify our work tremendously.

The sequences B(α, α′),B(β, β′) contain infinitely many positive integers, so α and β
are nonnegative.

We can count the number of elements of B(α, α′) which are less than an integer k:

|B(α, α′) ∩ (−∞, k)| =
∣∣∣∣{n ≥ 1:

⌊
n− α′
α

⌋
< k

}∣∣∣∣
=

∣∣∣∣{n ≥ 1:
n− α′
α

< k

}∣∣∣∣
= max {0, dkα + α′e − 1}

and likewise
|B(β, β′) ∩ (−∞, k)| = max {0, dkβ + β′e − 1} .

Since B(α, α′) and B(β, β′) tile N, we have (for k > k0)

k − 1 = |(B(α, α′) ∪ B(β, β′)) ∩ (−∞, k)|
= |B(α, α′) ∩ (−∞, k)|+ |B(β, β′) ∩ (−∞, k)|
= dkα + α′e+ dkβ + β′e − 2. (4)

Divide by k, and let k go to infinity to find 1 = α + β (Condition 2 ).

As α and β are positive, and α + β = 1, we find 0 < α < 1 (Condition 1 ).
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We will use the following short lemma several times.

Lemma 5. If k > k0, {kα + α′} 6= 0, and {kβ + β′} 6= 0, then

{kα + α′}+ {kβ + β′} = α′ + β′ + 1.

Proof. Since kα+α′ is not an integer, we have dkα + α′e = kα+α′+ 1−{kα + α′}, and
likewise dkβ + β′e = kβ + β′ + 1 − {kβ + β′}. Equation (4) now simplifies to finish the
proof.

The hypothesis that k ∈ B(α, α′) ⇔ k 6∈ B(β, β′) and Lemma 5 imply that (for
k > k0)

kα ∈ A⇔ kα 6∈ B.
This, in turn, is equivalent to the assertion for k > k0

kα 6∈ A ∩B and kα 6∈ Ac ∩Bc. (5)

5.4.1 If α is irrational ...

The set {{kα} : k > k0} is dense in [0, 1); Line (5) implies that there is no nontrivial
interval contained in A ∩ B, nor in Ac ∩ Bc. Thus, the right endpoint of B is congruent
(modulo 1) to the left endpoint of A, i.e., β′ ≡ −α′.

Suppose (by way of contradiction) that both s1α+α′ and s2α+α′ are integers (with
si ∈ Z). Then so is (s1− s2)α = (s1α+ α′)− (s2α+ α′), contrary to our hypothesis that
α is irrational. Thus, there is at most one integer s such that sα+α′ ∈ Z. Consequently,
we may choose k1 so that neither k1α + α′ nor k1β + β′ are integers. We know from the
previous paragraph that β′+α′ is an integer, so from Lemma 5, {k1α + α′}+ {k1β + β′}
is an integer. By the definition of fractional part, 0 ≤ {k1α + α′}+ {k1β + β′} < 2, and
by the choice of k1, {k1α + α′}+{k1β + β′} > 0. Thus {k1α + α′}+{k1β + β′} = 1, and
Equation (5) reduces to α′ + β′ = 0.

Now suppose that kα + α′ ∈ Z (with k ≥ 2, not necessarily larger than k0). Note
that kβ+ β′ = k(1−α)−α′ = k− (kα+α′) ∈ Z also. We have kα ≡ −α′ ≡ β′ ∈ A∩B,
so Lemma 5 implies that kα+α′ ≤ 0 or kβ+β′ ≤ 0. Without loss of generality, suppose
that kα + α′ ≤ 0. Then (k − 1)α + α′ ≤ 0, so by Lemma 1, k − 1 6∈ B(α, α′). Also
(k − 1)α ≡ −α − α′ ≡ β + β′ 6∈ B, so k − 1 6∈ B(β, β′). That is, k − 1 is in neither
B(α, α′) nor B(β, β′), contradicting the hypothesis that these sets tile N. This establishes
Condition 4.

Since B(α, α′) ⊆ N, we have 1−α′
α
≥ 1, whence α + α′ ≤ 1. Likewise, 1 ≥ β + β′ =

1− α− α′, whence 0 ≤ α + α′, establishing Condition 3.
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5.4.2 If α is rational ...

If α = 1
2
,then β = 1−α = 1

2
. We have B(α, α′) = (2n−a′)∞n=1 and B(β, β′) = (2n−b′)∞n=1.

This is the even-odd tiling of N; we have {a′, b′} = {0, 1}. Conditions 3 and 5 are now
easily verified. From this point on, we can assume that one of α, β is strictly less than 1

2
.

The set of fractional parts {{kα} : k > k0} = { i
q

: 0 ≤ i < q}, so Line (5) says that

there is no multiple of 1
q

in A ∩B or in Ac ∩Bc. Consider the multiples of 1
q

−α− α′,−α− α′ + 1
q
,−α− α′ + 2

q
, . . . ,−α′,−α′ + 1

q
.

Since α ≤ 1 − 1
q
, the first and the last (which may be congruent modulo 1) are clearly

not in A := (−α− α′,−α′]. Therefore, they must be in B := [β + β′, β′). That is

B = [−α′ + 1
q
,−α− α′ + 1

q
). In particular, β′ ≡ −α′ + 1

q
.

If x 6∈ Z then for any k at most one of sx + x′, (s + 1)x + x′ is integral (where
s ∈ Z), since their difference is not integral. If 0 < x < 1

2
, then at most one of sx + x′,

(s + 1)x + x′, (s + 2)x + x′ is integral (if two were, then their difference would be also,
but their difference is < 1). Thus, since one of α, β is strictly less than 1

2
, we may

choose k1 ∈ {bk0 + 1c , bk0 + 2c , bk0 + 3c} with neither k1α+α′ nor k1β+β′ integral. In
particular {k1α + α′}+ {k1β + β′} ≥ 2

q
.

Choose k1 > k0 so that {k1α + α′} and {k1β + β′} are positive. By Lemma 5 we have
{k1α + α′} + {k1β + β′} − 1

q
∈ Z, and by the definition of fractional part, {k1α + α′} +

{k1β + β′}− 1
q
∈ [−1

q
, 2− 1

q
). Thus, {k1α + α′}+ {k1β + β′}− 1

q
= 1. Plugging this into

Lemma 5, we find α′ + β′ = 1
q
.

Since B(α, α′) ⊆ N, we have 1−α′
α
≥ 1, whence α + α′ ≤ 1. Likewise, 1 ≥ β + β′ =

1− α + 1
q
− α′, so that α + α′ ≥ 1

q
≥ 0. This establishes Condition 3 and the last piece

of Condition 5.

5.5 Using Nonstandard Analysis to Derive Irrational Case

We can use nonstandard analysis to easily derive the irrational case of Fraenkel’s Partition
from the rational case. Specifically, we now show that if Conditions 1–3, 5 are sufficient
for rational α, then Conditions 1–4 are sufficient for irrational α.

Suppose that α is irrational and α, α′, β, β′ satisfy Conditions 1–4. Since Condi-
tions 1–4 are symmetric in α, β (as per the comment in Section 5.2.1), we may label α
and β so that α + α′ 6= 0 and β + β′ 6= 1.

Let q ∈ ∗N \ N be an infinite prime number. Set

γ :=
bqαc
q

, γ′ :=
bqα′c
q

, δ :=
dqβe
q

, δ′ :=
dqβe+ 1

q
,
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all ∗-rationals with denominator q. It is straightforward to verify that γ, γ′, δ, δ′ satisfy
Conditions 1, 2, 3, and 5, so B(γ, γ′) and B(δ, δ′) tile ∗N.

We have n−γ′
γ
≥ n−α′

α
and for n finite st(n−γ

′

γ
) = n−α′

α
, so

⌊
n−γ′
γ

⌋
=
⌊
n−α′
α

⌋
. Thus

B(α, α′) = N ∩ B(γ, γ′). We also have st(n−δ
′

δ
) = n−β′

β
, so

⌊
n−δ′
δ

⌋
=
⌊
n−β′
β

⌋
unless n−β′

β

is an integer. If n−β′
β

= k ≥ 2, then k − n = k − (kβ + β′) = kα + α′ ∈ Z, contrary to

Condition 4. If n−β′
β

= 1, then β + β′ = 1, contrary to our assumption that β + β′ 6= 1.

6 Proof of Brown’s Decomposition

Fix an irrational α = [0; a1, a2, . . . ], and let q0, q1, . . . be its continuants. Specifically, let
qt be the largest continuant strictly less than m. We denote the distance to the nearest
integer by

‖x‖ := min
{
x− bxc , dxe − x

}
= min

{
{x} , 1− {x}

}
.

Lemma 6. Cm = CqtCm−qt .

Brown’s Decomposition follows immediately from Lemma 6 by induction. The proof of
Lemma 6 relies on the following well-known result from the theory of continued fractions.
It can be found as Theorem 10.15 (page 370) of [11], for example, or on page 163 of [9].

Lemma 7. If |s| < qt+1 then ‖sα‖ > ‖qtα‖.

Proof of Lemma 6. First, if α = [0; a1, . . . , an] is rational, then we can replace it with
an irrational x between α and α′ = [0; a1, . . . , an,m+ 1]. The continuants of α′ that are
less than m are the same as the continuants of α, so the continued fraction expansion of
m looks the same. And if the irrational x is sufficiently close to α, then B(α) ∩ [1,m] =
B(x)∩ [1,m] and in particular Cm does not change when α is replaced with x. Thus, we
may assume that α is irrational.

If qt = 1, then t < 2 since q2 = a2q1 + q0 ≥ 2 > qt. Thus either m = (m)α or
m = (m0)α. In the first case (t = 0), we have m < q1 = a1, and so α < 1

a1
< 1

m
.

Therefore Cm = 0m = C0Cm−1, proving the Lemma. In the second case (t = 1), we have
a1 = 1 and 1 ≤ m < q2 = a2 + 1, so α > a2

a2+1
. Now k/α < k a2+1

a2
= k + k

a2
, so bk/αc = k

for k = m ≤ a2. Thus Cm = 1m = C1Cm−1, proving the Lemma. Thus we may assume
from this point on that qt > 1.

It is obvious that Cqt is an initial segment of Cm; the content of Lemma 6 is that
cqt+k = ck for 1 ≤ k ≤ m− qt ≤ qt+1 − qt. In particular both |k| and |k + 1| are strictly
less than qt+1.
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By definition
ck = 1 ⇔ k ∈ B(α)

and by Lemma 1 (with α′ = 0 and k ≥ 1)

k ∈ B(α) ⇔ kα ∈ (−α, 0].

Likewise,

cqt+k = 1⇔ qt + k ∈ B(α)⇔ (qt + k)α ∈ (−α, 0]⇔ kα ∈ (−α− qtα,−qtα].

We need to show only that kα is not in the symmetric difference of (−α, 0] and (−α− qtα,−qtα].
This symmetric difference is contained in

[−‖qtα‖, ‖qtα‖] ∪ [−‖qtα‖ − α, ‖qtα‖ − α].

Now |k| < qt+1, so by Lemma 7, ‖kα‖ > ‖qtα‖ and consequently

kα 6∈ [−‖qtα‖, ‖qtα‖].

Also |k+1| < qt+1, so ‖(k+1)α‖ > ‖qtα‖, which is the same as (k+1)α 6∈ [−‖qtα‖, ‖qtα‖].
Thus

kα 6∈ [−‖qtα‖ − α, ‖qtα‖ − α].
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