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Abstract

For k ∈ N we define a new divisor function sk called the kth prime symmetric function.
By analogy with the sum of divisors function σ, we use the functions sk to consider
variations on perfect numbers, namely k-symmetric-perfect numbers as well as k-cycles.
We find all k-symmetric-perfect numbers for k = 1, 2, 3. We also consider the problem
of whether a natural number n can be expressed in the form sk(n), and show that for n
large enough, it always can be for k = 1, 2.

1. Introduction

Definition 1: Let k be a nonnegative integer. We define sk : N → N ∪ {0} as follows:
If k = 0, sk(n) ≡ 1. If k > 0, and n = p1 · · · pr, where r = Ω(n) is the number of prime
factors (with multiplicity) of n, then

sk(n) =
∑

pi1 · · · pik ,

where the sum is taken over all products of k prime factors from the set {p1, . . . , pr}.
We say sk is the kth prime symmetric function.

Note that if Ω(n) < k, we have sk(n) = 0.

There is an alternate way of defining the functions sk. Given n = p1 · · · pr ∈ N, set

Sn(x) =
r∏
i=1

(x+ pi).

Then sk(n) is the coefficient of xr−k in Sn(x). The empty product is taken to be 1.

Example 1: s0(12) = 1, s1(12) = 2 + 2 + 3 = 7, s2(12) = 2 · 2 + 2 · 3 + 2 · 3 = 16,
s3(12) = 12, and s4(12) = 0.
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Several good texts detailing the basic theory of perfect numbers exist, see for instance
[1], [4], [7], and [13]. In addition, many variations on perfect numbers have been defined
and studied. For examples, see the remaining references. We now define a new variation
of perfect, defective, and excessive numbers using the divisor functions sk.

Definition 2: Let n ∈ N. If sk(n) < n, we say n is k-symmetric-defective. If sk(n) > n,
we say n is k-symmetric-excessive. If sk(n) = n, and Ω(n) = k, we say n is trivially
k-symmetric-perfect. If sk(n) = n, and Ω(n) > k, we say n is k-symmetric-perfect. If n
is k-symmetric-perfect or k-symmetric-excessive, we say n is k-symmetric-special.

Notation: For the sake of brevity we write k-SD for k-symmetric-defective, k-SP for
k-symmetric-perfect, k-SE for k-symmetric-excessive, and k-SS for k-symmetric-special.

Example 2: If p is prime, then pp is a (p− 1)-SP number, since

sp−1(pp) =

(
p

p− 1

)
pp−1 = pp.

In fact, this example has a form of converse:

Theorem 1: The prime power pα is k-SP if and only if α = p and k = p− 1.

Proof. We have seen that this is sufficient, now suppose k < α, and sk(p
α) = pα. Then(

α

k

)
= pα−k. (1)

For 1 < k < α − 1,
(
α
k

)
is divisible by two distinct prime factors, hence we must have

k = 1 or α− 1. Now 4 = 22, is the only 1-SP number, and corresponds to the case where
k = 1 = α− 1. Hence we may assume k = α− 1, which from (1) implies that α = p and
k = p− 1. This proves the theorem. 2

Definition 3: A finite sequence {n0, . . . , n`} is called a k-cycle if the following conditions
are satisfied:

1. ` > 1,

2. n0, . . . , n`−1 are distinct and n` = n0, and

3. sk(ni) = ni+1, for i = 0, 1, . . . , `− 1.

2. Basic Properties of Prime Symmetric Functions

The following proposition is an immediate consequence of the definition.
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Proposition 2: If n = pα1
1 · · · pαrr , then

sk(n) =
∑

i1 + · · ·+ ir = k
i1, . . . , ir ≥ 0

(
α1

i1

)
· · ·
(
αr
ir

)
pi11 · · · pirr .

Proposition 3:

sk(mn) =
k∑
i=0

sk−i(m)si(n).

Proof. If m = 1, or n = 1, the result is immediate, as it is if k = 0. If k > 0, m = p1 · · · pr,
and n = q1 · · · qs, let

S = {p1, . . . , pr, q1, . . . , qs}.

Then

sk(mn) =
∑

{r1,... ,rk}⊂S
r1 · · · rk.

We collect the terms of this sum having k − i factors from m, and i factors from n. The
sum of these is equal to sk−i(m)si(n). Summing as i ranges from 0 to k gives the desired
result. 2

Corollary 4: Let n, k ∈ N, and let p and q be primes, with p < q, and suppose
Ω(pn) > k. If pn− sk(pn) > 0, then pn− sk(pn) < qn− sk(qn).

Proof. The following inequality

qn− sk(qn) = qn− qsk−1(n)− sk(n)

> pn− psk−1(n)− sk(n)

= pn− sk(pn)

is true if n > sk−1(n). But

pn− sk(pn) = pn− psk−1(n)− sk(n) > 0

by assumption, so

n > sk−1(n) + sk(n)/p > sk−1(n).

2

In searching for k-cycles and k-SP numbers, it is essential to know when sk(n) ≥ n.
We search by fixing Ω(n), and systematically checking all products of Ω(n) primes. The
corollary tells us that if sk(pn) < pn, then for any q > p, qn is also k-SD.
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Lemma 5: Let k, n ∈ N. Then there exists an r > k such that if Ω(n) ≥ r, then n is
k-SD. Let r(k) denote the least such r. Then

r(k) = min{ r :

(
r

k

)
< 2r−k } .

Proof. There is an r > k such that the function

f(t) =

(
t

k

)
satisfies f(t) < g(t) for all t ≥ r, where

g(t) = 2t−k,

since f is a polynomial, and g is an exponential function. Now suppose t ≥ r, and let
p1, . . . , pt be t primes. Then(

t

k

)
=

(
t

t− k

)
< 2t−k, which implies

∑ 1

pi1 · · · pit−k
≤
(

t

t− k

)
1

2t−k
< 1,

where the sum is taken over all i1, . . . , it−k such that 1 ≤ i1 < · · · < it−k ≤ t. This
implies ∑

pi1 · · · pik < p1 · · · pt,

where the sum is taken over all i1, . . . , ik such that 1 ≤ i1 < · · · < ik ≤ t. This in turn
implies that

sk(p1 · · · pt) < p1 · · · pt.

Now we prove the second statement. The inequality(
2k

k

)
≥ 2k

holds for all k ≥ 1, and so r(k) > 2k. This in mind, let r(k) be as claimed in the
statement of the theorem. We argue inductively. Let t > r, and suppose that(

t− 1

k

)
< 2t−1−k.

Then

2

(
t− 1

k

)
< 2t−k.
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Since t > 2k, we have t < 2(t− k), and so(
t

k

)
=
t(t− 1) · · · (t− k + 1)

k!
<

2(t− 1)(t− 2) · · · (t− k)

k!
= 2

(
t− 1

k

)
.

Hence (
t

k

)
< 2

(
t− 1

k

)
< 2t−k,

and the proof is complete by induction. 2

The first few values of r(k) are given in the following table:

k r(k)
1 3
2 6
3 10
4 14
5 19
6 23
7 27
8 31
9 36
10 40

The properties of 1-symmetric-perfection etc. corresponding to the first prime sym-
metric function s1 are easily characterized. The primes are the trivial 1-SP numbers, 4
is the only 1-SP number, and all other numbers are 1-SD. Clearly there are no 1-cycles.
We now investigate these properties in the second prime symmetric function.

3. The Second Prime Symmetric Function

Let n be an integer greater than 1. By a family Ek(n, r) of k-SS numbers, we mean a set

Ek(n, r) = {np1 · · · pr|p1, . . . , pr are primes}

such that if m ∈ Ek(n, r), then m is k-SS. The family E2(4, 1) of numbers of the form
4p, where p is prime, is one such set, since the elements satisfy s2(4p) = 4p + 4 > 4p.
Ek(n, 0) merely denotes the singleton set of a k-SS number. To find all 2-SP numbers
and all 2-cycles we need to find all numbers n such that 2 < Ω(n) < 6, with s2(n) ≥ n,
since r(2) = 6. To do this we use the algorithm mentioned after Corollary 4.
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3.1. Ω(n) = 3

s2(2 · 2 · p) = 4p+ 4 > 4p,

s2(2 · 3 · p) = 5p+ 6 < 6p, when p > 6.

This shows that there are no other infinite families of 2-SS numbers satisfying Ω(n) = 3.
Below we find all 2-SS numbers not belonging to this family.

s2(2 · 3 · 3) = 21 > 18,

s2(2 · 3 · 5) = 31 > 30,

s2(2 · 3 · 7) = 41 < 42,

s2(3 · 3 · 3) = 27,

s2(3 · 3 · 5) = 39 < 45.

Thus 27 is the only 2-SP number satisfying Ω(n) = 3. Iterating on the above 2-SE
numbers shows none belong to 2-cycles. For example

18
s2−→ 21

s2−→ 10
s2−→ 10

s2−→ · · · .

3.2. Ω(n) = 4

s2(2 · 2 · 2 · p) = 6p+ 12 < 8p, when p > 6.

Thus there are no infinite families of 2-SS numbers with Ω(n) = 4. Iterating on 8p for
p = 2, 3, 5, shows that none belong to a 2-cycle. Checking other cases:

s2(2 · 2 · 3 · 3) = 37 > 36,

s2(2 · 2 · 3 · 5) = 51 < 60,

s2(2 · 3 · 3 · 3) = 45 < 54.

Hence there are no 2-SP numbers satisfying Ω(n) = 4. Iterating on the above 2-SE
numbers shows that none belong to a 2-cycle.

3.3. Ω(n) = 5

s2(2 · 2 · 2 · 2 · p) = 8p+ 24 < 16p, when p > 3.

Thus there are no infinite families of 2-SS numbers with Ω(n) = 5. Iterating on 16p
for p = 2, 3, shows that 48 is in fact 2-SP, and 32, which is 2-SE, does not belong to a
2-cycle. Checking other cases:

s2(2 · 2 · 2 · 3 · 3) = 57 < 72.
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Hence 48 is the only 2-SP number satisfying Ω(n) = 5. We have proved the following
theorem.

Theorem 6: 27 and 48 are the only 2-SP numbers.

Theorem 7: There are no 2-cycles.

Proof. A 2-cycle must have a least element that is 2-SE. We have shown that any such
element must belong to the family of numbers of the form 4p. We will show that in all but
a few trivial cases s2(s2(4p)) < 4p, giving a contradiction. Now, s2(4p) = 8((p + 1)/2).
We may assume that p is odd, and set m = (p+ 1)/2. Thus we will have a contradiction
if the following holds:

s2(8m) < 8m− 4.

This is equivalent to

12 + 6s1(m) + s2(m) < 8m− 4, (2)

which is equivalent to

16

p1 · · · ps
+ 6

s∑
i=1

1

p1 · · · p̂i · · · ps
+

∑
1≤i<j≤s

1

p1 · · · p̂i · · · p̂j · · · ps
< 8,

wherem = p1 · · · ps. Here p1 · · · p̂i · · · ps is defined to be p1 · · · ps/pi, and p1 · · · p̂i · · · p̂j · · · ps
is defined to be p1 · · · ps/pipj.

Since pi ≥ 2, this expression is implied by:

16

2s
+

6s

2s−1
+
s(s− 1)

2

1

2s−2
< 8,

which holds for all s ≥ 4. If s = 1, then m = p is prime, and so condition (2) becomes:

12 + 6p < 8p− 4,

which holds for all p > 8. It is easily verified for p = 2, 3, 5 and 7, that 8p does not
belong to a 2-cycle.

For s = 2, we can write m = pq. The only values of m for which (2) fails are
determined by the prime pairs (p, q) = (2, 2), (2, 3). In both cases, 8m does not belong
to a 2-cycle.

Finally for s = 3, if m = pqr, only for the triple (p, q, r) = (2, 2, 2) does m fail to
satisfy (2). Again, in this case, 8m does not belong to a 2-cycle. 2

Definition 4: A sequence {ni} (finite or infinite) is called a k-ascending sequence if
ni < sk(ni) = ni+1. If {ni} = {ni}ti=0, then {ni} is said to have length t.
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Remark: The longest 2-ascending sequence is

8
s2−→ 12

s2−→ 16
s2−→ 24

s2−→ 30
s2−→ 31.

Definition 5: Let k ∈ N ∪ {0}. We define rk : N→ N ∪ {0} by

rk(n) = |{s−1
k [{n}]|

Example 3: r1(1) = 0, but for all n ≥ 2, r1(n) ≥ 1. In fact, limn→∞ r1(n) =∞. To see
this, simply set

n = s1(2a3b) = 2a+ 3b,

and observe that the number of pairs (a, b) satisfying this equation can be made arbitrarily
large for all n sufficiently large.

We prove a weaker result for r2.

Theorem 8: There exists an N ∈ N such that for all m ≥ N , r2(m) ≥ 1.

Proof. It suffices to show that for m sufficiently large, m = s2(2a3b5c7d), for some a, b,
c, and d ≥ 0. In general,

s2(2a3b5c7d) = 4

(
a

2

)
+ 9

(
b

2

)
+ 25

(
c

2

)
+ 49

(
d

2

)
+ 6

(
a

1

)(
b

1

)
+ 10

(
a

1

)(
c

1

)
+ 14

(
a

1

)(
d

1

)
+ 15

(
b

1

)(
c

1

)
+ 21

(
b

1

)(
d

1

)
+ 35

(
c

1

)(
d

1

)
=

1

2

[
(2a+ 3b+ 5c+ 7d)2 − (4a+ 9b+ 25c+ 49d)

]
So, given m, we need only find solutions to the equations:

2a+ 3b+ 5c+ 7d = R,

4a+ 9b+ 25c+ 49d = R2 − 2m,

with nonnegative integers a, b, c, d, and R ∈ N. These equations are equivalent to:

2a− 10c− 28d = 3R−R2 + 2m, (3)

3b+ 15c+ 35d = R2 − 2R− 2m, (4)

Since a and b must be nonnegative integers, we have the following necessary and sufficient
conditions for a solution to (3) and (4):

1. 2m ≡ R2 +R + d (mod 3),
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2. R2 − 3R− 10c− 28d ≤ 2m,

3. 2m ≤ R2 − 2R− 15c− 35d.

Note that equation (3) is always satisfied modulo 2. Condition 1 results from taking
equation (4) modulo 3, and conditions 2 and 3 are derived from the fact that a, b ≥ 0.

Consider the interval

IR(c, d) = [R2 − 3R− 10c− 28d,R2 − 2R− 15c− 35d].

For fixed d, let cR(d) be the least c such that `(IR(c, d)) < 15, where `(I) denotes the
length of an interval I. We use the notation L(I) and R(I) to denote the left and right
endpoints of an interval I, respectively. Since R(IR(c, d)) = R(IR(c + 1, d)) + 15, when
they exist, we have that

cR(d)⋃
c=0

IR(c, d) = [R2 − 3R− 10cR(d)− 28d,R2 − 2R− 35d].

Denote the above interval by IR(d). By definition of cR(d),

`(IR(cR(d), d)) = R− 5cR(d)− 7d < 15, so − 10cR(d) < −2R + 30 + 14d,

and cR(d) is the least such c. Consider the interval
⋂2
d=0 IR(d). Clearly R(

⋂2
d=0 IR(d)) =

R2 − 2R− 70. We now wish to find an upper bound for L(
⋂2
d=0 IR(d)). From the above

inequality, we have that

L(IR(d)) = R2 − 3R− 10cR(d)− 28d < R2 − 5R− 14d+ 30.

Thus

L(
2⋂
d=0

IR(d)) = max{R2 − 3R− 10cR(d)− 28d|d = 0, 1, 2}

< max{R2 − 5R− 14d+ 30|d = 0, 1, 2}
= R2 − 5R + 30.

Let JR = [R2 − 5R + 30, R2 − 2R− 70]. Then JR ⊂
⋂2
d=0 IR(d). Now

L(JR+1) ≤ R(JR), if and only if R2 − 3R + 26 ≤ R2 − 2R− 70,

which holds for all R ≥ 96. So if 2m ≥ L(J96) = 8766, then there is an R ≥ 96 such that
2m ∈ JR ⊂

⋂2
d=0 IR(d). Choose d ∈ {0, 1, 2} such that condition 1 is satisfied. Since

2m ∈ IR(d), there is a c ≥ 0 such that 2m ∈ IR(c, d). For these values of R, c, and d,
conditions 2 and 3 are satisfied. In other words, there exists an n such that m = s2(n).
This completes the proof. 2

We end this section with a conjecture.

Conjecture 1: For every k ∈ N, limn→∞ rk(n) =∞.
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4. Higher Prime Symmetric Functions

Theorem 9: (1) Let n ∈ N. If n is k-SS then pn is (k + 1)-SE for every prime p.

(2) If pn is (k + 1)-SS for every prime p, then n is k-SS, and hence by (1),
pn is (k + 1)-SE for every prime p.

Proof. (1) Suppose n is k-SS. Then since Ω(n) > k, we have sk+1(n) > 0. So

sk+1(pn) = psk(n) + sk+1(n)

≥ pn+ sk+1(n)

> pn.

(2) If sk+1(pn) = psk(n) + sk+1(n) ≥ pn, for every prime p, then sk(n) ≥ n− sk+1(n)/p.
Letting p→∞, we have sk(n) ≥ n. 2

Corollary 10: For k ∈ N, there are only finitely many k-SP numbers.

Proof. By the previous theorem, any family Ek+1(n, r+1) is of the form pEk(n, r), where
p ranges over the primes. Furthermore, this family contains only (k + 1)-SE numbers.
There are only finitely many (k + 1)-SS numbers not belonging to any such family. 2

Thus the infinite families of 3-SE numbers are: E3(4, 2), E3(16, 1), E3(18, 1), E3(24, 1),
E3(27, 1), E3(30, 1), E3(32, 1), E3(36, 1), E3(40, 1), E3(48, 1).

By exhaustive search (as was done with k = 2), all other 3-SS numbers can be found.
They constitute the following set:

{42p|p = 7, 11, . . . , 41} ∪ {56p|p = 7, 11, . . . , 43} ∪ {64p|p = 2, 3, . . . , 37} ∪
{726, 858, 250, 350, 225, 315, 968, 1144, 300, 420, 162, 270, 378, 243, 400, 560,

216, 360, 504, 324, 288, 480, 672, 432, 256, 384, 640, 576, 512, 768}.
None of the elements in the above sets are 3-SP, hence there are no 3-SP numbers. The
diversity of possible 3-ascending sequences makes it difficult to rule out the existence of
3-cycles as we did 2-cycles. This is illustrated in the following example.

Example 4: If p1, q1 are odd primes, then s3(4p1q1) = 4(p1q1 + p1 + q1). It is possible
that p1q1 + p1 + q1 = p2q2, where p2, q2 are again odd primes, and so on. Several such
sequences exist the longest one with p1q1 < 50000, and pi, qi > 3 is:

184892 = 4 · 17 · 2719
s3−→ 195836= 4 · 173 · 283

s3−→ 197660 = 4 · 5 · 9883
s3−→ 237212 = 4 · 31 · 1913

s3−→ 244988 = 4 · 73 · 839
s3−→ 248636 = 4 · 61 · 1019

s3−→ 252956 = 4 · 11 · 5749
s3−→ 275996 = 4 · 7 · 9857

s3−→ 315452 = 4 · 17 · 4639
s3−→ 334076 = 4 · 47 · 1777

s3−→ 341372= 4 · 31 · 2753
s3−→ 352508 = 4 · 13 · 6779

s3−→ 379676 = 4 · 11 · 8629
s3−→ 414236= 4 · 29 · 3571

s3−→ 428636 = 4 · 13 · 8243
s3−→ 461660 = 4 · 5 · 41 · 563.
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It seems highly unlikely, however, that a 3-ascending sequence be infinite. This is
part of our final conjecture:

Conjecture 2: Any k-ascending sequence is finite.
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