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Abstract

In this paper we obtain a universal lower bound on the 2-adic order of lacunary sums of
binomial coefficients. By means of necessary and sufficient conditions, we determine the
set of values for which the bound is achieved and show the periodicity of the set. We prove
a congruential identity for the corresponding generating function. Our approach gives an
alternative and transparent proof for some results derived recently by the second author
and extends them. We also propose a conjecture that implies a recursion for calculating
the 2-adic order of the lacunary sums for almost all values. A congruence in the style of
Lucas is proved for the lacunary sums considered.

1. Introduction

We define the lacunary binomial sum

Gn,l(k) =

bk/nc∑
t=0

(
k

l + nt

)
, (1)

with l : 0 ≤ l ≤ n − 1, and consider the situation where n = pm, p prime, m ≥ 1.
Lacunary sums arise naturally in combinatorial contexts and have been studied in the
past ([1], [2], [4], [5], [6], [8], [9], [10], and [11]). The p-adic order of Gpm,l(k) was explored
in [6]. For p > 2, the exact p-adic order of Gpm,l(k) was obtained using a theorem of
Stickelberger [4]. The 2-adic order of G2m,l(k) was found on select regular sequences of
values for k involving multiples of 2m−1 through use of the vertical generating function

gn,l(x) =
∞∑

k=0

Gn,l(k)xk =
xl(1− x)n−l−1

(1− x)n − xn
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(n ≥ 1 and l = 0, 1, . . . , n − 1) in combination with multisection techniques to prove
(among other results) that

ρ2 (G2m,l(k)) ≥
⌊

k

2m−1

⌋
− 1 (2)

for l = 0. Equality holds in (2) if k = c2m with l = 0 or 2m−1, or if k = c2m + l, c2m−1−1
with l = 0, 1, . . . , 2m−1. That equality is not always attained is verified by the result (also
proved in [6]) that ρ2 (G2m,0(k)) = 2

(⌊
k

2m−1

⌋
− 1

)
when k = (2c− 1)2m−1. In this paper,

we prove that (2) is true for all k and l (cf. remarks in Section 3), and we characterize
the necessary and sufficient conditions for equality (cf. corollary in Section 4).

Our primary focus is (1 + x)k mod (x2m − 1) since the horizontal generating function∑2m−1
l=0 G2m,l(k)xl is obtained when (1 + x)k is reduced mod (x2m − 1) according to the

congruence
2m−1∑
l=0

G2m,l(k)xl ≡ (1 + x)k mod (x2m − 1).

Our main result is the theorem to be found in Section 3, wherein we identify the common
power of 2 in the coefficients of (1+x)k mod (x2m−1) for each value of k. After dividing
out by the common power, we further reduce mod 2, to obtain a congruential factorization
of the quotient into simple canonical factors based on the digits of the binary expansion
of k. Our proof is by induction on m, and ultimately relies on repeated substitution
of x2 for x in congruences of the form p(x) ≡ q(x) mod (x2m−1 − 1) to yield p(x2) ≡
q(x2) mod (x2m − 1) for polynomials p(x) and q(x).

Our approach is similar to some others used in analyzing congruential and divisibility
properties, and p-adic orders of binomial coefficients [4]. In particular, a result by Lucas
[7] states that (

k

l

)
≡

(
ε0

γ0

)(
ε1

γ1

)
· · ·

(
εd

γd

)
mod p,

where k = ε0 + ε1p + . . . + εdp
d and l = γ0 + γ1p + . . . + γdp

d in prime base p. To set
a context for our result, in Section 2 we prove congruence (3) for Gpm,l(k), p ≥ 2, à la
Lucas [7], and explain why the congruence trivializes in the case of G2m,l(k), thus leaving
a gap that the corollary, in some sense, fills.

2. A congruence for Gpm,l(k), p > 2

Because we will be reducing polynomials mod p and mod (xpm − 1), both for p = 2
and p > 2, followed by a further reduction mod (p, xpm − 1), we begin by briefly
explaining what we mean in each case. A polynomial s(x) ∈ Z[x] is reduced to r1(x)
mod p if s(x) = pq1(x) + r1(x) where q1(x), r1(x) ∈ Z[x] and the coefficients of r1(x) are
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restricted to the values 0, 1, . . . , p− 1. The polynomial s(x) is reduced to pq2(x) + r2(x)
mod (xpm−1) and to r2(x) mod (p, xpm−1) if s(x) =

(
xpm − 1

)
q3(x)+pq2(x)+r2(x) where

q2(x), q3(x), r2(x) ∈ Z[x], deg(q2(x)), deg(r2(x)) < pm, and the coefficients of r2(x) are
restricted to the values 0, 1, . . . , p − 1. Two polynomials are in the same congruence
class if they reduce under the congruence modulus to the same polynomial. These define
ring homomorphisms between Z[x] → Zp[x] → Zp[x]/

〈
xpm − 1

〉
and between Z[x] →

Z[x]/
〈
xpm − 1

〉
→ Zp[x]/

〈
xpm − 1

〉
allowing us in each case to safely sequentially reduce.

We proceed by obtaining a Lucas-type result by a “Fine-styled” [3] argument. Let
k = ε0 + ε1p + . . . + εdp

d in base p. Kummer’s carry counting shows that p|
(

p
l

)
if and

only if l 6= 0, p, which immediately implies (1 + x)p ≡ 1 + xp mod p, and after inducting
on m, that (1 + x)pm ≡ 1 + xpm

mod p. Thus,

(1 + x)k ≡ (1 + x)ε0(1 + xp)ε1(1 + xp2

)ε2 . . . (1 + xpd

)εd ≡
d∏

j=0

(1 + xpj

)εj mod p.

Now, by further reducing mod (p, xpm−1), we use the fact that 1+xpj ≡ 2 mod (p, xpm−
1) for j ≥ m to conclude that

(1 + x)k ≡
(

d∏
j=m

(1 + xpj
)εj

) (
m−1∏
j=0

(1 + xpj
)εj

)
mod p

≡ 2εm+εm+1+...+εd

m−1∏
j=0

(
εj∑

γj=0

(
εj

γj

)
xγjpj

)
mod(p, xpm − 1)

≡ 2εm+εm+1+...+εd

pm−1∑
l=0

(
d∏

j=0

(
εj

γj

))
xl mod(p, xpm − 1)

where l = γ0 + γ1p + . . . + γdp
d ≤ pm − 1. After noting that

pm−1∑
l=0

Gpm,l(k)xl ≡ (1 +

x)k mod (xpm − 1) and using Fermat’s little theorem, we immediately arrive at the

Lemma (à la Lucas). For p > 2 and prime, and for k = ε0 + ε1p + . . . + εdp
d and

l = γ0 + γ1p + . . . + γm−1p
m−1 in base p,

Gpm,l(k) ≡ 2εm+εm+1+...+εd

(
ε0

γ0

)(
ε1

γ1

)
· · ·

(
εm−1

γm−1

)
≡ 2bk/pmc

(
k′

l

)
mod p (3)

where k′ is the least nonnegative remainder of k when divided by pm.

The lemma also can be proved by reducing all of the terms of (1) by applying Lucas’
theorem and after factoring out

(
k′

l

)
, summing the quotients to get the other factor in

(3). This idea was extended in the proof of Theorem 1 in [6].

We exclude p = 2, not because the lemma fails in this case, but because the power of
2 trivializes the identity to G2m,l(k) ≡ 0 mod 2 as soon as k ≥ 2m.

Note that [6, page 3] provides an alternative congruence mod pm+1 for Gp,l(cp
m +

i), 0 ≤ i < l ≤ p− 1, m ≥ 1.
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3. A congruential identity for (1 + x)k, p = 2

Were we to devise a nontrivial result along the lines of Lucas for the case 2m follow-
ing an argument in the style of Fine, for each k we would first need to factor out the
common power of 2 in (1 + x)k mod (x2m − 1), and then consider the remaining factor
mod(2, x2m − 1) as we do in the following

Theorem. For m ≥ 1 and k ≥ 2m−1, 2bk/2m−1c−1|(1+x)k mod (x2m−1). Furthermore,
for m = 1 and k ≥ 1: (1 + x)k ≡ 2k−1(1 + x) mod (x2 − 1). For m ≥ 2 and k ≥ 1, if
k = ε0 + 2ε1 + 4ε2 + . . . + 2m−1εm−1 + 2mq with 0 ≤ ε0, ε1, . . . , εm−1 ≤ 1 then:

1. when q = 0 (i.e., 1 ≤ k < 2m):

(1 + x)k ≡ (1 + ε0x)(1 + ε1x
2)(1 + ε2x

4) . . . (1 + εm−2x
2m−2

)(1 + εm−1x
2m−1

) mod 2,

2. when q > 0 (i.e., k ≥ 2m):

(1 + x)k ≡
≡ 2bk/2m−1c−1(1 + ε0x)(1 + ε1x

2)(1 + ε2x
4) . . .

. . . (1 + εm−2x
2m−2

)x2m−2εm−1(1 + x2m−1
) mod(2bk/2m−1c, x2m − 1).

(4)

Remarks. Before presenting the proof, we first note that the theorem instantly implies
that ρ2 (G2m,l(k)) ≥

⌊
k

2m−1

⌋
−1. Second, we wish to draw the reader’s attention to the last

three factors in congruence (4) that, when combined, break the regular pattern followed
by the preceding factors of lower degree, and thus, play a significant role in determining
the conditions under which equality is reached, as will be explored in the corollary in the
next section.

Proof. We cover the case m = 1 with the preliminary

Claim 0. (1 + x)k ≡ 2k−1(1 + x) mod (x2 − 1), for k ≥ 1.

Proof. Note that (1 + x)2 ≡ 2(1 + x) mod (x2 − 1) and induct. ¤

The case when q = 0 easily follows because in this case, if k ≥ 2m−1 then 2bk/2m−1c−1 = 1,
and for p ≥ 0, (1+x)2p ≡ 1+x2p

mod 2. For the case when q > 0, we proceed by induction
on m.

BASE STEP: We begin by establishing the result for m = 2 (i.e., mod(x4 − 1)).

Claim 1. 2bk/2c−1|(1 + x)k mod (x4 − 1), for k ≥ 4.
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Proof. Let k = ε0 + 2ε1 + 4q and let r =
⌊

k
2

⌋
= ε1 + 2q. Then

(1 + x)2r = [(1 + x2) + 2x]
r

= (2x)r +
r∑

t=1

(
r
t

)
(1 + x2)t(2x)r−t

≡ 2rxr +
r∑

t=1

(
r
t

)
2t−1(1 + x2)2r−txr−t mod(x4 − 1)

≡ 2rxr + 2r−1(1 + x2)

[
r∑

t=0

(
r
t

)
xr−t − xr

]
mod(x4 − 1)

≡ 2r−1 [xr(1− x2) + (1 + x2)(1 + x)r] mod(x4 − 1)

where, in the first congruence of the sequence, Claim 0 was used with x2 replacing x.
Thus 2r−1 divides (1 + x)k when reduced mod(x4 − 1). ¤

From now on, for notational convenience only, we move the power of 2 to the left.

Claim 2. 2−bk/2c+1(1+x)k ≡ (1+ε0x)xε1(1+x2) mod (2, x4−1) for k ≥ 4 (i.e., q ≥ 1).

Proof. Continuing with the previous congruence,

2−r+1(1 + x)2r≡ xr(1− x2) + (1 + x2)(1 + x)r mod(x4 − 1)
≡ xε1+2q(1− x2) + (1 + x2)(1 + x)ε1+2q mod(x4 − 1)
≡ xε1 [x2q(1− x2)] + (1 + x)ε1

[
(1 + x2) ((1 + x)2)

q]
mod(x4 − 1)

≡ xε1(x2q + x2q+2)+(1 + x)ε1

[
(1 + x2)2 ((1 + x)2)

q−1
]

mod(2, x4 − 1)

(recall that q ≥ 1)
≡ xε1(1 + x2) mod(2, x4 − 1)

Finish by multiplying both sides by (1 + x)ε0 = 1 + ε0x. ¤

INDUCTION STEP: We assume the theorem true for m− 1 (i.e., mod(x2m−1 − 1))
and prove it true for m (i.e., mod(x2m − 1)), m ≥ 3.

Claim 3. Under the induction hypothesis, 2bk/2m−1c−1|(1 + x)k mod (x2m − 1), for
k ≥ 2m (i.e., q ≥ 1).

Proof. Let k = ε0 + 2ε1 + 4ε2 + . . . + 2m−1εm−1 + 2mq and r =
⌊

k
2m−1

⌋
= εm−1 + 2q.

Then,

(1 + x)2m−1r =
[
(1 + x2) + 2x

]2m−2r
=

2m−2r∑
t=0

(
2m−2r

t

)
(1 + x2)t(2x)2m−2r−t.

Now, from the induction hypothesis, 2bt/2m−2c−1|(1 + x2)t mod (x2m − 1), by replacing

x with x2, so 22m−2r−t+bt/2m−2c−1 is a factor of the tth term of the sum, which takes
on the minimum value of 2r−1 at t = 2m−2r and t = 2m−2r − 1. Thus, 2r−1|(1 +
x)2m−1r mod (x2m − 1) and the claim follows. ¤
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Claim 4. Under the induction hypothesis, 2−bk/2m−1c+1(1+x)k ≡ (1+ε0x)(1+ε1x
2)(1+

ε2x
4) · · · (1 + εm−2x

2m−2
)x2m−2εm−1(1 + x2m−1

) mod (2, x2m − 1), for k ≥ 2m (i.e., q ≥ 1).

Proof. Multiply both sides of the equation in Claim 3 by 2−r+1 = 2−εm−1−2q+1 and
reduce mod(x2m − 1) to get

2−r+1(1 + x)2m−1r ≡
2m−2r−2∑

t=0

(
2m−2r

t

)
[2−r+1(1 + x2)t] (2x)2m−2r−t+

+
(

2m−2r
2m−2r−1

) [
2−r+1(1 + x2)2m−2r−1(2x)

]
+

(
2m−2r
2m−2r

) [
2−r+1(1 + x2)2m−2r

]
mod (x2m − 1)

≡ 2−r+1(1 + x2)2m−2r mod(2, x2m − 1)
(all terms but the last are even)

≡ 2−εm−1−2q+1(1 + x2)2m−2εm−1+2m−1q mod(2, (x2)2m−1 − 1)

≡ (x2)2m−3εm−1(1 + (x2)2m−2
) mod(2, (x2)2m−1 − 1)

(applying induction hyp. with x2 replacing x)

≡ x2m−2εm−1(1 + x2m−1
) mod(2, x2m − 1)

Finish by multiplying both sides by (1+x)ε0+2ε1+4ε2+...+2m−2εm−2 ≡ (1+ε0x)(1+ε1x
2)(1+

ε2x
4) . . . (1 + εm−2x

2m−2
) mod 2. ¤

This truly concludes our proof of the theorem. ¤

4. A note, a corollary, and a conjecture

We conclude the paper with some comments, our primary application with consequences,
and a conjecture.

Note. By replacing each instance of x with the 2m × 2m forward shift permutation
matrix

E = circ[0, 1, 0, . . . , 0] =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
· · · · · · · ·
0 0 0 · · · 0 1
1 0 0 · · · 0 0


and observing that Et 6= I for t < 2m while E2m

= I, the theorem translates to modulo
2 congruential matrix identities for (I + E)k after removing the elementwise common
power of 2 [11]. (In fact, if C is the ring of 2m × 2m circulant matrices with integer
coefficients, then C ∼= Z[x]/

〈
x2m − 1

〉
, the isomorphism being A 7−→ pA(x), where pA(x)

is the auxiliary polynomial associated with the circulant matrix A.)

Corollary. For m ≥ 1, 0 ≤ l < 2m, k ≥ 2m−1, we have ρ2(G2m, l(k)) ≥
⌊

k
2m−1

⌋
− 1,

where Gn,l(k) is as in (1). Furthermore, if

k = ε0 + 2ε1 + 4ε2 + . . . + 2m−1εm−1 + 2mq
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and
l = γ0 + 2γ1 + 4γ2 + . . . + 2m−1γm−1

with 0 ≤ εi, γi ≤ 1, then

1. when q = 0, equality holds if and only if εi ≥ γi, i = 0, 1, . . . , m − 1, i.e., if and
only if l, k − l ≥ 0 have no carries when added.

2. when q > 0, equality holds if and only if εi ≥ γi, i = 0, 1, . . . , m − 3, and γm−2 +
γm−1 ≥ εm−1 if εm−2 = 1 or γm−2 = εm−1 if εm−2 = 0. (In fact, these two
alternatives can be collapsed to −εm−2 ≤ εm−1 − γm−2 ≤ εm−2γm−1.)

Case 1 can be written as

G2m,l(k) ≡
(

ε0

γ0

)(
ε1

γ1

)
· · ·

(
εm−1

γm−1

)
mod 2,

while Case 2 can be partially represented by a similar form in line with congruence (4).

The proof of the corollary depends on using the theorem from Section 3 to determine

the powers of 2−bk/2m−1c+1(1 + x)k mod (2, x2m − 1) with nonzero coefficients. This is
easily done, except perhaps when taking into account the last three factors in congruence
(4). To handle these factors, one can simply but painstakingly check for all possible
assignments of 0 and 1 to εm−2, εm−1, γm−2, and γm−1.

Note. The second case in the corollary with l = 0, k ≥ 2m, gives an instant proof of
Conjecture 1 in [6]: the lower bound is achieved in (2) for 75% of the k values. Similarly,
Conjectures 2 and 3 hold for the very same values.

Conjecture. The same process as above can be used to get a recursion for the lacunary
binomial sums G2m,l(k) themselves. We argue as follows:

(1 + x)2q =
[
2x + (1 + x2)

]q
=

q∑
t=0

(
q

t

)
(2x)t(1 + x2)q−t

Thus,

2m−1∑
l=0

G2m,l(2q)x
l ≡

q∑
t=0

(
q
t

)
2txt

[
2m−1−1∑

u=0

G2m−1,u(q − t)(x2)u

]
mod((x2)2m−1 − 1)

≡
q∑

t=0

2m−1−1∑
u=0

(
q
t

)
2tG2m−1,u(q − t)xt+2u mod(x2m − 1)

One then matches the powers of x. The result differs slightly depending on the parity
of l. So, let l = 2j + ε where ε is 0 or 1. Then, G2m,l(2q) =

(
q
ε

)
2εG2m−1, j(q − ε) +(

q
ε+2

)
2ε+2G2m−1, j−1(q − ε − 2) +

(
q

ε+4

)
2ε+4G2m−1, j−2(q − ε − 4) + . . . where the second
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subscript of G is taken mod2m−1. We conjecture, supported by numerical evidence,
that for each m, ρ2(G2m,l(k)) is equal to the diadic order of the leading term of the
sum with a finite number of exceptions. Assuming the conjecture, we can find a simple
recursion for the diadic order of the lacunary binomial sums. For m > 2,

ρ2(G2m,2j+ε(2q)) =

{
ρ2(G2m−1, j(q)), if ε = 0,
ρ2(q) + 1 + ρ2(G2m−1, j(q − 1)), if ε = 1,

(5)

ρ2(G2m,l(2q + 1))

{
= min {ρ2(G2m, l−1(2q)), ρ2(G2m, l(2q))} , if the orders differ,
≥ ρ2(G2m, l(2q)) + 1, otherwise.

The base of the recursion is the following

ρ2(G4,l(k)) =

{
2
(⌊

k
2

⌋
− 1

)
, if k − 2l ≡ 2 mod 4,⌊

k
2

⌋
− 1, otherwise,

valid for k ≥ max {2, l}, as can easily be proved. Again, numerical evidence suggests that
for each n = 2m ≥ 4, the recursion (5) gives the exact diadic order of G2m,l(k) except
possibly for a finite number of small values for k where the recursion only gives a lower
bound.
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trigonométrique, suivant un module premier, Bull. Soc. Math. France 6(1878), 49–54.

[8] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.

[9] Z.-H. Sun and Z.-W. Sun, Fibonacci numbers and Fermat’s last theorem, Acta Arith. 60(1992),
371–388.

[10] Z.-W. Sun, On the sum
∑

k≡r (mod m)

(
n
k

)
and related congruences, Israel J. Math. 128(2002),

135–156.

[11] G. Tollisen and T. Lengyel, Averaging around the circle, manuscript, 2003.


