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Abstract

We define an infinite class of 2-pile subtraction games, where the amount that can be sub-
tracted from both piles simultaneously, is a function f of the size of the piles. Wythoff’s
game is a special case. For each game, the 2nd player winning positions are a pair of
complementary sequences, some of which are related to well-known sequences, but most
are new. The main result is a theorem giving necessary and sufficient conditions on f
so that the sequences are 2nd player winning positions. Sample games are presented,
strategy complexity questions are discussed, and possible further studies are indicated.

Keywords: 2-pile subtraction games, complexity of games, integer sequences

1. Introduction

We begin with an example. Given two piles of tokens (x, y) of sizes x, y, with 0 ≤ x ≤
y < ∞, two players alternate removing tokens from the piles according to the following
two rules. A player, at his turn, can choose precisely one of them, as he sees fit.

(a) Remove any positive number of tokens from a single pile, possibly the entire pile.

(b) Remove a positive number of tokens from each pile, say k, `, so that |k−`| isn’t too
large with respect to the position (x1, y1) moved to from (x0, y0), namely, |k− `| <
x1 + 1 (x1 ≤ y1).

The player making the move after which both piles are empty (a leaf of the game), wins;
the opponent loses. Thus, (11, 15) → (3, 4) or to (2, 4) are legal moves, but (11, 15) →
(2, 3) or to (0, 3) are not. The position (0, 0) is the only leaf of this and our following
games.

1http://www.wisdom.weizmann.ac.il/∼fraenkel
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Table 1. The first few P -positions for G1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 3 4 5 7 8 9 10 12 13 14 15 16 18 19 20

bn 0 2 6 11 17 25 34 44 55 68 82 97 113 130 149 169 190

For any acyclic combinatorial game without ties, such as G1, a position u = (x, y) is
labeled N (Next player win) if the player moving from u has a winning strategy; otherwise
it’s a P -position (Previous player win). Denote by P the set of all P -positions, by N the
set of all N -positions, and by F (u) the set of all game positions that are reachable from
u in a single move. It is easy to see that for any acyclic game,

u ∈ P if and only if F (u) ⊆ N , (1)

u ∈ N if and only if F (u) ∩ P 6= ∅ . (2)

Indeed, player I, beginning from an N -position, will move to a P -position, which exists
by (2), and player II has no choice but to go to an N -position, by (1). Since the game
is finite and acyclic, player I will eventually win by moving to a leaf, which is clearly a
P -position.

The partitioning of the game’s positions into the sets P and N is unique for every
acyclic combinatorial game without ties.

Let Z denote the set of integers. Let S ⊂ Z≥0, S 6= Z≥0, and S = Z≥0 \ S. The
minimum excluded value of S is

mexS = minS = least nonnegative integer not in S.

Note that mex of the empty set is 0.

Table 1 portrays the first few P -positions (an, bn) of G1. The reader is encouraged
to verify that the first few entries of the table are indeed P -positions of the game. For a
technical reason we put b−1 = −1. In §4 we prove, as a simple corollary to a considerably
more general result,

Theorem 1. For G1, P = ∪∞i=0(ai, bi), where, for all n ∈ Z≥0,

an = mex
{
{ai : 0 ≤ i < n}

⋃
{bi : 0 ≤ i < n}

}
, (3)

bn = bn−1 + an + 1. (4)
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Table 2. The first few P -positions for G2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 3 4 5 7 9 11 12 13 15 16 17 19 20 21 23

bn 0 2 6 8 10 14 18 22 24 26 30 32 34 38 40 42 46

Table 3. The first few P -positions for G3.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 3 4 5 7 8 9 10 12 13 14 15 16 17 18 19

bn 0 2 6 11 20 38 71 136 265 523 1036 2061 4110 8207 16400 32785 65554

The game G1 is a member of the following new family of combinatorial games defined
on two piles of finitely many tokens, with two types of moves: a move of type (a), and a
more general move of type (b), namely, |k− `| depends on the present and next position.
Denote the present position by (x0, y0) and the position moved to by (x1, y1). We then
require,

|(y0 − y1)− (x0 − x1)| = |(y0 − x0)− (y1 − x1)| < f(x1, y1, x0), (5)

where f is a real constraint function depending on x1, y1, x0. If also (y0−x0) ≥ (y1−x1),
then requirement (5) becomes y0 < f(x1, y1, x0)+y1−x1 +x0. The type (b) move defined
for G1 is the special case f = x1 + 1. Here are descriptions of two additional games.

G2 is the same as G1, except that in (b), |k−`| < x1+1 is replaced by |k−`| < x0−x1.

G3 is the same as G1, except that in (b), |k − `| < x1 + 1 is replaced by |k − `| <
y1 − x1 + 1.

The first few P -positions for G2 and G3 are listed in Tables 2 and 3 respectively. In
§4 we also prove, as a corollary to the master theorem (Theorem 3),

Theorem 2. For G2 and G3, P = ∪∞i=0(ai, bi), where, for all n ∈ Z≥0, an is given by
(3). For G2: bn = 2an; and for G3: b0 = 0, and for n ∈ Z≥1, bn = an + 2n − 1.
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Each of our games is associated with a pair of complementary sequences

A = {ai}∞i=1, B = {bi}∞i=1.

A special case is the well-known (classical) Wythoff game [37]. See also [4], [5], [7], [8],
[13], [17], [18], [23], [24], [32], [33], [34], [38]. In fact, the classical Wythoff game is the case
f(x1, y1, x0) = 1, and the generalization considered in [17] is the case f(x1, y1, x0) = t for
any fixed t ∈ Z>0. Whereas the winning strategy of Wythoff’s game is associated with
sequences related to algebraic integers of the form (2− t+

√
t2 + 4)/2 (this is the golden

section when t = 1), our games give rise to an infinity of sequences, some well-known,
but mostly new ones.

In §2 we shall see that the pair of sequences of P -positions associated with G1 is
related to a “self-generating” sequence of Hofstadter (see Sloane [35]). In §3 we indicate
how the P -positions of G2 are related to another well-known sequence. The central result
appears in §4, where a general theorem is formulated and proved, that yields winning
strategies for a large class of 2-pile subtraction games. Roughly speaking it states that
for every 2-pile subtraction game, if its constraint function f is “positive”, “monotone”
and “semi-additive”, then it has P -positions (A,B), where an satisfies (3), and bn has an
explicit form depending on f . In a complementary proposition we show that positivity,
monotonicity and semi-additivity are also necessary, in the sense that if any one of them
is dropped, then there are constraint functions and their associated games G, such that
the positions claimed to be P -positions by the central result, are not P -positions for these
G. Theorems 1 and 2 are then deduced as simple corollaries of the central result. In §5
we give an assortment of sample games with their P -positions that can be produced from
the central theorem. Questions of complexity and related issues are discussed in §6. The
epilogue in §7 wraps up with some concluding remarks and indications for further study.

2. The Gödel, Escher, Bach Connection

On p. 73 of Hofstadter’s famous book [30] the reader is asked to characterize the following
sequence:

B′n≥0 = {1, 3, 7, 12, 18, 26, 35, 45, 56, . . .}.

Answer: the sequence {2, 4, 5, 6, 8, 9, 10, 11, . . .} constitutes the set of differences
of consecutive terms of B′n≥0, as well as the complement with respect to Z>0 of B′n≥0.
For our purposes it is convenient to preface 0 to the latter sequence, so we define

A′n≥0 = {0, 2, 4, 5, 6, 8, 9, 10, 11, . . .},
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which is the complement with respect to Z≥0 of B′n≥0. Now a′10 = mex{a′i, b′i : 0 ≤ i <
10} = 13, so b′10 = 56 + 13 = 69. We see that in general, for all n ∈ Z≥0,

a′n = mex
{
{a′i : 0 ≤ i < n}

⋃
{b′i : 0 ≤ i < n}

}
, (6)

which has the form (3), and

b′−1 = 1, b′n = b′n−1 + a′n, (7)

which is similar to (4). Moreover, the following proposition shows that there is a very
close relationship between the P -positions of the game G1 and Hofstadter’s sequence
B′n≥0, namely, b′n exceeds bn by 1. This can be observed by comparing the bottom row
of Table 1 with B′n≥0.

Proposition 1. a′n = an + 1 (n ≥ 1), b′n = bn + 1 (n ≥ 0), where a′n, b′n are given by
(6), (7) respectively, and an, bn by (3), (4) respectively.

Proof. We see that the assertions are true for small n. Suppose they hold for all i ≤ n.
Then

a′n+1 = mex{a′i, b′i : 0 ≤ i ≤ n} = mex{0, ai + 1, bi + 1 : 0 ≤ i ≤ n}.

Let S ′n = {0, ai + 1, bi + 1 : 0 ≤ i ≤ n}, Sn = {ai, bi : 0 ≤ i ≤ n}. If, say, the
integer interval [0, k] is in Sn for some k ∈ Z>0 and k + 1 6∈ Sn, then the integers in the
interval [0, k + 1] are in S ′n and k + 2 6∈ S ′n. It follows that mexS ′n = an+1 + 1. Also,
b′n+1 = b′n + a′n+1 = bn + 1 + an+1 + 1 = bn+1 + 1. 2

Thus the P -positions of G1 constitute an “offset by 1” of the Hofstadter sequence and
its complement.

3. Prouhet-Thue-Morse

It is not hard to see that the sequence An≥1 of G2 contains precisely all positive integers
whose binary representation ends in an even number of zeros. The sequence An≥1 is also
lexicographically minimal with respect to the property that the parity of the number of
1’s in the binary expansion alternates. Furthermore, it is lexicographically minimal with
respect to the property that the complement is the double of the sequence. If m appears
in A, then 2m appears in B. In particular, Bn≥1 contains precisely all positive integers
whose binary representation ends in an odd number of zeros [6]. The sequence

Cn = 0a1−a01a2−a10a3−a2 . . . 0a2n+1−a2n1a2n+2−a2n+1 . . .

= 011010011001011010010 . . . ,
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is the Prouhet-Thue-Morse sequence, which arises in many different areas of mathemat-
ics. See the charming paper [3], which also contains the sequence A, for many further
properties of these sequences.

4. A Master Theorem

The three previously described games G1, G2, G3, are members of an infinite family of
games that we now formulate. We will then provide a general winning strategy for this
family of games and prove its validity.

General 2-pile subtraction games

Given two piles of tokens (x, y) of sizes x, y, with 0 ≤ x ≤ y < ∞. Two players
alternate removing tokens from the piles:

(aa) Remove any positive number of tokens from a single pile, possibly the entire pile.

(bb) Remove a positive number of tokens from each pile, say k, `, so that |k− `| isn’t
too large with respect to the position (x1, y1) moved to from (x0, y0), namely, |k − `| <
f(x1, y1, x0); equivalently:

|(y0 − y1)− (x0 − x1)| = |(y0 − x0)− (y1 − x1)| < f(x1, y1, x0), (8)

where the constraint function f(x1, y1, x0) is integer-valued and satisfies:

• Positivity:
f(x1, y1, x0) > 0 ∀y1 ≥ x1 ≥ 0 ∀x0 > x1.

• Monotonicity:
x′0 < x0 =⇒ f(x1, y1, x

′
0) ≤ f(x1, y1, x0).

• Semi-additivity (or generalized triangle inequality) on the P -positions, namely: for
all n > m ≥ 0,

m∑
i=0

f(an−1−i, bn−1−i, an−i) ≥ f(an−m−1, bn−m−1, an).

The player making the move after which both piles are empty wins; the opponent loses.

In view of (8), positivity is a natural condition. Without positivity, a move of
type (bb) isn’t even possible. Monotonicity appears to be a minimal requirement to
enforce positivity. Semi-additivity is a convenient condition to have, and many func-
tions are semi-additive. Whereas positivity and monotonicity are defined on any game
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positions, semi-additivity is defined on the candidate P -positions. All three conditions
are applied to P -positions. If all three are satisfied, then the candidates are indeed
P -positions, as enunciated in Theorem 3 below. The function f depends on three inde-
pendent variables x1, y1, x0 or an−1, bn−1, an, and the dependent variable bn — so that
(an, bn) ∈ P — is then computed by f .

Note that G1, G2, G3 clearly satisfy positivity and monotonicity; G1 and G3, in
whose functions f there is no an, are clearly semi-additive; and G2 is semi-additive with
equality. (See also the proof of Theorems 1 and 2 at the end of this section.)

Theorem 3. Let S = ∪∞i=0(ai, bi), where, for all n ∈ Z≥0, an is given by (3), b0 = 0, and
for all n ∈ Z>0,

bn = f(an−1, bn−1, an) + bn−1 + an − an−1. (9)

If f is positive, monotone and semi-additive, then S is the set of P -positions of a general
2-pile subtraction game with constraint function f , and the sequences A, B share the
following common features: (i) they partition Z≥1; (ii) bn+1 − bn ≥ 2 for all n ∈ Z≥0;
(iii) an+1 − an ∈ {1, 2} for all n ∈ Z≥0.

Proof. The definition of an implies directly,

an > an−1 (10)

for all n ∈ Z>0. ¿From (9) we have, for all n ∈ Z>0,

bn − bn−1 = f(an−1, bn−1, an) + an − an−1, (11)

bn − an = f(an−1, bn−1, an) + bn−1 − an−1. (12)

Now f(a0, b0, a1) > 0 by positivity, so b1 − b0 ≥ 2 by (10), (11). Hence we get, by
induction on n,

bn − bm ≥ 2 for all n > m ≥ 0. (13)

Similarly we get from (12),

bn − an > bm − am ≥ 0 for all n > m ≥ 0. (14)

Now A and B are complementary sets of integers, i.e., A ∪ B = Z≥1 (by (3)), and
A∩B = ∅. Indeed, if an = bm, then n > m implies that an is the mex of a set containing
bm = an, a contradiction to the mex definition; and 1 ≤ n ≤ m is impossible since

bm = f(am−1, bm−1, am) + bm−1 + am − am−1

≥ f(am−1, bm−1, an) + bn−1 + an − an−1

(by (10), (14) and monotonicity)

> an (by positivity).
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Since bn − bn−1 ≥ 2 for all n ≥ 1 by (13), and since A and B are complementary,

an − an−1 ∈ {1, 2} (15)

for all n ∈ Z>0. For the remainder of the proof it is useful to denote the set S defined in
the statement of the theorem by P ′. Also let N ′ = Z≥0 \ P ′. For showing that P ′ = P
and N ′ = N , it evidently suffices to show two things:

I. Every move from any (an, bn) ∈ P ′ results in a position in the complement N ′.

II. From every position (x, y) in the complementN ′, there is a move to some (an, bn) ∈
P ′.

(It is useful to note that these two conditions are also necessary: (1) implies that all
positions reachable in one move from a P -position are N -positions; whereas (2) shows
that at least one P -position is reachable in one move from an N -position.)

I. A move of type (aa) from (an, bn) ∈ P ′ has the form (x, bn) or (an, y) (x < an, y <
bn). Both are in N ′ since the sequences A and B are strictly increasing. Suppose there
is a move of type (bb): (an, bn)→ (aj, bj) ∈ P ′. Then j < n. Note that

|(bn − bj)− (an − aj)|
= |(bn − an)− (bj − aj)| = (bn − an)− (bj − aj)

by (14). By iterating (9) we have,

(bn − an)− (bj − aj)
= f(an−1, bn−1, an) + (bn−1 − an−1)− (bj − aj)
= f(an−1, bn−1, an) + f(an−2, bn−2, an−1)

+ (bn−2 − an−2)− (bj − aj)
...

=

n−j−1∑
i=0

f(an−i−1, bn−i−1, an−i) ≥ f(aj, bj, an),

where the inequality follows from semi-additivity. Thus

|(bn − bj)− (an − aj)| ≥ f(aj, bj, an),

contradicting condition (bb).

II. Let (x, y) ∈ N ′ (0 ≤ x ≤ y). Since A and B are complementary, every n ∈ Z>0

appears exactly once in exactly one of A and B. Therefore we have either x = bn or else
x = an for some n ≥ 0.
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(i) x = bn. Then move y → an. This is always possible since if n = 0, then y > a0 = b0;
whereas an < bn for n ≥ 1 by (14).

(ii) x = an. If y > bn, move y → bn. So suppose that an ≤ y < bn. Then n ≥ 1. For
any m ∈ {0, . . . , n− 1} we have by (9) and by monotonicity,

(bm+1 − am+1)− (bm − am) = f(am, bm, am+1)

≤ f(am, bm, an).

Thus bm − am + f(am, bm, an) ≥ bm+1 − am+1. Therefore the intervals [bm − am, bm −
am + f(am, bm, an)) (closed on the left, open on the right) cover Z≥0 for m ≥ 0. Hence

y − an ∈ [bm − am, bm − am + f(am, bm, an)) (16)

for a smallest m ∈ Z≥0. We then move (x, y)→ (am, bm). This move is legal, since:

• m < n. Indeed, y−an < bn−an = f(an−1, bn−1, an) + bn−1−an−1. Thus m ≤ n−1
by (16).

• y > bm. By (16), y − an ≥ bm − am. Hence y − bm ≥ an − am > 0.

• The move satisfies (bb):

|(y − bm)− (x− am)| = |(y − an)− (bm − am)|
= (y − an)− (bm − am)

where the last equality follows from (16) and our choice of m. We thus have
|(y − an)− (bm − am)| = (y − an)− (bm − am) < f(am, bm, an) by (16). 2

We now show that if any of the three conditions of Theorem 3 is dropped, then there
are games for which its conclusion fails.

Proposition 2. There exist 2-pile subtraction games with constraint functions f which
lack precisely one of positivity, monotonicity or semi-additivity, such that S 6= P, where
S = ∪∞i=0(ai, bi), and ai satisfies (3) (i ∈ Z≥0); b0 = 0, bi satisfies (9) (i ∈ Z>0).

Proof. Consider the function f(x1, y1, x0) = (x0 − x1)2. It is clearly positive and mono-
tone. However, (an − an−1)2 + (an−1 − an−2)2 < (an − an−2)2, no matter whether
an − an−1 = an−1 − an−2 = 1 or otherwise, so f is not semi-additive. From (9) we
get, bn = bn−1 + (an − an−1)(an − an−1 + 1), where an satisfies (3). The first few values
of (an, bn) are depicted in Table 4. Note that these are not P -positions: we can move
(an, bn)→ (ai, bi) in many ways; e.g., (4, 10)→ (0, 0) satisfies (bb).

The function f(x1, y1, x0) = b(x1 + 1)/x0c+ 1 is positive. Since(⌊
an−1 + 1

an

⌋
+ 1

)
+

(⌊
an−2 + 1

an−1

⌋
+ 1

)
>

⌊
an−2 + 1

an

⌋
+ 1 = 1,
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Table 4. The first few values of S for f = (x0 − x1)2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 3 4 5 6 7 9 11 13 15 17 18 19 20 21 23

bn 0 2 8 10 12 14 16 22 28 34 40 46 48 50 52 54 60

Table 5. The first few values of S for f = b(x1 + 1)/x0c+ 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23

bn 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

it is also semi-additive. But it is not monotone. From (9), bn = bn−1 − an−1 + an +
b(an−1 + 1)/anc+ 1. The first few values of S = ∪∞n=0(an, bn) are shown in Table 5. The
game-position (4, 7) 6∈ S, but it cannot be moved into S. Hence S 6= P . (Incidentally,
note that the sequence B consists of all nonnegative multiples of 3.)

Lastly, consider f(x1, y1, x0) = (1 + (−1)y1+1)x1/2. We see easily that f is semi-
additive, and it’s trivially monotone. But whenever y1 is even, f is not positive. We
have, bn = an + bn−1 −

(
1 + (−1)bn−1

)
an−1/2. Table 6 shows the first few S-positions.

These are not P -positions: The position (10, 29) 6∈ S, cannot be moved into any position
in S. 2

Table 6. The first few values of S for f =
(
1 + (−1)y1+1

)
x1/2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 2 4 5 6 8 9 10 11 14 15 16 17 18 19 20

bn 0 1 3 7 12 13 21 30 31 42 45 60 61 78 79 98 99
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Table 7. The first few values of S for f = x1 − b(x1 + 1)/x0c+ 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 3 4 5 6 8 9 10 11 13 14 15 16 17 19 20

bn 0 2 7 12 18 25 35 45 56 68 83 98 114 131 149 170 191

Proof of Theorems 1 and 2. The function f(x1, y1, x0) = x1 + 1 is clearly positive.
Monotonicity is satisfied trivially. It’s also clear that f is semi-additive. The function
f(x1, y1, x0) = x0 − x1 is positive, since x0 > x1. It’s also monotone. Since (an+1 −
an) + (an − an−1) = an+1 − an−1, we see that f is semi-additive. Finally, the function
f(x1, y1, x0) = y1 − x1 + 1 is positive for all x1 ≤ y1 and is trivially monotone. It’s also
semi-additive. Thus by Theorem 3 we have for G1, bn = an−1 + 1 + bn−1 − an−1 + an =
bn−1 +an+1, as stated in Theorem 1. For G2, (9) implies, bn = an−an−1 + bn−1−an−1 +
an = 2an − 2an−1 + bn−1 = 2an, where the last equality follows by induction on n. For
G3, bn = bn−1 − an−1 + 1 + bn−1 − an−1 + an = 2(bn−1 − an−1) + an + 1 = an + 2n − 1.
Again the last equality follows by induction. 2

5. Further Sample Games

For the examples below, we leave it to the reader to verify positivity, monotonicity and
semi-additivity of f . Some of these examples are elaborated on in the next two sections.

Example 1. f(x1, y1, x0) = x1 − b(x1 + 1)/x0c + 2. Then bn = bn−1 + an − b(an−1 +
1)/anc+ 2. The first few P -positions are depicted in Table 7.

Example 2. f(x1, y1, x0) = x0− x1 + 2. Then bn = bn−1 + 2(an− an−1 + 1) = 2(an +n).
See Table 8 for the first few P -positions.

Example 3. f(x1, y1, x0) = (−1)y1−(−1)x1 +3. Then bn = bn−1−an−1 +an+(−1)bn−1−
(−1)an−1 + 3. See Table 9 for the first few P -positions.

Example 4. f(x1, y1, x0) = x1 (1 + (−1)x1)+1. This leads to bn = bn−1+(−1)an−1an−1+
an + 1. Table 10 exhibits the first few P -positions.
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Table 8. The first few values of S for f = x0 − x1 + 2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 2 3 5 6 7 9 10 11 13 14 15 16 17 19 20

bn 0 4 8 12 18 22 26 32 36 40 46 50 54 58 62 68 72

Table 9. The first few values of S for f = (−1)y1 − (−1)x1 + 3.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 2 3 5 6 7 8 9 11 12 13 15 16 17 18 19

bn 0 4 10 14 21 25 27 31 33 38 44 48 55 59 61 65 67

Table 10. The first few values of S for f = x1 (1 + (−1)x1) + 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

an 0 1 3 4 6 8 9 10 11 12 13 14 15 16 17 19 20

bn 0 2 5 7 18 33 42 44 66 68 94 96 136 138 172 175 177



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 4 (2004), #G06 13

6. Computational Complexity Issues

What is the computational complexity of computing the winning strategy for our games?
Given a position (x, y) with 0 ≤ x ≤ y < ∞, the statement of Theorem 3 enables us to
compute the table of P -positions. It suffices to compute it up to the smallest n = n0 such
that an0 ≥ x, and thus determine whether (x, y) ∈ P or in N . The proof of Theorem 3
then enables us, if (x, y) ∈ N , to make a winning move to a position in P . The latter
part of the strategy, that of making a winning move, is clearly polynomial. The first
part, determining whether or not (x, y) ∈ P is linear in x, since an0 ≤ 2x by (15).

Our games, however, are succinct , i.e., the input size is Ω(log x) rather than Ω(x)
(assuming that y is bounded by a polynomial in x). Thus their complexity isn’t obvious
a priori. Even if the sequence B grows exponentially, polynomiality of the strategy
doesn’t necessarily follow. For example, I don’t know whether the sequence B of G3 can
be computed polynomially.

Special sequences are known to be computable polynomially. For example, consider
the numeration system with bases defined by the recurrence un = (s + t − 1)un−1 +
sun−2 (n ≥ 1), where s, t ∈ Z>0, with initial conditions u−1 = 1/s, u0 = 1. It follows from
[19] that every positive integer N has a unique representation of the form N =

∑
i≥0 diui,

with digits di ∈ {0, . . . , s + t− 1}, such that di+1 = s + t− 1 =⇒ di < s for all i ∈ Z≥0.
The representation of the first few entries for the special case s = 2, t = 2, is depicted in
Table 10.

If we compare Table 11 with Table 8, we might note the following two properties:

• All the an have representations ending in an even number of 0s, and all the bn have
representations ending in an odd number of 0s.

• For every (an, bn) ∈ P, the representation of bn is the “left shift” of the representa-
tion of an.

Thus (1, 4) of Table 8 has representation (1, 10), and (6, 22) has representation (12, 120):
10 is the “left shift” of 1, 120 the left shift of 12.

These properties hold, in fact, in general for Example 2, which is a member of another
family of sequences and games analyzed in [21]. They enable one to win in polynomial
time for that family.

However, we don’t even know whether there are NP-hard sequences. A case in point
is the infinite family of octal games [29], [4] ch. 4, even for the subfamily where there
are only finitely many nonzero octal digits. Some octal games have been shown to have
polynomial strategies, (see e.g., [27]), but the complexity of most is unknown.
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Table 11. Representation of the first few integers in a special numeration system.

50 14 4 1 n 14 4 1 n
2 0 3 31 1 1
2 1 0 32 2 2
2 1 1 33 3 3
2 1 2 34 1 0 4
2 1 3 35 1 1 5
2 2 0 36 1 2 6
2 2 1 37 1 3 7
2 2 2 38 2 0 8
2 2 3 39 2 1 9
2 3 0 40 2 2 10
2 3 1 41 2 3 11
3 0 0 42 3 0 12
3 0 1 43 3 1 13
3 0 2 44 1 0 0 14
3 0 3 45 1 0 1 15
3 1 0 46 1 0 2 16
3 1 1 47 1 0 3 17
3 1 2 48 1 1 0 18
3 1 3 49 1 1 1 19

1 0 0 0 50 1 1 2 20
1 0 0 1 51 1 1 3 21
1 0 0 2 52 1 2 0 22
1 0 0 3 53 1 2 1 23
1 0 1 0 54 1 2 2 24
1 0 1 1 55 1 2 3 25
1 0 1 2 56 1 3 0 26
1 0 1 3 57 1 3 1 27
1 0 2 0 58 2 0 0 28
1 0 2 1 59 2 0 1 29
1 0 2 2 60 2 0 2 30
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We mention very briefly other relevant complexities. They include Kolmogorov com-
plexity, subword complexity, palindrome complexity, and, we might add, squares com-
plexity. The subword complexity c(n) of a sequence S is the number of distinct words of
length n occurring in S. In [2], this notion is attributed to [14]. Surveys can be found in
[1], [15], [16]. The palindrome complexity p(n) of S is the number of distinct palindromes
of length n in S. See e.g., [12], [2]. Define the squares complexity s(n) of S as the number
of distinct squares of length n in S. Thus the result of [26] implies that there are binary
sequences for which s(2) = 2, s(4) = 1, s(2k) = 0 for all k > 2. There is also the notion
of program complexity [9], [10], [11] concerning the complexity of computing a sequence,
which is related to Kolmogorov complexity [31].

7. Epilogue

We have defined an infinite class of 2-pile subtraction games with two types of moves:
(aaa) remove any positive number from a single pile; (bbb) remove k > 0 from one pile,
` > 0 from the other. This move is restricted by the requirement |k − `| < f , where f
is a positive real-valued function. We have shown that a pair A, B of judiciously chosen
complementary sequences constitutes the set of P -positions if and only if f is monotone
and semi-additive.

As we have pointed out, the generalized Wythoff game [17] is a member of the family
of games considered here. It has the property that a polynomial strategy can be given by
using a special numeration system, and noting that the elements of A are characterized
by ending in an even number of 0s in that representation, and those of B are their left
shifts. A similar situation exists for G2, but with the standard binary representation as
numeration system. With the game in Example 2, an essentially different numeration
system (see [21]) can be associated to the same effect.

Further studies

1. With which games can we associate an appropriate numeration system so as to
establish a polynomial strategy?

2. Extend the games in a natural way to handle more than two piles. This seems
to be difficult for Wythoff’s game, for which I have a conjecture; see [20] §6(2), [28]
Problem 53, [22] §5, [36].

3. Compute the Sprague-Grundy function g for the games, which will enable to play
sums of games. For Wythoff’s game this is an as yet unsolved problem, though eventual
additive periodicity has been proved [13], [32].

4. Compute a strategy for the games when played in misère version, i.e., the player
making the last move loses. This is easy for Wythoff’s game. See [4], ch. 13.
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5. We have already mentioned the question of the polynomiality of the strategy. Is
there a 2-pile subtraction game that’s Pspace-complete?

6. Computation of complexities of P -positions sequences, such as Kolmogorov-,
program-, subword-, palindrome-, squares-complexities. For the sequence A of Exam-
ple 2, the subword complexity was computed in [25].

7. Make an about-face: begin with pairs of known complementary sequences, and
design matching 2-pile subtraction games.2
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