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Abstract

In this paper we give a new formula for the n-th power of a 2× 2 matrix.

More precisely, we prove the following: Let A =

(
a b
c d

)
be an arbitrary 2×2 matrix,

T = a+ d its trace, D = ad− bc its determinant and define

yn : =

bn/2c∑
i=0

(
n− i
i

)
T n−2i(−D)i.

Then, for n ≥ 1,

An =

(
yn − d yn−1 b yn−1

c yn−1 yn − a yn−1

)
.

We use this formula together with an existing formula for the n-th power of a matrix,
various matrix identities, formulae for the n-th power of particular matrices, etc, to derive
various combinatorial identities.

1. Introduction

In this paper we derive a formula for the n-th power of a 2 × 2 matrix. Although we
were initially not aware of the fact, the formula is not new and in fact Schwerdtfeger
([7], pages 104–105) outlines a method due to Jacobsthal [3] for finding the n-th power
of an arbitrary 2× 2 matrix A which, after a little manipulation, is essentially equivalent
to the method described in Theorem 1. What makes the formula somewhat interesting
is that various combinatorial identities follow immediately from it and we show how

1http://www.trincoll.edu/ jmclaugh/
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to derive some of these. We further exploit the formula by showing how to use certain
elementary matrix identities to derive other known combinatorial identities and also some
new identities.

Throughout the paper, let I denote the 2 × 2-identity matrix and n an arbitrary
positive integer. In [11], Williams gave the following formula for the n-th power of 2× 2
matrix A with eigenvalues α and β:

An =


αn
(
A−βI
α−β

)
+ βn

(
A−αI
β−α

)
, if α 6= β,

αn−1(nA− (n− 1)αI), if α = β.

(1)

Blatz had given a similar, if slightly more complicated expression, in [1].

For our present purposes (producing combinatorial identities), it is preferable to ex-
press An directly in terms of the entries of A, rather than the eigenvalues of A. If we
let T denote the trace of A and D its determinant, then, without loss of generality,
α = (T +

√
T 2 − 4D)/2 and β = (T −

√
T 2 − 4D)/2. A little elementary arithmetic

gives that (in the case α 6= β), if

zn :=
αn − βn
α− β =

∑b(n−1)/2c
m=0

(
n

2m+1

)
T n−2m−1(T 2 − 4D)m

2n−1
, (2)

then

An = znA− zn−1 D I. (3)

Equation 3 also holds in the case of equal eigenvalues (when T 2 − 4D = 0), if zn is
assumed to have the value on the right of (2). The key point here is that if another
closed-form expression exists for An, then equating the expressions for the entries of An

from this closed form with the expressions derived from Equations 2 and 3 will produce
various identities.

As an illustration, we consider the following example. Let {Fn}∞n=1 denote the Fi-
bonacci sequence, defined by F0 = 0, F1 = 1 and Fi+1 = Fi + Fi−1, for i ≥ 1. The
identity (

1 1
1 0

)n
=

(
Fn+1 Fn
Fn Fn−1

)
(4)

leads directly to several of the known formulae involving the Fibonacci numbers. For
example, direct substitution of T = −D = 1 in Equation 2 gives Formula 91 from
Vajda’s list [9]:

Fn =

∑b(n−1)/2c
m=0

(
n

2m+1

)
5m

2n−1
. (5)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A19 3

Many other formulae can be similarly derived. This method of deriving combinatorial
identities of course needs two expressions for An and for a general 2 × 2 matrix, these
have not been available.

In this present paper we remedy this situation by presenting a new formula for An,
where the entries are also expressed in terms of the entries in A.

2. Main Theorem

We prove the following theorem.

Theorem 1 Let

A =

(
a b
c d

)
(6)

be an arbitrary 2 × 2 matrix and let T = a + d denote its trace and D = ad − bc its
determinant. Let

yn =

bn/2c∑
i=0

(
n− i
i

)
T n−2i(−D)i. (7)

Then, for n ≥ 1,

An =

(
yn − d yn−1 b yn−1

c yn−1 yn − a yn−1

)
. (8)

Proof. The proof is by induction. Equation 8 is easily seen to be true for n = 1, 2, so
suppose it is true for n = 1, . . . , k. This implies that

Ak+1 =

(
a yk + (b c− a d)yk−1 b yk

c yk d yk + (b c− a d)yk−1

)
.

Thus the result will follow if it can be shown that

yk+1 = (a+ d)yk + (b c− a d)yk−1.

Upon substituting from Equation 7, we have that

(a+ d)yk + (b c− a d)yk−1

=

bk/2c∑
i=0

(
k − i
i

)
T k+1−2i(−D)i +

b(k−1)/2c∑
i=0

(
k − 1− i

i

)
T k−1−2i(−D)i+1

=

bk/2c∑
i=0

(
k − i
i

)
T k+1−2i(−D)i +

b(k+1)/2c∑
i=1

(
k − i
i− 1

)
T k+1−2i(−D)i.
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If k is even, then bk/2c = b(k + 1)/2c, and

(a+ d)yk + (b c− a d)yk−1 =

(
k

0

)
T k+1 +

b(k+1)/2c∑
i=1

((
k − i
i

)
+

(
k − i
i− 1

))
T k+1−2i(−D)i

=

b(k+1)/2c∑
i=0

(
k + 1− i

i

)
T k+1−2i(−D)i = yk+1.

If k is odd, then bk/2c = b(k − 1)/2c, and

(a+ d)yk + (b c− a d)yk−1 =

(
k

0

)
T k+1 +

b(k−1)/2c∑
i=1

((
k − i
i

)
+

(
k − i
i− 1

))
T k+1−2i(−D)i

+

(
k − b(k + 1)/2c
b(k + 1)/2c − 1

)
T k+1−2b(k+1)/2c(−D)b(k+1)/2c

=

b(k+1)/2c∑
i=0

(
k + 1− i

i

)
T k+1−2i(−D)i = yk+1.

This completes the proof. 2

The aim now becomes to use combinations of the formulae at (3) and (8), together
with various devices such writing Ank = (Ak)n, writing A = B + C or A = B C where
B and C commute, etc, to produce combinatorial identities. One can also consider
particular matrices A whose n-th power has a simple form, and then use the formulae at
(3) and (8) to derive combinatorial identities,

As an immediate consequence of (3) and (8), we have the following corollary to
Theorem 1.

Corollary 1 For 1 ≤ j ≤ b(n− 1)/2c,(
n

2j + 1

)
=

b(n−1)/2c∑
i=j

(−1)i−j2n−1−2i

(
i

j

)(
n− 1− i

i

)
, (9)

(
n− 1− j

j

)
= 2−n+1+2j

b(n−1)/2c∑
i=j

(
n

2i+ 1

)(
i

j

)
.

Proof. For the first identity, we equate the (1, 2) entries at (3) and (8) and then let
T = 2x and D = x2 − y. This gives that

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
(2x)n−1−2i(y − x2)i =

b(n−1)/2c∑
i=0

(
n

2 i+ 1

)
xn−1−2iyi.
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We now expand the left side and equate coefficients of equal powers of y/x2.

For the second identity, we similarly equate the (1, 2) entries at (3) and (8), expand
(T 2−4D)m by the binomial theorem and compare coefficients of like powers of (−D/T 2).
2

Remark: The literature on combinatorial identities is quite extensive and all of the iden-
tities we describe in this paper may already exist elsewhere. However, we believe that at
least some of the methods used to generate/prove them are new.

3. Some Formulae for the Fibonacci Numbers

The identity ([10], pp. 18-20)

Fn =

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
(10)

follows from (4), (7) and (8), upon setting T = −D = b = 1.

The Lucas sequence {Ln}∞n=1 is defined by L1 = 1, L2 = 3 and Ln+1 = Ln +Ln−1, for
n ≥ 2. The identity Ank = (An)k implies(

Fnk+1 Fnk
Fnk Fnk−1

)
=

(
Fn+1 Fn
Fn Fn−1

)k
.

The facts that Ln = Fn+1 + Fn−1 and Fn+1Fn−1 − F 2
n = (−1)n together with Theorem 1

now imply the following identity from [4] (page 5):

Fnk = Fn

b(k−1)/2c∑
i=0

(
k − 1− i

i

)
Lk−1−2i
n (−1)i(n+1). (11)

Let i :=
√
−1 and define B := 1√

2 i−1

(
1 + i i
i 1

)
. Then B2 =

(
1 1
1 0

)
, leading to the

identity:

Fk =
1

ik−1

k−1∑
m=0

(
2k − 1−m

m

)
(2 + i)k−1−m(−1)m, (12)

a variant of Ram’s formula labelled FeiPi at [6].

Many similar identities for the Fibonacci and Lucas sequences can also be easily
derived from Theorem 1.
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4. A Binomial Expansion from Williams’ Formula

Proposition 1 Let n ∈ N and 1 ≤ t ≤ n, t integral. Then

(
n

t

)
=

bn−1
2
c∑

m=0

n−1−2m∑
j=0

(−1)m2n−1−2m−j
(
n− 1−m

m

)(
n− 1− 2m

j

)(
m

t− j − 1

)
. (13)

Proof. Let A =

(
f + 2e 1

0 f

)
. The eigenvalues of A are clearly f + 2e and f . With the

notation of Theorem 1, T = 2(e + f) and D = f(f + 2e). If we now equate the (1, 2)
entry from the left side of Equation 1 with the (1, 2) entry from the left side of Equation
8, we get, after a little manipulation, that

(f + 2e)n = fn + 2e

b(n−1)/2c∑
m=0

(
n− 1−m

m

)
(2(e+ f))n−1−2m (−f(2e+ f))m .

Next, replace e by e/2 to get that

(f + e)n = fn + e

b(n−1)/2c∑
m=0

(
n− 1−m

m

)
(e+ 2f)n−1−2m (−f(e+ f))m . (14)

Finally, set f = 1, expand both sides of Equation 14 and compare coefficients of like
powers of e to get the result. 2

5. Commutating Matrices I

As before, let

A =

(
a b
c d

)
.

We write

A = (mA+ w I) + ((1−m)A− w I), (15)

noting that the matrices on the right commute.

An =
n∑
j=0

(
n

j

)
(mA+ w I)n−j((1−m)A− w I)j (16)

and we might hope to use the formulae at (1) and (6) to derive new identities. We give
two examples.
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Proposition 2 Let n ∈ N and k, r integers with 0 ≤ k ≤ r ≤ n. Then

(−1)n−k
n−k∑
j=0

(
n

j

)(
n− j
k

)(
j

r − k

)
(−1)j =


(
n

k

)
, r = n,

0, r 6= n.

(17)

Proof. Expand the right side of Equation 16 and re-index to get that

An =
n∑
r=0

wn−rAr(1−m)r(−1)r
n∑
k=0

(
m

1−m

)k
(−1)k

×
n−k∑
j=0

(
n

j

)(
n− j
k

)(
j

r − k

)
(−1)j.

If we compare coefficients of w on both sides, it is clear that

n∑
k=0

(
m

1−m

)k
(−1)k

n−k∑
j=0

(
n

j

)(
n− j
k

)(
j

r − k

)
(−1)j =


(m− 1)−n, r = n,

0, r 6= n.

Equivalently,

n∑
k=0

mk(1−m)n−k(−1)n−k
n−k∑
j=0

(
n

j

)(
n− j
k

)(
j

r − k

)
(−1)j =


1, r = n,

0, r 6= n.

Finally, equating coefficients of powers of m on both sides of the last equality give the
result. We note that the case for r = n follows since the left side then must equal
(m+ (1−m))n. 2

Proposition 3 Let n ∈ N and t an integer such that 0 ≤ t ≤ n. For each integer
i ∈ [0, b(n− 1)/2c],

n∑
j=1

b(j−1)/2c∑
r=i

j−1−2r∑
k=0

(
n

j

)(
j − 1− r

r

)(
j − 1− 2r

k

)(
r

i

)
(18)

×
(

r − i
j − k − r + i− n+ t

)
(−1)r+t+j+n+i2k =


(
n−1−i

i

)
, t = 0,

0, t 6= 0.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #A19 8

Proof. We set m = 0 in Equations 15 and 16, so that(
a b
c d

)n
=

n∑
j=0

(
n

j

)
wn−j

(
a− w b
c d− w

)j
.

If we use Theorem 1 and compare values in the (1, 2) position, we deduce that

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
(a+ d)n−1−2i(bc− ad)i =

n∑
j=1

(
n

j

)
wn−j

b(j−1)/2c∑
r=0

(
j − 1− r

r

)
(a+ d− 2w)j−1−2r(bc− (a− w)(d− w))r. (19)

For ease of notation we replace a+d by T and ad− bc by D. If we then expand the right
side and collect powers of w, we get that

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
T n−1−2i(−D)i =

n∑
j=1

b(j−1)/2c∑
r=0

j−1−2r∑
k=0

r∑
m=0

m∑
p=0

(
n

j

)(
j − 1− r

r

)(
j − 1− 2r

k

)(
r

m

)(
m

p

)
× (−1)k+r−m+p2kT j−1−2r−k+m−pDr−mwn−j+k+m+p.

If we solve t = n− j + k +m+ p for p, we have that

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
T n−1−2i(−D)i

=
n−1∑
t=0

wt
n∑
j=1

b(j−1)/2c∑
r=0

j−1−2r∑
k=0

r∑
m=0

(
n

j

)(
j − 1− r

r

)(
j − 1− 2r

k

)(
r

m

)
×
(

m

j − k −m− n+ t

)
(−1)r+t+j+n2kT 2m+n−t−2r−1Dr−m.
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Next, cancel a factor of T n−1 from both sides, replace T by 1/y, D by −x/y2 and m
by r − i to get that

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
xi

=
n−1∑
t=0

(wy)t
n∑
j=1

b(j−1)/2c∑
r=0

j−1−2r∑
k=0

r∑
i=0

(
n

j

)(
j − 1− r

r

)(
j − 1− 2r

k

)(
r

r − i

)
×
(

r − i
j − k − r + i− n+ t

)
(−1)r+t+j+n+i2kxi

=
n−1∑
t=0

(wy)t
b(n−1)/2c∑

i=0

n∑
j=1

b(j−1)/2c∑
r=i

j−1−2r∑
k=0

(
n

j

)(
j − 1− r

r

)(
j − 1− 2r

k

)(
r

i

)
×
(

r − i
j − k − r + i− n+ t

)
(−1)r+t+j+n+i2kxi

Finally, compare coefficients of xi(wy)t to get the result. 2

Corollary 2 For every complex number w different from 0, 1/2, φ (the golden ratio) or
−1/φ,

Fn =
n∑
j=1

b(j−1)/2c∑
r=0

(
n

j

)(
j − 1− r

r

)
wn−j(1− 2w)j−1−2r(1 + w − w2)r. (20)

Proof. Let a = b = c = 1, d = 0 in Equation 19 and once again use the identity at (10). 2

This identity contains several of the known identities for the Fibonacci sequence as spe-
cial cases. For example, letting w → φ gives Binet’s Formula (after summing using the
Binomial Theorem); w → 0 gives the formula at (10); w → 1/2 gives (5); w = 1 gives
the identity

Fn =
n∑
j=1

(−1)j−1

(
n

j

)
Fj,

which is a special case of Formula 46 from Vajda’s list ([9], page 179).
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6. Commutating Matrices II

Let A =

(
a b
c d

)
with T = a + d and D = ad − bc and I the 2 × 2 identity matrix as

before. Let g be an arbitrary real or complex number such that g2 + Tg + D 6= 0. It is
easy to check that

A =
1

g2 + Tg +D
(A+ g I)(g A+D I), (21)

and that A + g I and g A + D I commute. If both sides of Equation 21 are now raised
to the n-th power, the right side expanded via the Binomial Theorem and powers of A
collected, we get the following proposition:

Proposition 4 Let A be an arbitrary 2×2 matrix with trace T and determinant D 6= 0.
Let g be a complex number such that g2 + Tg + D 6= 0, g 6= 0 and let n be a positive
integer. Then

An =

(
g D

g2 + Tg +D

)n 2n∑
r=0

r∑
i=0

(
n

i

)(
n

r − i

)(
D

g2

)i ( g
D

)r
Ar. (22)

Corollary 3 Let n be a positive integer and let m be an integer with 0 ≤ m ≤ 2n. Then
for −n ≤ w ≤ n,

n−1∑
k=0

(
n− 1− k

k

)(
n

w + k

)(
k + w

m− k − w

)
(−1)k =

m−w∑
k=−2w−n+m+1

(
n

k + w

)(
n

n+ k + w −m

)(
k + n+ 2w −m− 1

k

)
(−1)k. (23)

Remark: Consideration of the binomial coefficients on either side of (23) shows that this
identity is non-trivial only for m/2 − b(n − 1)/2c ≤ w ≤ m, but we prefer to state the
limits on w as we have done for neatness reasons. Proof. If Equation 22 is multiplied by
(g2 + Tg + D)n, both sides expanded and coefficients of like powers of g compared, we
get that for each integer m ∈ [0, 2n],

An
n∑
j=0

(
n

j

)(
j

m− j

)
Dn−jT 2j−m =

2n∑
r=0

1 + (−1)r+m+n

2

(
n

r−m+n
2

)(
n

r+m−n
2

)
D(3n−r−m)/2Ar. (24)
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If we next assume that (1, 2) entry of A is non-zero, apply Theorem 1 to the various
powers of A on each side of Equation 24 and compare the (1, 2) entries on each side of
(24), we get that

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
T n−1−2k(−D)k

n∑
j=0

(
n

j

)(
j

m− j

)
Dn−jT 2j−m =

2n∑
r=0

1 + (−1)r+m+n

2

(
n

r−m+n
2

)(
n

r+m−n
2

)
D(3n−r−m)/2

b r−1
2
c∑

k=0

(
r − 1− k

k

)
T r−1−2k(−D)k.

(25)

Equivalently, after re-indexing and changing the order of summation,

2n∑
v=0

n∑
k=0

(
n− 1− k

k

)(
n

k + n− v

)(
k + n− v

m− k − n+ v

)
(−1)k

(
D

T 2

)v
=

2n∑
v=0

v+m−n∑
k=2v−3n+m+1

(
n

k − v + n

)(
n

k − v + 2n−m

)
×
(
k − 2v + 3n−m− 1

k

)
(−1)k

(
D

T 2

)v
. (26)

The result follows from comparing coefficients of equal powers of D/T 2 and replacing v
by n− w. 2

Corollary 4 Let n be a positive integer and let m ∈ {0, 1 . . . , 2n}. Then

n∑
j=0

(
n

j

)(
j

m− j

)
22j−m =

2n∑
r=0,

r+m+n even

(
n

r−m+n
2

)(
n

r+m−n
2

)
, (27)

(n+ 1)
n∑
j=0

(
n

j

)(
j

m− j

)
22j−m =

2n∑
r=0,

r+m+n even

(
n

r−m+n
2

)(
n

r+m−n
2

)
(r + 1), (28)

(2n+1 − 1)
n∑
j=0

(
n

j

)(
j

m− j

)
2n−j32j−m =

2n∑
r=0,

r+m+n even

(
n

r−m+n
2

)(
n

r+m−n
2

)
2(3n−r−m)/2(2r+1 − 1), (29)
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and

Fn+2

n∑
j=0

(
n

j

)(
j

m− j

)
(−1)m+j =

2n∑
r=0,

r+m+n even

(
n

r−m+n
2

)(
n

r+m−n
2

)
(−1)(−n+r−m)/2Fr+2.

(30)

Proof. Equations (27) to (30) follow from comparing (1, 1) entries at (24), using, respec-
tively, the following identities:

In = I,

(
2 1
−1 0

)n
=

(
n+ 1 n
−n −n+ 1

)
,

(
3 1
−2 0

)n
=

(
2n+1 − 1 2n − 1
−2n+1 + 2 −2n + 2

)
,

(
−2 −1
1 1

)n
= (−1)n

(
Fn+2 Fn
−Fn −Fn−2

)
.

2

Corollary 5 If g is a complex number different from 0, −φ or 1/φ, then

Fn =

( −g
g2 + g − 1

)n 2n∑
r=0

r∑
i=0

(
n

i

)(
n

r − i

)
(−1)r+i gr−2iFr. (31)

Proof. Let A =

(
1 1
1 0

)
and compare the (1, 2) entries on each side of Equation 22, using

(4). 2

7. Miscellaneous identities derived from particular matrices

The identities in Corollary 4 derived from the fact that the n-th power of each of the
various matrices mentioned in the proof has a simple, elegant form. It is of course
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easy to construct such 2 × 2 matrices whose n-th power has a similar “nice” form by

constructing matrices

(
a b
c d

)
with a predetermined pair of eigenvalues α and β and

using the formula of Williams at (1). Theorem 1 can then be applied to any such matrix
to produce identities of the form

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
(a+ d)n−1−2i(−(ad− bc))i =


αn−βn
α−β , if α 6= β,

nαn−1, if α = β.

As an example, the matrix

(
2 1
−1 0

)
has both eigenvalues equal to 1, leading to the

following identity for n ≥ 1:

n =

b(n−1)/2c∑
i=0

(
n− 1− i

i

)
2n−1−2i(−1)i. (32)

We give one additional example.

Proposition 5 Let n be a positive integer, and s an integer with 0 ≤ s ≤ n− 1. Then∑
k≥0

(
s

k

)(
n− k − 1

s− 1

)
(−1)k = 0. (33)

Proof. We consider

(
i 0
0 j

)n
and use Theorem 1 to get that

in =

bn/2c∑
k=0

(
n− k
k

)
(i+ j)n−2k(−i j)k − j

b(n−1)/2c∑
k=0

(
n− 1− k

k

)
(i+ j)n−1−2k(−i j)k.

Upon expanding powers of i+ j and re-indexing, we get that

in = in +
n−1∑
s=0

isjn−s
∑
k

{(
n− k
k

)(
n− 2k

s− k

)
−
(
n− 1− k

k

)(
n− 1− 2k

s− k

)}
(−1)k.

(34)

Finally, we note that(
n− k
k

)(
n− 2k

s− k

)
−
(
n− 1− k

k

)(
n− 1− 2k

s− k

)
=

(
s

k

)(
n− k − 1

s− 1

)
and compare coefficients of isjn−s on both sides of (34) to get the result. 2
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8. Concluding remarks

Theorem 1 can be applied in a number of other ways. The identity(
cosnθ sinnθ
− sinnθ cosnθ

)
=

(
cos θ sin θ
− sin θ cos θ

)n
will give alternative (to those derived from De Moivre’s Theorem) expressions for cosnθ
and sinnθ.

If (xn, yn) denotes the n-th largest pair of positive integers satisfying the Pell equation
x2 −my2 = 1, the identity (

xn myn
yn xn

)
=

(
x1 my1

y1 x1

)n
will give alternative expressions for xn and yn to those derived from the formula xn +√
myn = (x1 +

√
my1)n.

Similarly, one can use Theorem 1 to find various identities for the Brahmagupta
polynomials [8] xn and yn defined by(

xn yn
t yn xn

)
=

(
x1 y1

t y1 x1

)n
and the Morgan-Voyce polynomials [5] Bn and bn defined by(

Bn −Bn−1

Bn−1 −Bn−2

)
=

(
x+ 2 −1

1 0

)n
and bn = Bn −Bn−1.

It may be possible to extend some of the methods used in this paper to develop new
combinatorial identities. For example, it may be possible to exploit the equation

A = (m1A+ w1I) + (m2A+ w2I) + ((1−m1 −m2)A− (w1 + w2)I)

or, more generally, the equation

A =

p∑
i=1

(miA+ wiI) +

((
1−

p∑
i=1

mi

)
A−

p∑
i=1

wiI

)

to find new combinatorial identities in a way similar to the use of Equation 15 in the
section Commuting Matrices I. We hope to explore some of these ideas in a later paper.
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