PARTITIONS OF NATURAL NUMBERS AND THEIR REPRESENTATION FUNCTIONS

Csaba Sándor ${ }^{1}$
Department of Stochastics, Technical University, Budapest, Hungary
csandor@math.bme.hu

Received: 1/19/04, Accepted: 10/22/04, Published: 10/25/04

Abstract

For a given set A of nonnegative integers the representation functions $R_{2}(A, n), R_{3}(A, n)$ are defined as the number of solutions of the equation $n=x+y, x, y \in A$ with condition $x<y, x \leq y$, respectively. In this note we are going to determine the partitions of natural numbers into two parts such that their representation functions are the same from a certain point onwards.

1. Introduction

Throughout this paper we use the following notations: let \mathbb{N} be the set of nonnegative integers. For $A \subset \mathbb{N}$ let $R_{1}(A, n), R_{2}(A, n), R_{3}(A, n)$ denote the number of solutions of

$$
\begin{aligned}
& x+y=n \quad x, y \in A \\
& x+y=n \quad x<y, \quad x, y \in A \\
& x+y=n \quad x \leq y, \quad x, y \in A
\end{aligned}
$$

respectively. A Sárközy asked whether there exist two sets A and B of nonnegative integers with infinite symmetric difference, i.e.

$$
|(A \cup B) \backslash(A \cap B)|=\infty
$$

and

$$
R_{i}(A, n)=R_{i}(B, n) \quad n \geq n_{0}
$$

for $i=1,2,3$. For $\mathrm{i}=1$ the answer is negative (see [2]). For $i=2 \mathrm{G}$. Dombi (see [2]) and for $i=3 \mathrm{Y}$. G. Chen and B. Wang (see [1]) proved that the set of nonnegative integers

[^0]can be partitioned into two subsets A and B such that $R_{i}(A, n)=R_{i}(B, n)$ for all $n \geq n_{0}$. In this note we determine the sets $A \subset \mathbb{N}$ for which either
$$
R_{2}(A, n)=R_{2}(\mathbb{N} \backslash A, n) \quad \text { for } \quad n \geq n_{0}
$$
or
$$
R_{3}(A, n)=R_{3}(\mathbb{N} \backslash A, n) \quad \text { for } \quad n \geq n_{0}
$$

Theorem 1. Let N be a positive integer. The equality $R_{2}(A, n)=R_{2}(\mathbb{N} \backslash A, n)$ holds for $n \geq 2 N-1$ if and only $|A \cap[0,2 N-1]|=N$ and $2 m \in A \Leftrightarrow m \in A, \quad 2 m+1 \in A \Leftrightarrow$ $m \notin A$ for $m \geq N$.

Setting out from $N=1$ and $0 \in A$ we get Dombi's construction which is the set of nonnegative integers n where in the binary representation of n the sum of the digits is even.

Theorem 2. Let N be a positive integer. The equality $R_{3}(A, n)=R_{3}(\mathbb{N} \backslash A, n)$ holds for $n \geq 2 N-1$ if and only if $|A \cap[0,2 N-1]|=N$ and $2 m \in A \Leftrightarrow m \notin A, \quad 2 m+1 \in A \Leftrightarrow$ $m \in A$ for $m \geq N$.

Setting out from $N=1$ and $0 \in A$ we get Y. G. Chen and B. Wang's construction which is the set of nonnegative integers n where in the binary representation the number of the digits 0 is even.

2. Proofs

The proofs are very similar therefore we only present here the proof of Theorem 2.
Proof of Theorem 2. For $A \subset \mathbb{N}$ let

$$
f(x)=\sum_{a \in A} x^{a}=\sum_{i=0}^{\infty} \epsilon_{i} x^{i}
$$

Then we have

$$
\sum_{n=0}^{\infty} R_{3}(A, n) x^{n}=\frac{1}{2}\left(f\left(x^{2}\right)+f^{2}(x)\right)
$$

and

$$
\sum_{n=0}^{\infty} R_{3}(\mathbb{N} \backslash A, n) x^{n}=\frac{1}{2}\left(\frac{1}{1-x^{2}}-f\left(x^{2}\right)+\left(\frac{1}{1-x}-f(x)\right)^{2}\right),
$$

moreover the condition $R_{3}(A, n)=R_{3}(\mathbb{N} \backslash A, n)$ for $n \geq 2 N-1$ is equivalent to the existence of a polynomial $p(x)$ of degree at most $2 N-2$ such that

$$
\sum_{n=0}^{\infty}\left(R_{3}(A, n)-R_{3}(\mathbb{N} \backslash A, n)\right) x^{n}=p(x)
$$

Then

$$
\begin{gathered}
\sum_{n=0}^{\infty}\left(R_{3}(A, n)-R_{3}(\mathbb{N} \backslash A, n)\right) x^{n}= \\
\frac{1}{2}\left(f\left(x^{2}\right)+f^{2}(x)-\left(\frac{1}{1-x^{2}}-f\left(x^{2}\right)+\left(\frac{1}{1-x}-f(x)\right)^{2}\right)\right)= \\
\frac{1}{2}\left(2 f\left(x^{2}\right)-\frac{1}{1-x^{2}}-\frac{1}{(1-x)^{2}}-\frac{2 f(x)}{1-x}\right)= \\
f\left(x^{2}\right)-\frac{1}{(1-x)^{2}(1+x)}+\frac{f(x)}{1-x}=p(x)
\end{gathered}
$$

i.e.

$$
f(x)=\frac{1}{1-x^{2}}-f\left(x^{2}\right)+f\left(x^{2}\right) x+p(x)(1-x)
$$

First let us suppose that $R_{3}(A, n)=R_{3}(\mathbb{N} \backslash A, n)$ holds for $n \geq 2 N-1$. Then there exists a polynomial $p(x)$ of degree at most $2 N-2$ such that

$$
f(x)=\frac{1}{1-x^{2}}-f\left(x^{2}\right)+f\left(x^{2}\right) x+p(x)(1-x)
$$

So we have

$$
p(x)(1-x)=\sum_{i=0}^{2 N-1} \alpha_{i} x^{i}
$$

where $\sum_{i=0}^{2 N-1} \alpha_{i}=0$, furthermore

$$
\frac{1}{1-x^{2}}-f\left(x^{2}\right)+f\left(x^{2}\right) x=\sum_{i=0}^{\infty}\left(\left(1-\epsilon_{i}\right) x^{2 i}+\epsilon_{i} x^{2 i+1}\right)
$$

Hence

$$
\begin{gathered}
f(x)=\sum_{i=0}^{\infty} \epsilon_{i} x^{i}= \\
\frac{1}{1-x^{2}}-f\left(x^{2}\right)+f\left(x^{2}\right) x+p(x)(1-x)= \\
\sum_{i=0}^{N-1}\left(\left(1-\epsilon_{i}\right) x^{2 i}+\epsilon_{i} x^{2 i+1}\right)+\sum_{i=0}^{2 N-1} \alpha_{i} x^{i}+\sum_{i=N}^{\infty}\left(\left(1-\epsilon_{i}\right) x^{2 i}+\epsilon_{i} x^{2 i+1}\right)= \\
\sum_{i=0}^{2 N-1} \epsilon_{i} x^{i}+\sum_{i=2 N}^{\infty} \epsilon_{i} x^{i}
\end{gathered}
$$

where

$$
\sum_{i=0}^{2 N-1} \epsilon_{i}=\sum_{i=0}^{N-1}\left(\left(1-\epsilon_{i}\right)+\epsilon_{i}\right)+\sum_{i=0}^{2 N-1} \alpha_{i}=N
$$

therefore

$$
|A \cap[0,2 N-1]|=N
$$

and

$$
\epsilon_{2 m}=1-\epsilon_{m}, \quad \epsilon_{2 m+1}=\epsilon_{m} \quad \text { for } \quad m \geq N
$$

which means that $2 m \in A$ if and only if $m \notin A$ and $2 m+1 \in A$ if and only if $m \in A$ for $m \geq N$, which proves the necessary part of Theorem 2 .

In the sufficient part we assume that $|A \cap[0,2 N-1]|=N$ and $2 m \in A \Leftrightarrow m \notin$ $A, \quad 2 m+1 \in A \Leftrightarrow m \in A$ for $m \geq N$. This is equivalent to the assumptions that for the generating function $f(x)=\sum_{i=0}^{\infty} \epsilon_{i} x^{i}$ we have

$$
\sum_{i=0}^{2 N-1} \epsilon_{i}=N
$$

and

$$
\epsilon_{2 m}=1-\epsilon_{m}, \quad \epsilon_{2 m+1}=\epsilon_{m} \quad \text { for } \quad m \geq N
$$

Hence

$$
\begin{gathered}
f(x)=\sum_{i=0}^{\infty} \epsilon_{i} x^{i}=\sum_{i=0}^{2 N-1} \epsilon_{i} x^{i}+\sum_{i=N}^{\infty} \epsilon_{2 i} x^{2 i}+\sum_{i=N}^{\infty} \epsilon_{2 i+1} x^{2 i+1}= \\
\sum_{i=0}^{2 N-1} \epsilon_{i} x^{i}+\sum_{i=N}^{\infty}\left(1-\epsilon_{i}\right) x^{2 i}+\sum_{i=N}^{\infty} \epsilon_{i} x^{2 i+1}= \\
\sum_{i=0}^{2 N-1} \epsilon_{i} x^{i}+\sum_{i=0}^{\infty}\left(1-\epsilon_{i}\right) x^{2 i}-\sum_{i=0}^{N-1}\left(1-\epsilon_{i}\right) x^{2 i}+\sum_{i=0}^{\infty} \epsilon_{i} x^{2 i+1}-\sum_{i=0}^{N-1} \epsilon_{i} x^{2 i+1}= \\
\sum_{i=0}^{\infty} x^{2 i}-\sum_{i=0}^{\infty} \epsilon_{i} x^{2 i}+x \sum_{i=0}^{\infty} \epsilon_{i} x^{2 i}+\sum_{i=0}^{2 N-1} \epsilon_{i} x^{i}-\sum_{i=0}^{N-1}\left(1-\epsilon_{i}\right) x^{2 i}-\sum_{i=0}^{N-1} \epsilon_{i} x^{2 i+1}= \\
\frac{1}{1-x^{2}}-f\left(x^{2}\right)+x f\left(x^{2}\right)+\sum_{i=0}^{2 N-1} \gamma_{i} x^{i}
\end{gathered}
$$

where

$$
\sum_{i=0}^{2 N-1} \gamma_{i}=\sum_{i=0}^{2 N-1} \epsilon_{i}-\sum_{i=0}^{N-1}\left(1-\epsilon_{i}\right)-\sum_{i=0}^{N-1} \epsilon_{i}=N-N=0
$$

therefore there exists a polynomial $p(x)$ of degree at most $2 \mathrm{~N}-2$ such that

$$
\sum_{i=0}^{2 N-1} \gamma_{i} x^{i}=p(x)(1-x)
$$

Hence

$$
f(x)=\frac{1}{1-x^{2}}-f\left(x^{2}\right)+f\left(x^{2}\right) x+p(x)(1-x)
$$

which proves the sufficient part of Theorem 2.

References

[1] Y. G. Chen and B.Wang, On additive properties of two special sequences, Acta Arithm, Vol 110 (2003), 299-303.
[2] G. Dombi, Additive properties of certain sets, Acta Arithm. Vol 103 (2002), 137-146.
[3] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences I, Pacific J. Math. 118 (1985), 347-357.
[4] P. Erdős, A. SÁrközy and V. T. Sós, Problems and results on additive properties of general sequences III, Studia Sci. Math. Hung. 22 (1987), 53-63.
[5] —,—,—, Problems and results on additive properties of general sequences IV,in: Number Theory (Ootacamund, 1984), Lecture Notes in Math. 1122, Springer, Berlin, 1985, 85-104.

[^0]: ${ }^{1}$ Supported by Hungarian National Foundation for scientific Research, Gant No T 38396 and FKFP 0058/2001.

