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Abstract

For a given set A of nonnegative integers the representation functions R2(A, n), R3(A, n)
are defined as the number of solutions of the equation n = x+ y, x, y ∈ A with condition
x < y, x ≤ y, respectively. In this note we are going to determine the partitions of
natural numbers into two parts such that their representation functions are the same
from a certain point onwards.

1. Introduction

Throughout this paper we use the following notations: let N be the set of nonnegative
integers. For A ⊂ N let R1(A, n), R2(A, n), R3(A, n) denote the number of solutions of

x+ y = n x, y ∈ A
x+ y = n x < y, x, y ∈ A
x+ y = n x ≤ y, x, y ∈ A

respectively. A Sárközy asked whether there exist two sets A and B of nonnegative
integers with infinite symmetric difference, i.e.

|(A ∪B)\(A ∩B)| =∞

and
Ri(A, n) = Ri(B, n) n ≥ n0

for i = 1, 2, 3. For i=1 the answer is negative (see [2]). For i = 2 G. Dombi (see [2]) and
for i = 3 Y. G. Chen and B. Wang (see [1]) proved that the set of nonnegative integers
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can be partitioned into two subsets A and B such that Ri(A, n) = Ri(B, n) for all n ≥ n0.
In this note we determine the sets A ⊂ N for which either

R2(A, n) = R2(N\A, n) for n ≥ n0

or
R3(A, n) = R3(N\A, n) for n ≥ n0.

Theorem 1. Let N be a positive integer. The equality R2(A, n) = R2(N\A, n) holds for
n ≥ 2N − 1 if and only |A ∩ [0, 2N − 1]| = N and 2m ∈ A ⇔ m ∈ A, 2m + 1 ∈ A ⇔
m 6∈ A for m ≥ N .

Setting out from N = 1 and 0 ∈ A we get Dombi’s construction which is the set of
nonnegative integers n where in the binary representation of n the sum of the digits is
even.

Theorem 2. Let N be a positive integer. The equality R3(A, n) = R3(N\A, n) holds for
n ≥ 2N − 1 if and only if |A∩ [0, 2N − 1]| = N and 2m ∈ A⇔ m 6∈ A, 2m+ 1 ∈ A⇔
m ∈ A for m ≥ N .

Setting out from N = 1 and 0 ∈ A we get Y. G. Chen and B. Wang’s construction which
is the set of nonnegative integers n where in the binary representation the number of the
digits 0 is even.

2. Proofs

The proofs are very similar therefore we only present here the proof of Theorem 2.

Proof of Theorem 2. For A ⊂ N let

f(x) =
∑
a∈A

xa =
∞∑
i=0

εix
i.

Then we have ∞∑
n=0

R3(A, n)xn =
1

2
(f(x2) + f 2(x))

and ∞∑
n=0

R3(N\A, n)xn =
1

2
(

1

1− x2
− f(x2) + (

1

1− x − f(x))2),

moreover the condition R3(A, n) = R3(N\A, n) for n ≥ 2N − 1 is equivalent to the
existence of a polynomial p(x) of degree at most 2N − 2 such that

∞∑
n=0

(R3(A, n)−R3(N\A, n))xn = p(x).
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Then ∞∑
n=0

(R3(A, n)−R3(N\A, n))xn =

1

2
(f(x2) + f 2(x)− (

1

1− x2
− f(x2) + (

1

1− x − f(x))2)) =

1

2
(2f(x2)− 1

1− x2
− 1

(1− x)2
− 2f(x)

1− x ) =

f(x2)− 1

(1− x)2(1 + x)
+
f(x)

1− x = p(x),

i.e.

f(x) =
1

1− x2
− f(x2) + f(x2)x+ p(x)(1− x).

First let us suppose that R3(A, n) = R3(N\A, n) holds for n ≥ 2N −1. Then there exists
a polynomial p(x) of degree at most 2N − 2 such that

f(x) =
1

1− x2
− f(x2) + f(x2)x+ p(x)(1− x).

So we have

p(x)(1− x) =
2N−1∑
i=0

αix
i,

where
∑2N−1

i=0 αi = 0, furthermore

1

1− x2
− f(x2) + f(x2)x =

∞∑
i=0

((1− εi)x2i + εix
2i+1).

Hence

f(x) =
∞∑
i=0

εix
i =

1

1− x2
− f(x2) + f(x2)x+ p(x)(1− x) =

N−1∑
i=0

((1− εi)x2i + εix
2i+1) +

2N−1∑
i=0

αix
i +

∞∑
i=N

((1− εi)x2i + εix
2i+1) =

2N−1∑
i=0

εix
i +

∞∑
i=2N

εix
i,

where
2N−1∑
i=0

εi =
N−1∑
i=0

((1− εi) + εi) +
2N−1∑
i=0

αi = N,

therefore
|A ∩ [0, 2N − 1]| = N
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and
ε2m = 1− εm, ε2m+1 = εm for m ≥ N,

which means that 2m ∈ A if and only if m 6∈ A and 2m+ 1 ∈ A if and only if m ∈ A for
m ≥ N , which proves the necessary part of Theorem 2.

In the sufficient part we assume that |A ∩ [0, 2N − 1]| = N and 2m ∈ A ⇔ m 6∈
A, 2m + 1 ∈ A ⇔ m ∈ A for m ≥ N . This is equivalent to the assumptions that for
the generating function f(x) =

∑∞
i=0 εix

i we have

2N−1∑
i=0

εi = N

and
ε2m = 1− εm, ε2m+1 = εm for m ≥ N.

Hence

f(x) =
∞∑
i=0

εix
i =

2N−1∑
i=0

εix
i +

∞∑
i=N

ε2ix
2i +

∞∑
i=N

ε2i+1x
2i+1 =

2N−1∑
i=0

εix
i +

∞∑
i=N

(1− εi)x2i +
∞∑
i=N

εix
2i+1 =

2N−1∑
i=0

εix
i +

∞∑
i=0

(1− εi)x2i −
N−1∑
i=0

(1− εi)x2i +
∞∑
i=0

εix
2i+1 −

N−1∑
i=0

εix
2i+1 =

∞∑
i=0

x2i −
∞∑
i=0

εix
2i + x

∞∑
i=0

εix
2i +

2N−1∑
i=0

εix
i −

N−1∑
i=0

(1− εi)x2i −
N−1∑
i=0

εix
2i+1 =

1

1− x2
− f(x2) + xf(x2) +

2N−1∑
i=0

γix
i,

where
2N−1∑
i=0

γi =
2N−1∑
i=0

εi −
N−1∑
i=0

(1− εi)−
N−1∑
i=0

εi = N −N = 0,

therefore there exists a polynomial p(x) of degree at most 2N-2 such that

2N−1∑
i=0

γix
i = p(x)(1− x).

Hence

f(x) =
1

1− x2
− f(x2) + f(x2)x+ p(x)(1− x),

which proves the sufficient part of Theorem 2.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A18 5

References

[1] Y. G. Chen and B.Wang, On additive properties of two special sequences, Acta Arithm, Vol 110
(2003), 299-303.

[2] G. Dombi, Additive properties of certain sets, Acta Arithm. Vol 103 (2002), 137-146.

[3] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences I,
Pacific J. Math. 118 (1985), 347-357.
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