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Abstract

For certain choices of the coefficients a, b, c the solutions of the Diophantine equation ax4+by4 =
cz2 in Gaussian integers satisfy xy = 0.

1. Introduction

The solution (x0, y0, z0) of the equation ax4 + by4 = cz2 is called trivial if x0 = 0 or y0 = 0.
P. Fermat showed that the equation x4 + y4 = z2 has only trivial solutions in integers. D.
Hilbert [2] extended this result by showing that the equation x4 + y4 = z2 has only trivial
solutions in a larger domain, namely in the integers of Q(

√
−1). In fact from his proof, it

follows that the equation x4 − y4 = z2 also has only trivial solutions. J. T. Cross [1] gave
a new proof for Hilbert’s result. We consider the following eight equations x4 + my4 = z2,
where m = ±2n, 0 ≤ n ≤ 3. The equations x4 − 2y4 = z2, y4 + 8y4 = z2 have nontrivial
solutions in integers as shown by the solutions (3, 2, 7), (1, 1, 3), respectively. We will show that
the remaining six equations have only trivial solutions in the integers of the quadratic field
Q(
√
−1). The m = ±1 case is covered by Hilbert’s result, so we will deal only with four cases.

It is worthwhile to point out that the equation x4 +2y4 = z2 has nontrivial solution in Z[
√
±2],

as the solution (1,
√
±2, 3) shows.

It is proved in [3], among various similar results, that the equation x4 − py4 = z2 has only
trivial solutions in integers, where p is a prime p ≡ ±3,−5 (mod 16). We will show that the
equations x4 − py4 = z2, x4 − p3y4 = z2 have only trivial solutions in the Gaussian integers,
where p is a prime p ≡ 3 (mod 8). We would like to point out that the equations x4+py4 = z2,
x4 + p2y4 = z2 have nontrivial integer solutions when p = 3 as shown by the solutions (1, 1, 2),
(2, 1, 5), respectively.
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It is shown in [4] (Theorem 117, p. 230), that the equation x4 − y4 = pz2 has only trivial
solutions in integers, where p is a prime p ≡ 3 (mod 8). It is shown in [3] (p. 23) that the
equation x4 − py4 = z2 has only trivial solutions in integers, where p is a prime p ≡ ±3,−5
(mod 16). Motivated by these results, we will show that the equations x4−y4 = pz2, x4−p2y4 =
z2 have only trivial solutions in Gaussian integers if p is a rational prime p ≡ 3 (mod 8).

We list the properties of Q(
√
−1) which play part later. Let i =

√
−1 and ω = 1 + i. The

ring of integers of Q(i) is Z[i] = {u + vi : u, v ∈ Z} which is a unique factorization domain.
The units of Z[i] are 1, i, −1, −i. The norm of ω is 2 and consequently ω is a prime in Z[i].
The prime factorization of 2 is (−i)ω2. We will use the ideals formed by the Gaussian integer
multiples of ωn, 1 ≤ n ≤ 6. Note that ω2, ω4, ω6 are associates of 2, 4, 8, respectively, and so
they span the same ideals. We will prefer to use the terminology connected with congruences
instead of with ideals.

We will use the next observation several times. If α is an integer in Q(
√
−1) and α ≡ 1

(mod ω), then α2 ≡ 1 (mod ω2) and α4 ≡ 1 (mod ω6). In order to verify the first claim,
write α in the form α = kω + 1, where k ∈ Z[i] and compute α2. Since α2 = k2ω2 + 2kω + 1,
it follows that α2 ≡ 1 (mod ω2). In order to verify the second claim write α in the form
α = kω2 + l, k, l ∈ Z[i] and compute α4.

α4 = (kω2)4 + 4(kω2)3l + 6(kω2)2l2 + 4(kω2)l3 + l4

This shows that α4 ≡ l4 (mod ω6). Since 0, 1, i, 1 + i form a complete set of representatives
modulo ω2 and since α ≡ 1 (mod ω) we can choose l to be either 1 or i. Therefore α4 ≡ 1
(mod ω6).

2. The equation x4 − dy4 = z2

Theorem 1. Let p be a rational prime p ≡ 3 (mod 8) and let d = p or d = p3. The equation
x4 − dy4 = z2 has only trivial solution in Z[i].

Proof. We divide the proof into 5 smaller steps.

(1) If (x0, y0, z0) is a nontrivial solution of the equation x4− dy4 = z2, then we may assume
that x0, y0, z0 are pairwise relatively primes.

Let (x0, y0, z0) be a solution of the equation x4 − dy4 = z2. We will call the quantity
N(x0)N(y0)N(z0) the height of the solution. Here N(u) is the norm of u. Choose a nontrivial
solution (x0, y0, z0) such that the height of the solution is minimal.

Suppose first that x0 and y0 are not relatively prime. Let g be the greatest common divisor
of x0 and y0 in Z[i]. As x0 6= 0, it follows that g 6= 0. Dividing x4

0 − dy4
0 = z2

0 by g4 we get
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(x0/g)4− d(y0/g)4 = (z0/g
2)2. This equation holds in Q(i). The left hand side of the equation

is an element of Z[i]. Consequently the right hand side of the equation belongs to Z[i]. Thus,
(x0/g, y0/g, z0/g

2) is also a nontrivial solution of the equation x4 − dy4 = z2 in Z[i]. Clearly
the height of this solution is smaller than the height of (x0, y0, z0). Hence, we may assume that
x0 and y0 are relatively prime in Z[i]. We claim that if there is a prime q of Z[i] such that q|x0

and q|z0, then q|y0. In order to verify the claim assume that q is prime that divides x0 and
z0. From the equation x4

0 − dy4
0 = z2

0 it follows that q2|dy4
0 . If d = p, then q|y0 because p itself

is a prime in Z[i]. If d = p3, then it may be the case that q = p. But in this case p3|x4
0 and

p3|dy4
0 so p3|z2

0 , therefore p2|z0; hence, p4|z2
0 and since p4|x4

0, it follows that p4|dy4
0 and we can

conclude that p|y0.

This violates that x0 and y0 are relatively prime. Similarly, if q|y0 and q|z0, then q|x0

violating again that x0 and y0 are relatively prime. Thus we may assume that x0, y0, z0 are
pairwise relatively prime.

(2) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − dy4 = z2 in Z[i] such that
x0, y0, z0 are pairwise relatively prime. Note that at most one of x0, y0, z0 can be congruent
to 0 modulo ω. We consider the following four cases. None of x0, y0, z0 is congruent to 0
modulo ω and three cases depending on x0, y0, z0 congruent to 0 modulo ω respectively. Table
1 summarizes the cases.

x0 ≡ y0 ≡ z0 ≡
case 1 1 1 1 (mod ω)

case 2 0 1 1 (mod ω)

case 3 1 0 1 (mod ω)

case 4 1 1 0 (mod ω)

Table 1

In case 1, the equation x4
0 − dy4

0 = z2
0 leads to the contradiction 1 − 1 ≡ 1 (mod ω). In

other words case 1 is merely the fact that “a sum of two odd numbers cannot be odd”, where
here, an odd number is a number which is not a multiple of ω. We will use this fact several
times later without mentioning it explicitely.

In case 2, write the equation x4
0 − dy4

0 = z2
0 in the equivalent form dy4

0 = (x2
0 − z0)(x2

0 + z0)
and compute the greatest common divisor of (x2

0 − z0) and (x2
0 + z0). Let g be this greatest

common divisor. Then g|(x2
0 − z0), g|(x2

0 + z0) implies g|(2x2
0), g|(2z0). As g|(dy4

0), it follows
that g 6= 0. If q is a prime divisor of g, then q 6 |ω and so q|x0, q|z0. But this cannot happen
as x0 and z0 are relatively prime. Thus, g = 1. The unique factorization property in Z[i] gives
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that there are elements a, b, A, B and a unit ε of Z[i] such that

x2
0 − z0 = εa4A, x2

0 + z0 = ε−1b4B,

where
AB = d, a4b4 = y4

0 .

Further, A and B are relatively prime, and so we may assume that either A = 1, B = d, or
A = d, B = 1. By addition, we get that

2x2
0 = εa4A+ ε−1b4B.

Let x0 = ωtx1, t ≥ 1, x1 ≡ 1 (mod ω). Writing x1 in the form x1 = kω + 1 and computing
x2

1,
x2

1 = k2ω2 + 2kω + 1,

we get that x2
0 = ω2t(mω2 + 1) with a suitable m ∈ Z[i].

As a|y4
0 , it follows that a ≡ 1 (mod ω). We then get that a4 ≡ 1 (mod ω6). Similarly,

b4 ≡ 1 (mod ω6).

We focus our attention on the equation

(−i)ω2ω2t(mω2 + 1) = εa4A+ ε−1b4B

modulo ω6. (We remind the reader that 2 = (−i)ω2.) Let us first deal with the case when
A = d and B = 1. If t = 1, then the equation reduces to

−iω4 ≡ ε(3) + ε−1 (mod ω6).

As ε varies over the units of Z[i], we get the following contradictions.

(−i)ω4 ≡ (1)(3) + (1) (mod ω6),

(−i)ω4 ≡ (i)(3) + (−i) (mod ω6),

(−i)ω4 ≡ (−1)(3) + (−1) (mod ω6),

(−i)ω4 ≡ (−i)(3) + (i) (mod ω6).

If t ≥ 2, then the equation reduces to

0 ≡ ε(3) + ε−1 (mod ω6).

As ε varies over the units of Z[i], we get the following contradictions.

0 ≡ (1)(3) + (1) (mod ω6),

0 ≡ (i)(3) + (−i) (mod ω6),

0 ≡ (−1)(3) + (−1) (mod ω6),

0 ≡ (−i)(3) + (i) (mod ω6).
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The case when A = 1 and B = d can be settled in a similar way. This shows that case 2 is not
possible.

Next, we verify that case 4 is not possible either. We write z0 in the form z0 = ωtz1, t ≥ 1,
z1 ≡ 1 (mod ω). We focus our attention on the equation

x4
0 − dy4

0 = ω2tz2
1

modulo ω4. It leads to the contradictions (1) − (3)(1) ≡ ω2, (1) − (3)(1) ≡ 0 (mod ω4)
corresponding to t = 1 or t ≥ 2.

(3) In case 3, let (x1, ω
ty1, z1) be a solution of the equation x4 − dy4 = z2, where t ≥ 1,

x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively prime. We will show that
z1 ≡ 1 (mod ω2).

In order to prove this claim, write z1 in the form z1 = kω2 + l, k, l ∈ Z[i], and compute z2
1 .

z2
1 = k2ω4 + 2kω2l + l2.

From this it follows that z2
1 ≡ l2 (mod ω4). Since the elements 0, 1, i, 1 + i form a complete

set of representatives modulo ω2, and since z1 ≡ 1 (mod ω), we may choose l to be 1, or i.
Consequently, z2

1 is congruent to 1 or −1 modulo ω4. The equation x4
1−dω4ty4

1 = z2
1 gives that

1 ≡ z2
1 (mod ω4), and so z1 ≡ 1 (mod ω2).

(4) We will show that there are pairwise relatively prime elements x2, y2, z2 of Z[i], such
that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω) and (x2, ω

t−1y2, z2) is a solution of the equation x4−dy4 = z2.

In order to verify the claim, write the equation x4
1 − dω4ty4

1 = z2
1 in the form dω4ty4

1 =
(x2

1 − z1)(x2
1 + z1), and compute the greatest common divisor of (x2

1 − z1) and (x2
1 + z1). Let

g be this greatest common divisor. As g|dω4ty4
1 , it follows that g 6= 0. Now g|(x2

1 − z1),
g|(x2

1 + z1) implies that g|2x2
1, g|2z1. If q is a prime divisor of g with q 6 |ω, we then get q|x1,

q|z1. But we know that this is not the case as x1 and z1 are relatively prime. Thus, g = ωs,
and 0 ≤ s ≤ 2 since g|2. By (3) z1 ≡ 1 (mod ω2). This together with x2

1 ≡ 1 (mod ω2)
gives that (x2

1 − z1) ≡ 0 (mod ω2), (x2
1 + z1) ≡ 0 (mod ω2). Therefore, g = ω2. The unique

factorization property in Z[i] gives that there are relatively prime elements a, b ∈ Z[i] such that

x2
1 − z1 = ω2a, x2

1 + z1 = ω2b.

Let a = ωua1, b = ωvb1. So dω4ty4
1 = ωu+v+4a1b1. By the unique factorization property in

Z[i], there are elements a2, b2, A, B and a unit ε in Z[i] for which

x2
1 − z1 = ωu+2εa4

2A, x2
1 + z1 = ωv+2ε−1b42B,

4t = u+ v + 4, a4
2b

4
2 = y4

1 , AB = d.
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Here, a2, b2 are prime to ω, and A is prime to B. It follows that a2 ≡ 1 (mod ω), b2 ≡ 1
(mod ω). We may choose A, B such that either A = d, B = 1, or A = 1, B = d. By addition,
we get

2x2
1 = ωv+2ε−1b42B + ωu+2εa4

2A.

After dividing by ω2, we get

−ix2
1 = ωvε−1b42B + ωuεa4

2A.

In the remaining part of the proof, we distinguish two cases depending on whether A = 1,
B = d, or A = d, B = 1.

Let us deal with the case A = 1, B = d first. We distinguish two subcases depending on
whether u = 0, v = 4t− 4, or v = 0, u = 4t− 4. When u = 0, v = 4t− 4, we get

−ix2
1 = ω4t−4ε−1b42d+ εa4

2.

If 4t− 4 = 0, then this relation reduces to

−i ≡ ε−1 + ε (mod ω2).

But this is not possible as ε−1 + ε ≡ 0 (mod ω2). Thus, 4t− 4 6= 0. Now

−i ≡ ε (mod ω2).

From this, it follows that ε = ±i. By multiplying it by −ε we get

(iε)x2
1 = ω4t−4(−ε−1ε)b42d+ (−ε2)a4

2.

Note that iε is a square of an element of Z[i], say iε = σ2. Thus (a2, ω
t−1b2, σx1), t ≥ 2 is a

nontrivial solution of the equation x4 − dy4 = z2.

When v = 0, u = 4t− 4, we get

−ix2
1 = ε−1b42d+ ω4t−4εa4

2.

If 4t− 4 = 0, then this reduces to

−i ≡ ε−1 + ε (mod ω2).

But this is not possible as ε−1 + ε ≡ 0 (mod ω2). Thus 4t− 4 6= 0. Now

−i ≡ ε (mod ω2).

From this, it follows that ε = ±i. By multiplying it by ε−1, we get

(−iε−1)x2
1 = (ε−2)b42d+ ω4t−4(ε−1ε)a4

2.
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Note that −iε−1 is a square of an element of Z[i], say −iε−1 = σ2. Thus (ωt−1a2, b2, σx1),
t ≥ 2 is a nontrivial solution of the equation x4 − dy4 = z2. By (2), this is not possible. The
case A = d, B = 1 can be settled in a similar way.

(5) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − dy4 = z2 in Z[i]. By (2),
there is a solution (x1, ω

ty1, z1) with x1, y1, z1 ≡ 1 (mod ω), t ≥ 1. Choose a solution for
which t is minimal. According to (4), there is a solution (x2, ω

t−1y2, z2), where x2, y2, z1 ≡ 1
(mod ω), t ≥ 2. This contradicts the choice of t, and so completes the proof.

3. The equations x4 − y4 = pz2 and x4 − p2y4 = z2

Theorem 2. Let p be a rational prime p ≡ 3 (mod 8). The equations x4 − y4 = pz2 and
x4 − p2y4 = z2 have only trivial solutions in Z[i].

Proof. We divide the proof into 11 steps. The first 3 steps deal with the equation x4−y4 = pz2,
and the next 7 steps deal with the equation x4 − p2y4 = z2.

(1) If (x0, y0, z0) is a nontrivial solution of the equation x4− y4 = pz2, we may then assume
that x0, y0, z0 are pairwise relatively prime.

Choose a nontrivial solution (x0, y0, z0) of the equation x4 − y4 = pz2 with minimal height.
Suppose first that there is a prime q in Z[i] such that q|x0, q|y0. From x4

0 − y4
0 = pz2

0 it
follows that q4|pz2

0 . If q 6 |p, then q4|z2
0 . Now (x0/q)4 − (y0/q)4 = p(z0/q

2)2 shows that
(x0/q, y0/q, z0/q

2) is a nontrivial solution of the equation x4 − y4 = pz2. The height of this
solution is smaller than the height of (x0, y0, z0). This is a contradiction. If q|p, then q3|z2

0 .
Again we conclude that that q4|z2

0 and then (x0/q, y0/q, z0/q
2) is a nontrivial solution of the

equation x4 − y4 = pz2. The height again decreased. Thus we may assume that if (x0, y0, z0)
is a nontrivial solution of the equation x4 − y4 = pz2, then x0 and y0 are relatively prime.

Next suppose that there is a prime q in Z[i] such that q|x0, q|z0. It follows that q|y0. This
violates that x0 and y0 are relatively prime.

Finally suppose that there is a prime q in Z[i] such that q|y0, q|z0. We get that q|x0. This
is a contradiction as x0 and y0 are relatively prime.

(2) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − y4 = pz2 in Z[i] such that
x0, y0, z0 are pairwise relatively primes. Note that at most one of x0, y0, z0 can be congruent
to 0 modulo ω. We consider the four cases summarized in Table 1.

We first show that case 1 is not possible. To do this, write z0 in the form z0 = kω2 + l,
k, l ∈ Z[i]. Computing z2

0 , z2
0 = k2ω4 + 2kω2l + l2 shows that z2

0 ≡ l2 (mod ω4). As 0, 1, i,
1 + i is a complete set of representatives modulo ω2, it follows that l can be chosen to be 1 or i.
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From the equation x4
0 − y4

0 = pz2
0 , we get that 0 ≡ 3l2 (mod ω4). But this is a contradiction

as l2 = ±1.

We next show that case 3 is not possible either. Let y0 = ωty1, where t ≥ 1 and y1 is prime
to ω. Writing z0 in the form z0 = kω2 + l, k, l ∈ Z[i], from the equation x4

0 − ω4ty4
1 = pz2

0 , we
get that 1 ≡ 3l2 (mod ω4). In the case l = 1, this leads to the contradiction 1 ≡ 3 (mod ω4),
and so we left with the l = i choice. Now writing z0 in the form z0 = rω4 + s, r, s ∈ Z[i] and
computing z2

0 , z2
0 = r2ω8 + 2rω4s+ s2 gives that z2

0 ≡ s2 (mod ω6). From z0 ≡ i (mod ω2),
it follows that we can choose s and s2 in the way summarized by Table 2.

s i 2 + i 3i 2 + 3i

s2 −1 3 + 4i −9 −5 + 12i

Table 2

From the equation x4
0 − ω4ty4

1 = z2
0 , we get 1 + ω4t ≡ s2 (mod ω6). In the case t = 1, this

leads to the contradictions

1− 4 ≡ −1 (mod ω6), 1− 4 ≡ 3 + 4i (mod ω6).

In the case t ≥ 2, we arrive at the contradictions

1 ≡ −1 (mod ω6), 1 ≡ 3 + 4i (mod ω6).

(Note that Table 2 shows four possibilities but modulo ω6 = 8 there are only two posibilities.)

Finally, notice that multiplying the equation x4
0− y4

0 = pz2
0 by (−1) gives y4

0 −x4
0 = p(iz0)2,

and so case 2 reduces to case 3.

(3) In case 4, let (x1, y1, ω
tz1) be a solution of the equation x4−y4 = pz2, where t ≥ 1, x1 ≡

y1 ≡ z1 ≡ 1 (mod ω), and x1, y1, z1 are pairwise relatively primes. We will show that there
are pairwise relatively prime elements x2, y2, z2 of Z[i] such that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω),
and either (ωt−2x2, y2, z2) or (x2, ω

t−2y2, z2) is a solution of the equation x4 − p2y4 = z2.

In order to verify the claim, write the equation x4
1 − y4

1 = pω2tz2
1 in the form pω2tz2

1 =
(x2

1 − y2
1)(x2

1 + y2
1), and compute the greatest common divisor of (x2

1 − y2
1) and (x2

1 + y2
1). Let

g be this greatest common divisor. As g|pω2tz2
1 it follows that d 6= 0. g|(x2

1 − y2
1), g|(x2

1 + y2
1)

implies that g|2x2
1, g|2y2

1 . If q is a prime divisor of g with q 6 |ω, we then get q|x1, q|y1. But we
know that this is not the case as x1 and y1 are relatively prime. Thus, g = ωs and 0 ≤ s ≤ 2
since g|2. As (x2

1 − y2
1) ≡ (x2

1 + y2
1) ≡ 0 (mod ω2), it follows that g = ω2. The unique

factorization property in Z[i] gives that there are relatively prime elements a, b ∈ Z[i] such that

x2
1 − y2

1 = ω2a, x2
1 + y2

1 = ω2b.
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Let a = ωua1, b = ωvb1. So, pω2tz2
1 = ωu+v+4a1b1. By the unique factorization property in

Z[i], there are elements a2, b2, a3, b3 and a unit ε in Z[i] for which

x2
1 − y2

1 = ωu+2εa2
2a3, x2

1 + y2
1 = ωv+2ε−1b22b3,

2t = u+ v + 4, a2
2b

2
2 = z2

1 , a3b3 = p.

Here a2, b2 are prime to ω. It follows that a2 ≡ b2 ≡ 1 (mod ω). By addition and subtraction,
we get

2x2
1 = ωv+2ε−1b22b3 + ωu+2εa2

2a3,

2y2
1 = ωv+2ε−1b22b3 − ωu+2εa2

2a3.

After dividing by ω2, they give

(−i)x2
1 = ωvε−1b22b3 + ωuεa2

2a3,

(−i)y2
1 = ωvε−1b22b3 − ωuεa2

2a3.

By multiplying the two equations together and multiplying the result by ε2, we get

−ε2x2
1y

2
1 = ω2vb42b

2
3 − ω2ua4

2a
2
3.

We distinguish two cases depending on whether a3 = 1, b3 = p, or a3 = p, b3 = 1. In the case
a3 = 1, b3 = p −ε2x2

1y
2
1 = ω2vb42p

2 − ω2ua4
2 we distinguish two subcases depending on whether

u = 0, v = 2t−4, or u = 2t−4, v = 0. When u = 0, v = 2t−4, we get −ε2x2
1y

2
1 = ω4t−8b42p

2−a4
2.

Thus, (a2, ω
t−2b2, εx1y1), is a nontrivial solution of the equation x4 − p2y4 = z2.

When u = 2t − 4, v = 0, we get −ε2x2
1y

2
1 = b42p

2 − ω4t−8a4
2. Thus, (ωt−2a2, b2, εx1y1), is a

nontrivial solution of the equation x4 − p2y4 = z2. The case a3 = p, b3 = 1 can be settled in a
similar way.

We now turn our attention to the equation x4 − p2y4 = z2.

(4) If (x0, y0, z0) is a nontrivial solution of the equation x4−p2y4 = z2, we may then assume
that x0, y0, z0 are pairwise relatively prime.

Choose a nontrivial solution (x0, y0, z0) of the equation x4−p2y4 = z2 with minimal height.
First suppose that x0 and y0 are not relatively prime. Let g be a greatest common divisor of x0

and y0 in Z[i]. The left hand side of the equation (x0/g)4− p2(y0/g)4 = (z0/g
2)2 is an element

of Z[i] so the right hand side of the equation is an element of Z[i]. Therefore (x0/g, y0/g, z0/g
2)

is a nontrivial solution of x4− p2y4 = z2. By the minimality of the height we may assume that
x0 and y0 are relatively prime.

Next suppose that there is a prime q in Z[i] such that q|y0, q|z0. In this case we get q|x0.
This is a contradiction since x0 and y0 are relatively prime.
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Finally suppose that there is a prime q in Z[i] such that q|x0, q|z0. It follows that q2|p2y4
0 .

If q|y0, then x0 and y0 are not relatively prime. This is not the case so q 6 |y0. It follows that
q2|p2. Hence q and p are associates. Set x0 = px1, z0 = pz1. From p4x1 − p2y4

0 = p2z1 we get

p2x2
1 − y4

0 = z2
1 ,

y4
0 − p2x4

1 = −z2
1 .

Therefore (y0, x1, iz1) is a nontrivial solution of the equation x4−p2y4 = z2. By the minimality
of the height we may assume that x0 and z0 are relatively prime.

(5) Let (x0, y0, z0) be a nontrivial solution of the equation x4 − p2y4 = z2 in Z[i] such that
x0, y0, z0 are pairwise relatively prime. We consider the four cases listed in Table 1. In case 1,
the equation x4

0 − p2y4
0 = z2

0 gives the contradiction 1− 1 ≡ 1 (mod ω).

(6) In case 2, multiply the equation x4 − p2y4 = z2 by (−1) to get −x4 + p2y4 = (iz)2. Let
(ωtx1, y1, z1) be a solution of the equation −x4 + p2y4 = z2, where t ≥ 1, x1 ≡ y1 ≡ z1 ≡ 1
(mod ω) and x1, y1, z1 are pairwise relatively prime. We will show that z1 ≡ 1 (mod ω2).

In order to prove this claim, write z1 in the form z1 = kω2 + l, k, l ∈ Z[i]. It follows that
z2

1 ≡ l2 (mod ω4), and we may choose l to be 1 or i. Consequently, z2
1 is congruent to 1 or

−1 modulo ω4. The equation −ω4rx4
1 + p2y4

1 = z2
1 gives that 1 ≡ z2

1 (mod ω4), and so z1 ≡ 1
(mod ω2).

(7) In case 2 let (ωrx1, y1, z1) be a solution of the equation −x4 + p2y4 = z2, where r ≥ 1,
x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively prime. We will show that
there are pairwise relatively prime elements x2, y2, z2 of Z[i] such that x2 ≡ y2 ≡ z2 ≡ 1
(mod ω) and (x2, ω

r−1y2, z2) is a solution of the equation x4 − y4 = pz2.

In short, case 2 leads to a nontrivial solution of the equation x4 − y4 = pz2 corresponding
to cases 1–3. By step (2), no such solution exists, and so case 2 of equation x4 − p2y4 = z2 is
not possible.

From the equation ω4tx4
1 = (py2

1 − z1)(py2
1 + z1), we can deduce that

(−i)py2
1 = ωvε−1b42 + ωuεa4

2,

4t = u+ v + 4, a2b2 = x4
1.

We distinguish two cases depending on whether u = 0, v = 4t − 4, or u = 4t − 4, v = 0. In
the case u = 0, v = 4t − 4, (−i)py2

1 = ω4t−4ε−1b42 + εa4
2. If 4t − 4 = 0, then it reduces to

−i ≡ ε−1 + ε (mod ω2). But this a contradiction as ε−1 + ε ≡ 0 (mod ω2). The details are
given in Table 3.
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ε 1 i −1 −i
ε−1 1 −i −1 i

ε+ ε−1 2 0 −2 0

Table 3

Thus 4t − 4 ≥ 2, and −i ≡ ε (mod ω2). From this, it follows that ε = ±i, that is, either
ε = i, ε−1 = −i, or ε = −i, ε−1 = i. In the first case

(−i)py2
1 = ω4t−4(−i)b42 + (i)a4

2,

py2
1 = ω4t−4b42 − a4

2,

and so (ωt−1b2, a2, y1) is a solution of the equation x4 − y4 = pz2. In the second case

(−i)py2
1 = ω4t−4(i)b42 + (−i)a4

2,

py2
1 = −ω4t−4b42 + a4

2;

hence (a2, ω
t−1b2, y1) is a solution of the equation x4 − y4 = pz2. The case u = 4t − 4, v = 0

can be settled in a similar way.

(8) In case 4, let (x1, y1, ω
tz1) be a solution of the equation x4 − p2y4 = z2, where t ≥ 1,

x1 ≡ y1 ≡ z1 ≡ 1 (mod ω) and x1, y1, z1 are pairwise relatively prime. It follows that z1 ≡ 1
(mod ω2).

(9) In case 3, let (x1, ω
ty1, z1) be a solution of the equation x4−p2y4 = z2, where r ≥ 1, x1 ≡

y1 ≡ z1 ≡ 1 (mod ω), and x1, y1, z1 are pairwise relatively prime. We will show that there
are pairwise relatively prime elements x2, y2, z2 of Z[i] such that x2 ≡ y2 ≡ z2 ≡ 1 (mod ω),
and either (ωt−1x2, y2, z2), or (x2, ω

t−1y2, z2) is a solution of the equation x4 − p2y4 = z2.

Form the equation p2ω4ty4
1 = (x2

1 − z1)(x2
1 + z1), we deduce again that

(−i)x2
1 = ωvε−1b42b3 + ωuεa4

2a3,

4t = u+ v + 4, a4
2b

4
2 = y4

1 , a3b3 = p2.

As a3 and b3 are relatively prime, we may assume that there are two cases depending on whether
a3 = 1, b3 = p2, or a3 = p2, b3 = 1. In the case a3 = 1, b3 = p2,

(−i)x2
1 = ωvε−1b42p

2 + ωuεa4
2.

We distinguish two subcases depending on whether u = 0, v = 4t − 4, or u = 4t − 4, v = 0.
When u = 0, v = 4t− 4, we get (−i)x2

1 = ω4t−4ε−1b42p
2 + εa4

2. If 4t− 4 = 0, then this reduces
to −i ≡ ε−1 + ε (mod ω2), which is not possible. Thus 4t− 4 ≥ 2 and (−i) ≡ −ε (mod ω2).
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From this, it follows that ε = ±i, that is, either ε = i, ε−1 = −i or ε = −i, ε−1 = i. In the first
case, we get

(−i)x2
1 = ω4t−4(−i)b42p2 + (i)a4

2,

−x2
1 = −ω4t−4b42p

2 + a4
2.

Thus (a2, ω
t−1b2, ix1), is a nontrivial solution of the equation x4 − p2y4 = z2. In the second

case, we get
(−i)x2

1 = ω4t−2(i)b42p
2 + (−i)a4

2,

x2
1 = −ω4t−4b42p

2 + a4
2.

Therefore (a2, ω
t−1b2, x1) is a nontrivial solution of the equation x4 − p2y4 = z2.

When u = 4t−4, v = 0, we get (−i)x2
1 = ε−1b42p

2 +ω4t−4εa4
2. If 4t−4 = 0, then this reduces

to −i ≡ ε−1 + ε (mod ω2), which is not possible. Thus 4t−4 ≥ 2 and (−i) ≡ ε−1 (mod ω2).
From this, it follows that ε = ±i, that is, either ε = i, ε−1 = −i, or ε = −i, ε−1 = −i. In the
first case, we get

(−i)x2
1 = (−i)b42p2 + ω4t−4(i)a4

2,

−x2
1 = −b42p2 + ω4t−4a4

2.

Thus (ωt−1a2, b2, ix1) is a nontrivial solution of the equation x4 − p2y4 = z2. In the second
case, we get

(−i)x2
1 = (i)b42p

2 + ω4t−4(−i)a4
2,

x2
1 = −b42p2 + ω4t−4a4

2,

and so (ωt−1a2, b2, x1) is a nontrivial solution of the equation x4 − p2y4 = z2.

The case when a3 = p2, b3 = 1 can be completed in a similar way.

(10) In case 4, let (x1, y1, ω
tz1) be a solution of the equation x4 − p2y4 = z2, where t ≥ 1,

x1 ≡ y1 ≡ z1 ≡ 1 (mod ω), and x1, y1, z1 are pairwise relatively prime. We will show
that there are pairwise relatively prime elements x2, y2, z2 of Z[i] such that x2 ≡ y2 ≡ z2 ≡ 1
(mod ω) and either (ωt−2x2, y2, z2) or (x2, ω

t−2y2, z2) is a solution of the equation x4−y4 = pz2.

The conclusion of these steps is that in case 4 we end up with a nontrivial solution of the
equation x4−y4 = pz2 corresponding to one of cases 1–3. Since by step (2) this is not possible,
it follows that case 4 of equation x4 − p2y4 = z2 is not possible either.

From the equation ω2tz2
1 = (x2

1 − py2
1)(x2

1 + py2
1), we can deduce that

(−i)x2
1 = ωvε−1b22 + ωuεa2

2,

(−i)py2
1 = ωvε−1b22 − ωuεa2

2,

2t = u+ v + 4, a2
2b

2
2 = z2

1 .

By multiplying the first two equations above together and multiplying the result by ε2, we get

−ε2px2
1y

2
1 = ω2vb42 − ω2ua4

2.
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We distinguish two cases depending on whether u = 0, v = 2t− 4, or u = 2t− 4, v = 0. When
u = 0, v = 2t − 4, we get −ε2px2

1y
2
1 = ω4t−8b42 − a4

2. Thus (a2, ω
t−2b2, εx1y1), is a nontrivial

solution of the equation x4 − y4 = pz2.

When u = 2t − 4, v = 0, we get −ε2px2
1y

2
1 = b42 − ω4t−8a4

2. Thus, (ωt−2a2, b2, εx1y1) is a
nontrivial solution of the equation x4 − y4 = pz2.

(11) Let (x0, y0, z0) be a nontrivial solution of the equation x4− p2y4 = z2 in Z[i]. By steps
(5), (7) and (10), cases 1, 2 and 4 are not possible, and so there is a solution (x1, ω

ty1, z1) with
x1, y1, z1 ≡ 1 (mod ω), t ≥ 1. Choose a solution for which t is minimal. According to step
(9), there is a solution either of the form (ωt−1x2, y2, z2), or of the form (x2, ω

t−1y2, z2), where
x2, y2, z2 ≡ 1 (mod ω), t ≥ 2. The first case is not possible. The second case contradicts the
choice of t, and so we conclude that the equation x4 − p2y4 = z2 has no nontrivial solutions in
Z[i].

By step (3), a nontrivial solution of the equation x4−y4 = pz2 leads to a nontrivial solution
of the equation x4 − p2y4 = z2. Thus the equation x4 − y4 = pz2 does not have nontrivial
solutions in Z[i]. This completes the proof.

We may describe the combinatorial content of our argument in the following way. We
consider a directed graph Γ whose vertices and edges are labeled. To a nontrivial solution
(x0, y0, z0) of the equation E : ax4 + by4 = cz2, we assign a type T depending on the residues
of x0, y0, z0 modulo ω. (There are only a limited number of possibilities for T .) The nodes
of Γ are the pairs (E, T ), where E is an equation and T is a possible solution type. We label
the node (E, T ) impossible if the equation E has no nontrivial solution of type T . We draw
an arrow from the node (E1, T1) to the node (E2, T2) if a nontrivial solution of E1 with type
T1 gives rise to a nontrivial solution of E2 with type T2. We label an arrow with a − sign
if a quantity associated with a solution decreases. If each path starting with a node (E, Ti)
terminates at a node labeled impossible or eventually reaches (E, Ti) again but the edges are
labeled with − signs, then the equation cannot have nontrivial solutions.

4. The equation x4 +my4 = z2

If (x0, y0, z0) is a nontrivial solution either one of the equations

x4 + 4y4 = z2, x4 − 4y4 = z2, x4 − 8y4 = z2,

then (x0, ωy0, z0) is a nontrivial solution one of the equations

x4 − y4 = z2, x4 + y4 = z2, x4 + 2y4 = z2,

respectively, as the first three equations can be written in the forms

x4 − ω4y4 = z2, x4 + ω4y4 = z2, x4 + 2ω4y4 = z2,
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respectively. Thus, it will be enough to prove that the equation x4 + 2y4 = z2 has only trivial
solutions in Z[i].

Theorem 3. The equation x4 + 2y4 = z2 has only trivial solutions in Z[i].

Proof. We divide the proof into 5 steps.

(1) If (x0, y0, z0) is a nontrivial solution of the equation x4 + 2y4 = z2, then we may assume
that x0, y0, z0 are pairwise relatively prime.

(1.a) Choose a nontrivial solution (x0, y0, z0) of the equation x4 + 2y4 = z2 with minimal
height. Suppose first that x0 and y0 are not relatively prime and let g be a greatest common
divisor of x0 and y0. The left hand side of the equation (x0/q)4 + 2(y0/g)4 = (z0/g

2)2 is
an element of Z[i] and so the right hand side of the equation is an element of Z[i]. Hence
(x0/g, y0/g, z0/g

2) is a nontrivial solution of x4 + 2y4 = z2. By the minimality of the height we
may assume that x0 and y0 are relatively prime.

Assume next that there is a prime q in Z[i] such that q|x0, q|z0. It follows that q|x0. This
is a contradiction since x0, y0 are relatively prime.

Finally suppose there is a prime q in Z[i] such that q|x0, q|z0. We get that q2|2y0. If q|y0

we get the contradiction that x0 and y0 are not relatively prime. Thus q 6 |y0 and consequently
q2|2. We get that q is an associate of ω. Set x0 = ωx1, z0 = ωz1. From ω4x4

1 + 2y4
0 = ω2z2

1 we
get

ω4x4
1 − iω2y4

0 = ω2z2
1 ,

ω2x4
1 − iy4

0 = z2
1 ,

(−i)ω2x4
1 + y4

0 = (−i)z2
1 ,

y4
0 + 2x4

1 = −iz2
1 .

Therefore (y0, x1, iz1) is a nontrivial solution of the equation x4 + 2y4 = iz2.

(1.b) Pick a nontrivial solution of (x0, y0, z0) of the equation x4 + 2y4 = iz2 with minimal
height. Using the argument we have seen in step (1.a) we may assume that x0 and y0 are
relatively prime. The assumption that there is a prime q with q|y0, q|z0 gives the contradiction
that x0 and y0 are not relatively prime.

Finally suppose that there is a prime q such that q|x0, q|z0. We get that q2|2y4
0 . Here q|y0

leads to the contradiction that x0 and y0 are not relatively prime. Thus q2|2 and so q and ω



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A16 15

are associates. Set x0 = ωx1, z0 = ωz1. From ω4x4
1 + 2y4

0 = iω2z2
1 we get

ω4x4
1 − iω2y4

0 = iω2z2
1 ,

ω2x4
1 − iy4

0 = iz2
1 ,

(−i)ω2x4
1 − y4

0 = iz2
1 ,

2x4
1 − y4

0 = iz2

y4
0 − 2x4

1 = −iz2
1 .

Hence (y0, x1, iz1) is a nontrivial solution of the equation x4 − 2y4 = iz2.

(1.c) Choose a nontrivial solution (x0, y0, z0) of the equation x4 − 2y4 = iz2 with minimal
height. As before we may assume that x0 and y0 are relatively prime. If there is a prime q with
q|y0, q|z0 we get the contradiction that x0 and y0 are not relatively prime.

Finally consider the case when there is a prime q with q|x0, q|z0. It follows that q2|2y4
0 . If

q|y0, then we get that x0 and y0 are not relatively prime. This is not the case. So q2|2 and we
get that q and ω are associates. Setting x0 = ωx1, z0 = ωz1 from ω4 − 2y4

0 = iω2z2
1 we get

ω4x4
1 + iω2y4

0 = iω2z2
1 ,

ω2x4
1 + iy4

0 = iz2
1 ,

(−i)ω2x4
1 + y4

0 = z2
1 ,

y4
0 + 2x4

1 = z2
1 .

Hence (y0, x1, z1) is a nontrivial solution of x4 +2y4 = z2. The minimality of the height in (1.a)
gives that we may assume that x0, y0, z0 are relatively prime in (1.a).

(2) Let (x0, y0, z0) be a nontrivial solution of the equation x4 + 2y4 = z2 in Z[i] such that
x0, y0, z0 are pairwise relatively prime. Note that at most one of x0, y0, z0 can be congruent
to 0 modulo ω. We consider the four cases listed in Table 1.

In cases 2 and 4, the equation x4
0 + 2y4

0 = z2
0 leads to the contradictions 0 + 0 ≡ 1 (mod ω)

and 1 + 0 ≡ 0 (mod ω), respectively.

We next show that case 1 is not possible either. To do this, write z0 in the form z0 = kω2 +l,
k, l ∈ Z[i]. Computing z2

0 , z2
0 = k2ω4 + 2kω2l + l2 shows that z2

0 ≡ l2 (mod ω4). As 0, 1, i,
1 + i is a complete set of representatives modulo ω2, it follows that l can be chosen to be 1 or i.
From the equation x4

0 + 2y4
0 = z2

0 we get that 1 + 2 ≡ l2 (mod ω4). In the case l = 1 this leads
to the contradiction 1 + 2 ≡ 1 (mod ω4) and so we left with the choice l = i. Now writing
z0 in the form z0 = rω4 + s, r, s ∈ Z[i] and computing z2

0 , z2
0 = r2ω8 + 2rω4s + s2 gives that

z2
0 ≡ s2 (mod ω6). From z0 ≡ i (mod ω2), it follows that we can choose s and s2 in the way

summarized by Table 2. From the equation x4
0 + 2y4

0 = z2
0 , we get the contradictions

3 ≡ −1 (mod ω6), 3 ≡ 3 + 4i (mod ω6).
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(3) In case 3, let (x1, ω
ry1, z1) be a solution of the equation x4 + 2y4 = z2, where r ≥ 1,

x1 ≡ y1 ≡ z1 ≡ 1 (mod ω), and x1, y1, z1 are pairwise relatively prime. We will show that
z1 ≡ 1 (mod ω2).

In order to prove this claim, write z1 in the form z1 = kω2 + l, k, l ∈ Z[i], and compute z2
1 .

z2
1 = k2ω4 + 2kω2l + l2.

From this, it follows that z2
1 ≡ l2 (mod ω4) Since the elements 0, 1, i, 1 + i form a complete

set of representatives modulo ω2, and since z1 ≡ 1 (mod ω), we may choose l to be 1 or i.
Consequently, z2

1 is congruent to 1 or −1 modulo ω4. The equation x4
1 + 2ω4ry4

1 = z2
1 gives that

1 ≡ z2
1 (mod ω4), and so z1 ≡ 1 (mod ω2).

(4) We will show that there are pairwise relatively prime elements x2, y2, z2 of Z[i], such that
x2 ≡ y2 ≡ z2 ≡ 1 (mod ω), and (x2, ω

r−1y2, z2) is a solution of the equation x4 + 2y4 = z2.

In order to verify the claim, write the equation x4
1 + 2ω4ry4

1 = z2
1 in the form 2ω4ry4

1 =
(z1 − x2

1)(z1 + x2
1), and compute the greatest common divisor of (z1 − x2

1) and (z1 + x2
1). Let g

be this greatest common divisor. As g|ω4ry4
1 , it follows that g 6= 0. Since g|(z1−x2

1), g|(z1 +x2
1)

we get that g|2x2
1, g|2z1. If q is a prime divisor of g with q 6 |ω, we then get q|x1, q|z1. But we

know that this is not the case as x1 and z1 are relatively prime. Thus, g = ωs and 0 ≤ s ≤ 2
since g|2. By step (3) z1 ≡ 1 (mod ω2). This together with x2

1 ≡ 1 (mod ω2), gives that
(z1 − x2

1) ≡ (z1 + x2
1) ≡ 0 (mod ω2). Therefore g = ω2. The unique factorization property in

Z[i] implies that there are relatively prime elements a, b ∈ Z[i] such that

z1 − x2
1 = ω2a, z1 + x2

1 = ω2b.

Let a = ωua1, b = ωvb1. So (−i)ω4r+2y4
1 = ωu+v+4a1b1. By the unique factorization property

in Z[i], there are elements a2, b2 and units ε, µ in Z[i] for which

z1 − x2
1 = ωu+2εa4

2, z1 + x2
1 = ωv+2µb42,

4r + 2 = u+ v + 4, a4
2b

4
2 = y4

1 , εµ = −i.

Here, a2, b2 are prime to ω. It follows that a2 ≡ b2 ≡ 1 (mod ω). By addition, we get

2x2
1 = ωv+2µb42 − ωu+2εa4

2.

After dividing it by ω2, we get

(−i)x2
1 = ωvµb42 − ωuεa4

2.

We distinguish two cases depending on whether u = 0, v = 4r− 2, or v = 0, u = 4r− 2. When
u = 0, v = 4r − 2, we get

(−i)x2
1 = ω4r−2µb42 − εa4

2.
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This reduces to (−i) ≡ −ε (mod ω2). From this, it follows that ε = ±i, that is, either ε = i,
µ = −1, or ε = −i, µ = 1. In the first case, we get

(−i)x2
1 = ω4r−2(−1)b42 − (i)a4

2,

x2
1 = (−i)ω2ω4r−4b42 + a4

2,

x2
1 = 2ω4r−4b42 + a4

2.

Thus, (a2, ω
r−1b2, x1) is a nontrivial solution of the equation x4 +2y4 = z2. In the second case,

we get
(−i)x2

1 = ω4r−2(−1)b42 − (i)a4
2,

−x2
1 = (−i)ω2ω4r−4b42 + a4

2,

−x2
1 = 2ω4r−4b42 + a4

2.

Therefore, (a2, ω
r−1b2, ix1) is a nontrivial solution of the equation x4 + 2y4 = z2.

When v = 0, u = 4r − 2, we get

(−i)x2
1 = µb42 − ω4r−2εa4

2.

This reduces to (−i) ≡ µ (mod ω2). From this, it follows that µ = ±i, that is, either ε = −1,
µ = i, or ε = 1, µ = −i. In the first case, we get

(−i)x2
1 = (i)b42 − ω4r−2(−1)a4

2,

−x2
1 = b42 + (−i)ω2ω4r−4a4

2,

−x2
1 = b42 + 2ω4r−4a4

2.

Thus, (b2, ωr−1a2, ix1) is a nontrivial solution of the equation x4 + 2y4 = z2. In the second
case, we get

(−i)x2
1 = (−i)b42 − ω4r−2a4

2,

x2
1 = b42 + (−i)ω2ω4r−4a4

2,

x2
1 = b42 + 2ω4r−4a4

2,

and so (b2, ωr−1a2, x1) is a nontrivial solution of the equation x4 + 2y4 = z2.

(5) Let (x0, y0, z0) be a nontrivial solution of the equation x4 + 2y4 = z2 in Z[i]. By
step (2), there is a solution (x1, ω

ry1, z1) with x1, y1, z1 ≡ 1 (mod ω), r ≥ 1. Choose a
solution for which r is minimal. According to step (4), there is a solution (x2, ω

r−1y2, z2),
where x2, y2, z2 ≡ 1 (mod ω), r ≥ 2. This contradicts the choice of r and so completes the
proof.
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