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Abstract

We establish parity theorems for statistics on the symmetric group Sn, the derangements
Dn, and the Catalan words Cn, giving both algebraic and bijective proofs. For the former,
we evaluate q-generating functions at q = −1; for the latter, we define appropriate sign-
reversing involutions. Most of the statistics involve counting inversions or finding the
major index of various words.
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1. Introduction

We’ll use the following notational conventions: N := {0, 1, 2, . . . }, P := {1, 2, . . . }, [0] :=
∅, and [n] := {1, . . . , n} for n ∈ P. Empty sums take the value 0 and empty products
the value 1, with 00 := 1. The letter q denotes an indeterminate, with 0q := 0, nq :=

1+ q + · · ·+ qn−1 for n ∈ P, 0!
q := 1, n!

q := 1q2q · · ·nq for n ∈ P, and
(

n
k

)
q

:= n!
q/k

!
q(n−k)!q

for n ∈ N and 0 � k � n. The binomial coefficient
(

n
k

)
is equal to zero if k is a negative

integer or if 0 � n < k.

Let ∆ be a finite set of discrete structures and I : ∆ → N , with generating function

G(I, ∆; q) :=
∑
δ∈∆

qI(δ) =
∑

k

|{δ ∈ ∆ : I(δ) = k}| qk. (1.1)

Of course, G(I, ∆; 1) = |∆|. If ∆+ := {δ ∈ ∆ : I(δ) is even} and ∆− := {δ ∈ ∆ : I(δ) is
odd}, then G(I, ∆;−1) = |∆+|−|∆−|. Hence if G(I, ∆;−1) = 0, the set ∆ is “balanced”
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with respect to the parity of I. For example, setting q = −1 in the binomial theorem,

(1 + q)n =
∑
S⊆[n]

q|S| =
n∑

k=0

(
n

k

)
qk, (1.2)

yields the familiar result that a finite nonempty set has as many subsets of odd cardinality
as it has subsets of even cardinality.

When G(I, ∆;−1) = 0 and hence |∆+| = |∆−|, it is instructive to identify an I−parity
changing involution of ∆. For the statistic |S| in (1.2), the map

S �→
{

S ∪ {1}, if 1 /∈ S;

S − {1}, if 1 ∈ S,

furnishes such an involution. More generally, if G(I, ∆;−1) = |∆+|− |∆−| = c, it suffices
to identify a subset ∆∗ of ∆ of cardinality |c| contained completely within ∆+ or ∆− and
then to define an I-parity changing involution on ∆ − ∆∗. The subset ∆∗ thus captures
both the sign and magnitude of G(I, ∆;−1). Evaluation of q-generating functions as in
(1.1) at q = −1 has yielded parity theorems for statistics on set partitions [9, 13], lattice
paths [10], domino arrangements [11], and Laguerre configurations [10].

Since each member of ∆ − ∆∗ is paired with another of opposite I-parity, we have
|∆| ≡ |∆∗| (mod 2). Thus, the I-parity changing involutions described above also yield
combinatorial proofs of congruences of the form an ≡ bn (mod 2). Shattuck [9] has, for
example, given such a combinatorial proof of the congruence

S(n, k) ≡
(

n − �k/2� − 1

n − k

)
(mod 2)

for Stirling numbers of the second kind, answering a question posed by Stanley [12, p.
46, Exercise 17b].

In §2 below, we establish parity theorems for several permutation statistics defined
on all of Sn, algebraically by evaluating q-generating functions at q = −1 and combi-
natorially by identifying appropriate parity changing involutions. In §3, we analyze the
parity of some statistics on Dn, the set of derangements of [n] (i.e., permutations of [n]
having no fixed points).

Shattuck and Wagner [10] derive a parity theorem for the number of inversions in
binary words of length n with k 1’s. In §4, we obtain comparable results for Cn, the set
of binary words of length 2n with n 1’s and with no initial segment containing more 1’s
than 0’s (termed Catalan words).

Recall that the inversion and major index statistics for a word w = w1w2 · · ·wm in
some alphabet are given by

maj (w) :=
∑

i∈D(w)

i, where D(w) := {1 ≤ i ≤ m − 1 : wi > wi+1},
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and

inv(w) := |{(i, j) : i < j and wi > wj}| .

2. Permutation Statistics

2.1 Some Balanced Permutation Statistics

Let Sn be the set of permutations of [n]. A function f : Sn → N is called a permuta-
tion statistic. Two important permutation statistics are inv and maj , which record the
number of inversions and the major index, respectively, of a permutation σ = σ1σ2 · · ·σn,
expressed as a word. The statistics inv and maj have the same q-generating function
over Sn: ∑

σ∈Sn

qinv(σ) = n!
q =

∑
σ∈Sn

qmaj (σ), (2.1)

[12, Corollary 1.3.10] and [1, Corollary 3.8].

Substituting q = −1 into (2.1) reveals that n!
−1 = 0 if n ≥ 2, and hence inv and

maj are both balanced if n ≥ 2. Interchanging σ1 and σ2 in σ = σ1σ2 · · ·σn ∈ Sn

changes the parity of both inv and maj and thus furnishes an appropriate involution.
Note that switching the elements 1 and 2 in σ changes the inv -parity, but not necessarily
the maj-parity.

Now express σ ∈ Sn in the standard cycle form

σ = (α1)(α2) · · · ,

where α1, α2, . . . are the cycles of σ, ordered by increasing smallest elements with each
cycle (αi) written with its smallest element in the first position. Let Sn,k denote the set
of permutations of [n] with k cycles and c(n, k) := |Sn,k|, the signless Stirling number of
the first kind. The c(n, k) are connection constants in the polynomial identities

q(q + 1) · · · (q + n − 1) =
n∑

k=0

c(n, k)qk. (2.2)

Setting q = −1 in (2.2) reveals that there are as many permutations of [n] with an
even number of cycles as there are with an odd number of cycles if n ≥ 2. Alterna-
tively, breaking apart or merging α1 and α2 as shown below, leaving the other cycles
undisturbed, changes the parity of the number of cycles:

α1 = (1 · · · 2 · · · ), . . . ↔ α1 = (1 · · · ), α2 = (2 · · · ), . . . .
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This involution also shows that the statistic recording the number of cycles of σ with
even cardinality is balanced if n ≥ 2.

Given σ = (α1)(α2) · · · , expressed in standard cycle form, let

w(σ) :=
∑

i

(i − 1)|αi|.

Edelman, Simion, and White [4] show that

∑
σ∈Sn

x|σ|qw(σ) =
n−1∏
i=0

(xqi + i), (2.3)

where |σ| denotes the number of cycles. Setting x = 1 in (2.3) yields

∑
σ∈Sn

qw(σ) =
n−1∏
i=0

(qi + i), (2.4)

another q-generalization of n!.

Setting q = −1 in (2.4) shows that the w statistic is balanced if n ≥ 2. Alternatively,
if the last cycle has cardinality greater than one, break off the last member and form
a 1-cycle with it; if the last cycle contains a single member, place it at the end of the
penultimate cycle.

2.2. An Unbalanced Permutation Statistic

Carlitz [2] defines the statistic inv c on Sn as follows: express σ ∈ Sn in standard cycle
form; then remove parentheses and count inversions in the resulting word to obtain
inv c(σ). As an illustration, for the permutation σ ∈ S7 given by 3241756, we have
inv c(σ) = 3, the number of inversions in the word 1342576.

Let

cq(n, k) :=
∑

σ∈Sn,k

qinvc(σ), (2.5)

where Sn,k is the set of permutations of [n] with k cycles. Then cq(n, 0) = δn,0, cq(0, k) =
δ0,k, and

cq(n, k) = cq(n − 1, k − 1) + (n − 1)qcq(n − 1, k), ∀n, k ∈ P, (2.6)

since n may go in a cycle by itself or come directly after any member of [n− 1] within a
cycle.
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Using (2.6), it is easy to show that

x(x + 1q) · · · (x + (n − 1)q) =
n∑

k=0

cq(n, k)xk. (2.7)

Setting x = 1 in (2.7) gives

cq(n) :=
n∑

k=0

cq(n, k) =
∑
σ∈Sn

qinvc(σ) =
n−1∏
j=0

(1 + jq). (2.8)

Theorem 2.1. For all n ∈ N ,

c−1(n) :=
∑
σ∈Sn

(−1)invc(σ) = 2�n/2�. (2.9)

Proof. Put q = −1 in (2.8) and note that

jq|q=−1 =

{
0, if j is even;

1, if j is odd.

Alternatively, with S+
n , S−

n denoting the members of Sn with even or odd inv c values,
respectively, we have c−1(n) = |S+

n | − |S−
n |. To prove (2.9), it thus suffices to identify a

subset S∗
n of S+

n such that |S∗
n| = 2�n/2� along with an inv c-parity changing involution of

Sn − S∗
n.

First assume n is even. In this case, the set S∗
n consists of those permutations express-

ible in standard cycle form as a product of 1-cycles and the transpositions (2i − 1, 2i),
1 ≤ i ≤ n/2. Note that S∗

n ⊆ S+
n with zero inv c value for each of its 2n/2 members.

Before giving the involution on Sn−S∗
n, we make a definition: given σ = (α1)(α2) · · · ∈

Sm in standard cycle form and j, 1 ≤ j ≤ m, let σ[j] be the permutation of [j] (in standard
cycle form) obtained by writing the members of [j] in the order as they appear within
the cycles of σ (e.g., if σ = (163)(25)(4)(7) ∈ S7 and j = 4, then σ[4] = (13)(2)(4) and
σ[7] = σ).

Suppose now σ ∈ Sn − S∗
n is expressed in standard cycle form and that i0 is the

smallest integer i, 1 ≤ i ≤ n/2, for which σ[2i] ∈ S2i − S∗
2i. Then it must be the case for

σ that

(i) neither 2i0 − 1 nor 2i0 starts a cycle, or

(ii) exactly one of 2i0 − 1, 2i0 starts a cycle with 2i0 − 1 and 2i0 not belonging to the
same cycle.
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Switching 2i0−1 and 2i0 within σ, written in standard cycle form, changes the inv c value
by one, and the resulting map is thus a parity changing involution of Sn − S∗

n.

If n is odd, let S∗
n ⊆ S+

n consist of those permutations expressible as a product of
1-cycles and the transpositions (2i, 2i + 1), 1 ≤ i ≤ n−1

2
. Switch 2i0 and 2i0 + 1 within

σ ∈ Sn −S∗
n, where i0 is the smallest i, 1 ≤ i ≤ n−1

2
, for which σ[2i+1] ∈ S2i+1 −S∗

2i+1.

The preceding parity theorem has the refinement

Theorem 2.2. For all n ∈ N ,

c−1(n, k) :=
∑

σ∈Sn,k

(−1)invc(σ) =

(�n/2�
n − k

)
, 0 ≤ k ≤ n. (2.10)

Proof. Set q = −1 in (2.7) to get

n∑
k=0

c−1(n, k)xk = x�n/2�(x + 1)�n/2� =
n∑

k=�n/2�

(�n/2�
n − k

)
xk.

Or let S±
n,k := Sn,k ∩S±

n and S∗
n,k := Sn,k ∩S∗

n. Then S∗
n,k ⊆ S+

n,k and its cardinality agrees
with the right-hand side of (2.10). The restriction of the map used for Theorem 2.1 to
Sn,k − S∗

n,k is again an involution and inherits the parity changing property.

Remark. The bijection of Theorem 2.2 also proves combinatorially that

c(n, k) ≡
(�n/2�

n − k

)
(mod 2), 0 � k � n, (2.11)

since off of a set of cardinality
(�n/2�

n−k

)
, each permutation σ ∈ Sn,k is paired with another

of opposite inv c-parity. The congruences in (2.11) can also be obtained by taking mod 2
the polynomial identities in (2.2) (cf. [12, p. 46, Exercise 17c]).

3. Some Statistics for Derangements

A permutation σ of [n] having no fixed points (i.e., i ∈ [n] such that σ(i) = i) is called
a derangement. Let Dn denote the set of derangements of [n] and dn := |Dn|. A typical
inclusion-exclusion argument gives the well known formula

dn = n!
n∑

k=0

(−1)k

k!
, ∀n ∈ N. (3.1)

Given σ ∈ Dn, express it in the form

σ = (α1)(α2) · · · ,

where α1, α2, . . . are the cycles of σ arranged as follows:
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(i) the cycles α1, α2, . . . are ordered by increasing second smallest elements;

(ii) each cycle (αi) is written with the second smallest element in the last position.

Garsia and Remmel [6] term this the ordered cycle factorization (OCF for brief) of σ.

Define the statistic inv o on Dn as follows: write out the cycles of σ ∈ Dn in OCF form;
then remove parentheses and count inversions in the resulting word to obtain inv o(σ).
As an illustration, for the derangement σ ∈ D7 given by 4321756, we have inv o(σ) = 3,
the number of inversions in the word 2314576.

The statistic inv o is due to Garsia and Remmel [6], who show that the generating
function

Dq(n) :=
∑

σ∈Dn

qinvo(σ) = n!
q

n∑
k=0

(−1)k

k!
q

, ∀n ∈ N, (3.2)

which generalizes (3.1).

Theorem 3.1. For all n ∈ N,

D−1(n) =

{
1, if n is even;

0, if n is odd.
(3.3)

Proof. Formula (3.3) is an immediate consequence of (3.2), for

n∑
k=0

(−1)kn!
q

k!
q

∣∣∣∣∣
q=−1

=
n∑

k=0

(−1)k

n∏
i=k+1

iq

∣∣∣∣∣
q=−1

= (−1)n−1n−1 + (−1)n,

as

j−1 =

{
0, if j is even;

1, if j is odd.

Alternatively, let σ = (α1)(α2) · · · ∈ Dn be expressed in OCF form, first assuming n is
odd. Locate the leftmost cycle of σ containing at least three members and interchange
the first two members of this cycle. Now assume n is even. If σ has a cycle of length
greater than two, proceed as in the odd case. If all cycles of σ are transpositions and
σ �= (1, 2)(3, 4) · · · (n − 1, n), let i0 be the smallest integer i for which the transposition
(2i − 1, 2i) fails to occur in σ. Switch 2i0 − 1 and 2i0 in σ, noting that 2i0 − 1 and 2i0
must both start cycles. Thus whenever n is even, every σ ∈ Dn is paired with another of
opposite inv o-parity except for (1, 2)(3, 4) · · · (n − 1, n), which has inv o value zero.

Now consider the generating function dq(n) resulting when one restricts inv to Dn,
i.e.,

dq(n) :=
∑

σ∈Dn

qinv(σ). (3.4)
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We have been unable to find a simple formula for dq(n) which generalizes (3.1) or a re-
currence satisfied by dq(n) that generalizes one for dn. However, we do have the following
parity result.

Theorem 3.2. For all n ∈ N,

d−1(n) = (−1)n−1(n − 1). (3.5)

Proof. Equivalently, we show that the numbers d−1(n) satisfy

d−1(n) = −d−1(n − 1) + (−1)n−1, ∀n ∈ P, (3.6)

with d−1(0) = 1. Let n � 2, σ = σ1σ2 · · ·σn ∈ Dn, and D∗
n ⊆ Dn consist of those

derangements σ for which σ1 = 2 and σ2 � 3. Define an inv -parity changing involution
f on Dn − D∗

n − {n12 · · ·n − 1} as follows:

(i) if σ2 � 3, whence σ1 � 3, switch 1 and 2 in σ to obtain f(σ);

(ii) if σ2 = 1, let k0 be the smallest integer k, 1 � k �
⌊

n−1
2

⌋
, such that σ2kσ2k+1 �=

(2k − 1)(2k); switch 2k0 and 2k0 + 1 if σ2k0 = 2k0 − 1 or switch 2k0 − 1 and 2k0 if
σ2k0 � 2k0 + 1 to obtain f(σ).

Thus,

d−1(n) :=
∑

σ∈Dn

(−1)inv(σ) =
∑

σ∈D∗
n∪{n12···n−1}

(−1)inv(σ). (3.7)

One can regard members σ of D∗
n as 2 followed by a derangement of [n− 1] since within

the terminal segment σ′ := σ2σ3 · · ·σn, we must have σ2 �= 1 and σk �= k for all k � 3.
Thus, ∑

σ′:σ∈D∗
n

(−1)inv(σ′) = d−1(n − 1),

from which ∑
σ∈D∗

n

(−1)inv(σ) = −d−1(n − 1), (3.8)

since the initial 2 adds an inversion. The recurrence (3.6) follows immediately from (3.7)
and (3.8) upon adding the contribution of (−1)n−1 from the singleton {n12 · · ·n−1}.

Now consider the generating function rq(n) resulting when one restricts maj to Dn,
i.e.,

rq(n) :=
∑

σ∈Dn

qmaj (σ). (3.9)

We were unable to find a simple formula for rq(n) which generalizes (3.1). Yet when
q = −1 we have
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Theorem 3.3. For all n ∈ N,

r−1(n) =

{
(−1)n/2, if n is even;

0, if n is odd.
(3.10)

Proof. First verify (3.10) for 0 � n � 3. Let n � 4 and D∗
n ⊆ Dn consist of those

derangements starting with 2143 when expressed as a word. We define a maj -parity
changing involution of Dn − D∗

n below. Note that for derangements of the form σ =
2143σ5 · · ·σn, the subword σ5 · · ·σn is itself a derangement on n − 4 elements. Thus for
n � 4,

r−1(n) :=
∑

σ∈Dn

(−1)maj (σ) =
∑

σ∈D∗
n

(−1)maj (σ) = r−1(n − 4),

which proves (3.10).

We now define a maj -parity changing involution f of Dn − D∗
n when n � 4. Let

σ = σ1σ2 · · ·σn ∈ Dn − D∗
n be expressed as a word. If possible, pair σ with σ′ = f(σ)

according to (I) and (II) below:

(I) first, if both σ1 �= 2 and σ2 �= 1, then switch σ1 and σ2 within σ to obtain σ′;

(II) if (I) cannot be implemented (i.e., σ1 = 2 or σ2 = 1) but σ3 �= 4 and σ4 �= 3, then
switch σ3 and σ4 within σ to obtain σ′.

We now define f for the cases that remain. To do so, consider Sσ := σ1σ2σ3σ4 ∩ [4],
where σ = σ1σ2 · · ·σn ∈ Dn − D∗

n is of a form not covered by rules (I) and (II) above.
We consider cases depending upon |Sσ|. If |Sσ| = 2 or if |Sσ| = 4, first multiply σ by
the transposition (34) and then exchange the letters in the third and fourth positions to
obtain σ′. This corresponds to the pairings

i) σ = a1b3 . . . 4 . . . ↔ σ′ = a14b . . . 3 . . . ;

ii) σ = 2ab3 . . . 4 . . . ↔ σ′ = 2a4b . . . 3 . . . ;

iii) σ = 2341 . . . ↔ σ′ = 2413 . . . ;

iv) σ = 4123 . . . ↔ σ′ = 3142 . . . ,

where a, b � 5.

If |Sσ| = 3, then pair according to one of six cases shown below where a � 5, leaving
the other letters undisturbed:

i) σ = 314a . . . ↔ σ′ = 41a3 . . . ;
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ii) σ = 234a . . . ↔ σ′ = 24a3 . . . ;

iii) σ = a123 . . . ↔ σ′ = 2a13 . . . ;

iv) σ = a142 . . . ↔ σ′ = 2a41 . . . ;

v) σ = 21a3 . . . 4 . . . ↔ σ′ = 214a . . . 3 . . . ;

vi) σ = a143 . . . 2 . . . ↔ σ′ = 2a43 . . . 1 . . . .

It is easy to verify that σ and σ′ have opposite maj -parity in all cases.

4. Statistics for Catalan Words

The Catalan numbers cn are defined by the closed form

cn =
1

n + 1

(
2n

n

)
, n ∈ N, (4.1)

as well as by the recurrence

cn+1 =
n∑

j=0

cjcn−j, c0 = 1. (4.2)

If one defines the generating function

f(x) =
∑
n�0

cnx
n, (4.3)

then (4.2) is equivalent to

f(x) = 1 + xf(x)2. (4.4)

Due to (4.2), the Catalan numbers enumerate many combinatorial structures, among
them the set Cn consisting of words w = w1w2 · · ·w2n of n 1’s and n 0’s for which no
initial segment contains more 1’s than 0’s (termed Catalan words). In this section, we’ll
look at two q-analogues of the Catalan numbers, one of Carlitz which generalizes (4.4)
and another of MacMahon which generalizes (4.1), when q = −1. These q-analogues
arise as generating functions for statistics on Cn.

If

C̃q(n) :=
∑

w∈Cn

qinv(w), (4.5)
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then

C̃q(n + 1) =
n∑

k=0

q(k+1)(n−k)C̃q(k)C̃q(n − k), C̃q(0) = 1, (4.6)

upon decomposing a Catalan word w ∈ Cn+1 into w = 0w11w2 with w1 ∈ Ck, w2 ∈ Cn−k

for some k, 0 � k � n, and noting that the number of inversions of w is given by

inv(w) = inv(w1) + inv(w2) + (k + 1)(n − k).

Taking reciprocal polynomials of both sides of (4.6) and writing

Cq(n) = q(
n
2)C̃q−1(n) (4.7)

yields the recurrence [5]

Cq(n + 1) =
n∑

k=0

qkCq(k)Cq(n − k), Cq(0) = 1. (4.8)

If one defines the generating function

f(x) =
∑
n�0

Cq(n)xn, (4.9)

then (4.8) is equivalent to the functional equation [3, 5]

f(x) = 1 + xf(x)f(qx), (4.10)

which generalizes (4.4).

Theorem 4.1. For all n ∈ N,

C−1(n) =

{
δn,0, if n is even;

(−1)
n−1

2 cn−1
2

, if n is odd.
(4.11)

Proof. Setting q = −1 in (4.10) gives

f(x) = 1 + xf(x)f(−x). (4.12)

Putting −x for x in (4.12), solving the resulting system in f(x) and f(−x), and noting
f(0) = 1 yields

f(x) =
∑
n�0

C−1(n)xn

=
(2x − 1) +

√
4x2 + 1

2x
= 1 +

∑
n�1

(−1)n−1 1

n

(
2n − 2

n − 1

)
x2n−1,
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which implies (4.11).

Alternatively, note that

C−1(n) = (−1)(
n
2)

∑
w∈Cn

(−1)inv(w),

by (4.5) and (4.7). So (4.11) is equivalent to

∑
w∈Cn

(−1)inv(w) =

{
δn,0, if n is even;

cn−1
2

, if n is odd.
(4.13)

To prove (4.13), let C+
n , C−

n ⊆ Cn consist of the Catalan words with even or odd inv
values, respectively, and C∗

n ⊆ Cn consist of those words w = w1w2 · · ·w2n for which

w2iw2i+1 = 00 or 11, 1 � i � n − 1. (4.14)

Clearly, C∗
n ⊆ C+

n with cardinality matching the right-hand side of (4.13). Suppose
w ∈ Cn −C∗

n and that i0 is the smallest index for which (4.14) fails to hold. Switch w2i0

and w2i0+1 in w. The resulting map is a parity changing involution of Cn − C∗
n, which

proves (4.13) and hence (4.11).

Another q-Catalan number arises as the generating function for the major index
statistic on Cn [8]. If

c̃q(n) :=
∑

w∈Cn

qmaj (w), (4.15)

then there is the closed form (see [5], [8, p. 215])

c̃q(n) =
1

(n + 1)q

(
2n

n

)
q

, ∀n ∈ N, (4.16)

which generalizes (4.1).

Theorem 4.2. For all n ∈ N,

c̃−1(n) =

(
n

�n/2�

)
. (4.17)

Proof. If n is even, then by (4.16),

c̃−1(n) = lim
q→−1

c̃q(n) = lim
q→−1

1

(n + 1)q

n−1∏
i=0

(2n − i)q

(n − i)q

=
n−2∏
i=0

i even

lim
q→−1

(
q2n−i − 1

qn−i − 1

)
=

n−2∏
i=0

i even

2n − i

n − i
=

n−2∏
i=0

i even

n − i/2

n/2 − i/2
=

(
n

n/2

)
,
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with the odd case handled similarly.

Alternatively, let C+
n , C−

n ⊆ Cn consist of the Catalan words with even or odd major
index value, respectively, and C∗

n ⊆ Cn consist of those words w = w1w2 · · ·w2n which
satisfy the following two requirements:

(i) one can express w as w = x1x2 · · ·xn, where xi = 00, 11, or 01, 1 � i � n;

(ii) for each i, xi = 01 only if the number of 00’s in the initial segment x1x2 · · ·xi−1

equals the number of 11’s. (A word in C∗
n may start with either 01 or 00.)

Clearly, C∗
n ⊆ C+

n and below it is shown that |C∗
n| =

(
n

�n/2�
)
. Suppose w = w1w2 · · ·w2n ∈

Cn − C∗
n and that i0 is the smallest integer i, 1 � i � n, such that one of the following

two conditions holds:

(i) w2i−1w2i = 10, or

(ii) w2i−1w2i = 01 and the number of 0’s in the initial segment w1w2 · · ·w2i−2 is strictly
greater than the number of 1’s.

Switching w2i0−1 and w2i0 in w changes the major index by an odd amount and the
resulting map is a parity changing involution of Cn − C∗

n.

We now show |C∗
n| =

(
n

�n/2�
)

by defining a bijection between C∗
n and the set Λ(n) of

(minimal) lattice paths from (0, 0) to (�n/2�, n − �n/2�). Given w = x1x2 · · ·xn ∈ C∗
n

as described in (i) and (ii) above, we construct a lattice path λw ∈ Λ(n) as follows. Let
j1 < j2 < . . . be the set of indices j, possibly empty and denoted S(w), for which xj = 01,
with j0 := 0. For s � 1, let step js in λw be a V (vertical step) if s is odd and an H
(horizontal step) if s is even.

Suppose now i ∈ [n]−S(w) and that t, t � 0, is the greatest integer such that jt < i.
If t is even, put a V (resp., H) for the ith step of λw if xi = 11 (resp., 00). If t is odd,
put a V (resp., H) for the ith step of λw if xi = 00 (resp., 11), which now specifies λw

completely. The map w �→ λw is seen to be a bijection between C∗
n and Λ(n); note that

S(w) corresponds to the steps of λw in which it either rises above the line y = x or
returns to y = x from above.

Note that the preceding supplies a combinatorial proof of the congruence 1
n+1

(
2n
n

)
≡(

n
�n/2�

)
(mod 2) for n ∈ N since off of a set of cardinality

(
n

�n/2�
)
, each Catalan word

w ∈ Cn is paired with another of opposite maj -parity.

Let Pn ⊆ Sn consist of those permutations σ = σ1σ2 · · ·σn avoiding the pattern 312,
i.e., there are no indices i < j < k such that σj < σk < σi (termed Catalan permutations).
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Knuth [7, p. 238] describes a bijection g between Pn and Cn in which

inv(σ) =

(
n

2

)
− inv(g(σ)), ∀σ ∈ Pn,

and hence

Cq(n) :=
∑

w∈Cn

q(
n
2)−inv(w) =

∑
σ∈Pn

qinv(σ). (4.18)

By (4.11) and (4.18), we then have the parity result

∑
σ∈Pn

(−1)inv(σ) =

{
δn,0, if n is even;

(−1)
n−1

2 cn−1
2

, if n is odd.
(4.19)

The composite map g−1 ◦ h ◦ g, where h is the involution establishing (4.13), furnishes
an appropriate involution for (4.19).
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