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Abstract

For a given set A of nonnegative integers the representation functions Rs(A,n), Rs(A,n)
are defined as the number of solutions of the equation n = z+y, x,y € A with condition
xr <y, xr <y, respectively. In this note we are going to determine the partitions of
natural numbers into two parts such that their representation functions are the same
from a certain point onwards.

1. Introduction

Throughout this paper we use the following notations: let N be the set of nonnegative
integers. For A C N let Ry(A,n), R2(A,n), R3(A,n) denote the number of solutions of

T+yYy = n r,y €A
T+Yy = n r<y, z,yeA
r+y = n x<y wzy€eA

respectively. A Sarkozy asked whether there exist two sets A and B of nonnegative
integers with infinite symmetric difference, i.e.

[((AUB)\(ANB)| =

and
R;(A,n) = R;(B,n) n > ng

for i = 1,2, 3. For i=1 the answer is negative (see [2]). For i = 2 G. Dombi (see [2]) and
for i = 3Y. G. Chen and B. Wang (see [1]) proved that the set of nonnegative integers
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can be partitioned into two subsets A and B such that R;(A,n) = R;(B,n) for all n > ny.
In this note we determine the sets A C N for which either

Ry(A,;n) = Ry(N\A,n) for n>ng
or

R3(A,n) = R3(N\A,n) for n > ny.

Theorem 1. Let N be a positive integer. The equality Ro(A,n) = Ro(N\A, n) holds for
n>2N —1if and only |[AN[0,2N —1]| =N and2m € A me A, 2m+1€ A&
m¢& A form> N.

Setting out from N = 1 and 0 € A we get Dombi’s construction which is the set of
nonnegative integers n where in the binary representation of n the sum of the digits is
even.

Theorem 2. Let N be a positive integer. The equality R3(A,n) = R3(N\A,n) holds for
n>2N —1if and only if [AN[0,2N —1]|=N and2m e A= m g A, 2m+1e As
m € A form > N.

Setting out from N =1 and 0 € A we get Y. G. Chen and B. Wang’s construction which
is the set of nonnegative integers n where in the binary representation the number of the
digits 0 is even.

2. Proofs

The proofs are very similar therefore we only present here the proof of Theorem 2.

Proof of Theorem 2. For A C N let

flz) = Zxa = Zelaf
acA =0

Then we have .
> Rl = 570 + ()

and

S RN\, )" = (- — () + (o — @)?),

moreover the condition R3(A,n) = R3(N\A,n) for n > 2N — 1 is equivalent to the
existence of a polynomial p(x) of degree at most 2N — 2 such that

1
11—z

o0

Z(R3(A, n) — R3(N\A,n))z" = p(x).

n=0
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Then N
HZZO(R?,(A, n) — R3(N\A,n))z" =
SUED) + @) = (= — £ + (1 — F@)) =
A ~ T2~ g ) =
1a%) - = x)i(l ol I _ ),
Fla) = 1 Fa) + f(e)e 4 ple)(1 — ).

First let us suppose that R3(A,n) = R3(N\A,n) holds for n > 2N — 1. Then there exists
a polynomial p(x) of degree at most 2N — 2 such that

1
f@) = 7= = f@) + f(@")z + pl)(1 - 2).
So we have
2aN—1
pa)1—2)= Y aa'
i=0
where ZQN Loy = 0, furthermore
1 o i i
1_ 22 f@®) + f(a*)a = Z((l —&)r” + e,
i=0
Hence N
f(z) = Z €r' =
i=0
1 ) )
1 — 22 — f@®) + f(a®)x + p(x)(1 —2) =
N-1 2N-1
(1 —e)z® +ez®) + Z a;xt + Z (1 — €)% + ez2th) =
i=0
2aN—1 oo
Z e’ + Z €',
1=0 i=2N
where
IN—1 N-1 2N—-1
da=> (l—e)+e)+ Y ai=N,
=0 i=0 i=0
therefore

IAN[0,2N —1]| = N
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and
62m:1_6ma €2m+1 = €m fOT mZN,

which means that 2m € A if and only if m ¢ A and 2m + 1 € A if and only if m € A for
m > N, which proves the necessary part of Theorem 2.

In the sufficient part we assume that |[AN[0,2N — 1] = N and 2m € A & m ¢
A, 2m+1€ A< m e Aform > N. This is equivalent to the assumptions that for
the generating function f(z) =Y o €;z" we have

IN-1
Z €, — N
i=0
and
€om=1—€n, €mi1=¢6n for m>N.
Hence
00 2N—1 [e's)
flz) = Z €t Z 6x' + Z €0, %0 + Z a1zt
=0 =0 =N
IN—1
€T —I—Z 1—¢ :L‘QZ—FZQ Zil —
=0 i=N
IN—1 N-1 N-1
Z et + Z (1—¢€)x (1 —¢)a® + Z Y Z R
=0 =0 =0 1=0
2N-1 N-1
th Zex%—kae,x%qLZex —Z (1—¢€)x P
i=0 i=0
| IN-1
] (2%) + xf(x Z Vi,
where
2N—1 IN—1 N-1 N-1
€ — 1—6,)—Zei:N—N:O,
1=0 =0 1=0 =0

therefore there exists a polynomial p(z) of degree at most 2N-2 such that

2N—-1

Y it = pla)(1 - ).

Hence
1

fl@)=1—>5~- f@®) + f(@®)a + p(x)(1 - 2),

which proves the sufficient part of Theorem 2.
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