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Abstract

In this paper, we establish a formula expressing explicitly the general term of a linear recur-
rent sequence, allowing us to generalize the original result of J. McLaughlin [7] concerning
powers of a matrix of size 2, to the case of a square matrix of size m > 2. Identities concerning
Fibonacci and Stirling numbers and various combinatorial relations are derived.

1. Introduction

The main theorem of J. McLaughlin [7] states the following:

Theorem 1. Let A = ( CCL Z ) be a square matrix of order two, let T' = a + d be its trace,

and let D = ad — be be its determinant. Let
[n/2] "
_ - n—2i ( )
y—z( L)y )

Then, forn > 1,

A" = ( Yn — dyn—l byn—l ) . (2)
CYn—1 Yn — QYn—1

!Partially supported by the laboratory LAID3.
2Partially supported by the laboratory LATN.
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We remark that in this theorem, (y,),~ ; is a linear recurrent sequence that satisfies

Yy-1 = 07
Yo = 17 (3)
Yn = TYn_1 — Dy,_o for all integer n > 1.

By setting Ay = ( Lo

—d b .
0 1 ) and A; = ( . . ) , relation (2) of Theorem 1 may be

written as follows:
A" =y, Ay + yn_14; for all integers n > 0, (4)
with Ay = Iy and Ay = A — Tl (where [, is the unit matrix).

In Section 3, we extend this result (relation (4)) to any matrix A € M,, (A) of order
m > 2, A being a unitary commutative ring.

We prove the following result:
Let A€ M, (A) and let P(X) = X™ —¢; X™ ! —--- —a,,_1 X — a,, be the characteristic
polynomial of A. Let Ay, Ay, ..., Apn_1 be matrices of M, (A) defined by

k
Ak:—ZaiAk’i, for 0 <k <m-—1, with ag = —1,

=0
and let (yn),~_,, be the sequence of elements of A satisfying
_ k1+k2—|—+km ki .
" Z ( ki, ko, oo b >a1a2--~am, for n > —m.

k14+2ko+---+mkp,=n
Then, for all integers n > 0, A" =y, Ao + Y141+ + Yn—ms1Am_1.
The proof of this result is based on Theorem 2 given in Section 2.

In this section, we generalize Theorem 2, which permits us to express the general term
u, of a recurrent linear sequence satisfying the relation

Up = A1Up_1 + QoUp_9 + *++ + ApUp_,, foralln > 1,

in terms of the coefficients ay, as, ..., an and ug, u_y, u_s,..., U_(—1). Applications to
Fibonacci, generalized Fibonacci and “multibonacci” sequences are also given.

Finally, in Section 4, further combinatorial identities are derived, including identities
concerning the Stirling numbers of the first and second kind.

As an illustration, we give a nice duality between the two following relations (Corollaries
5 and 7):

v (i e (e () ()

k14+2ko+--+mkm=n
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y (i e [ L)

k1+2ka+--+mkm=n

where ( klk—i_ o —;)km ) is the multinomial coeflicient (Section 2), and [ Z } and { Z }
Lo s Bm

are, respectively, the Stirling numbers of the first and second kind as defined in [5].

2. Explicit Expression of the General Term of a Recurrent Linear Sequence

In this section, we let m > 2 be an integer, A a unitary commutative ring, aq, as, ..., Gn,

g, a1, ... , 1 elements of A, and (un),_,, a sequence of elements of A defined by

(5)

The aim of this section is to give an explicit expression of u, in terms of n, a, as, ..., Gm,
ag, a1, ... , &y (Theorem 3).

u_j=a; for0<j<m-—1,
Uy, = A1Up—1 + AoUp_9 + * 4+ ApUp_m for n > 1.

Let us define the sequence (yy), ., of elements of A, with the convention that an empty
sum is zero, by

Yn = Z <kl;]{[ij+---2km)a]fla];?,.,afnm’ fOl“nGZ’ (6)
k1+2ko+-+mkm=n 1,K2,... ,Rm

the summation being taken over all m-tuples (ky, ko, ... , k) of integers k; > 0 satisfying
ki + 2ko + - -+ + mk,, = n. With the previous convention, we have 3, = 0 for n < 0. The
multinomial coefficient that appears in the summation is defined for integers kq, ko, ...
k., > 0, by

Y

Ky ko4 +kn \  (kitkat-+ky)
k17k27"' ka N kl'kzlkm' ’

and can always be written as a product of binomial coefficients
k1+k2++km _ k1+k2++km k1+k2+/€3 k’1+k’2
ki kay oo km ki+ky+ oo+ kg k1 + Fo kq ‘
Let us adopt the following convention. For ki 4+ kg + - - - + k,,, > 1, we put

by kg A (k= 1) 4 kg
b ko, k=1, ko

):0 when k; = 0,
for any j € {1,2,... ,m}. We can now state the following lemma [p. 80 (Vol. 1), 4].
Lemma 1. Let k; > 0 be integers for j € {1,2,... ,m}, such that ky +---+ k,, > 1. Then
(k1+k2+---+km ) :Zm:(k1+---+(kj—1)+---+km)
by ko ke Ftoee k=1, ko :

j=1
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This lemma permits us to easily prove the following result.

Lemma 2. The sequence (Yn),cz »

Yn = G1Yn—1+ Q2Yn—2 + * + AnYn—m forn >1
with yo =1 and y, = 0 for n < 0.

Proof. First notice that, for n > 1, for all j € {1,2,... ,m} we have

o R (OB DRy S R
AjYn—j = > ( kv, ook =1k ey

k14+2ko+--+mkm=n

4

defined by relation (6), satisfies the recurrence relation

Applying Lemma 1, we obtain ) a;y,—; = y,. The relations yo = 1 and y, = 0 for n < 0
j=1

follow immediately.

We can now state the following result.

Theorem 2. Let (u,) the sequence of elements of A defined by

n>—m

u_j =0 for1l<j<m-—1,
up = 1,
Up = A Up_1 + AUy 9 + -+ + ApUp_m forn > 1.

Then for all integers n > —m,

— k1+k2++km ke ks .
" Z ( kl,k2,...,]€m )alag...am‘

k14+2ko+--+mkm=n

Corollary 1. Let ¢ > 1 be an integer, a,b € A, and let (v,)
of A defined by

n>—q

U—j:O fOTlS]Sq,
vo =1,
Upt1 = vy +bv,—y  forn > 0.

Then, for alln > —q,

and, for all n > 0,

5]

O

be the sequence of elements

(7)

1—-k(g—1 —
nir + bvn_q _ 2vn+1 — v, = Z n + (q ) ( n+1 kq ) an—l—l—k(q-‘rl)bk‘ (9)

n+1—kq k

e
I
<)
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=a, a, =band

Proof. We deduce relation (8) directly from Theorem 2, with m = ¢+ 1, ay
arp =0 for 1 < k <m. From (8), we deduce (9) as follows:

st
q ( n— kf +1)g ) - (@t Dkph+1

(n—l—l—kq) n41— kq+1bk+z

i1

(]

k

k=0

Kz i
( n+1—kq ) nt+1—k(g+1) pk +Z ( n—kq ) gkt pk

Upt1 + bvn—q -

k

k=0
LZTH n+1—kq %H n+1—kq
_ - n+1—k(g+1) 1k k - n+1—k(g+1) 7k
_ ( g ) ’ b+Z—n+1_kq< g ) 01
k=0 k=0

L5 ]
_ ~n+1—Fk(g—1) ( n+1_kq>an+1k(q+l)bk
I .

We now give some applications of the above corollary.

Application 1. Let (F},),., be the Fibonacci sequence

F0:07

F1 - 17
Fopgn=F,+F,; forn>1.

Then, by setting ¢, = F,11 for n > —1, we see that (¢,),_; is also defined by

Y-1= 07

Yo = 17
On = Pn_1+ pno forn>1

The application of Corollary 1 gives us that
[n/2] 0
On =Fh1 = Z ( I ), forn > —1,
k=0
the relation given in [pp. 18-20, 12], and announced in [9]. Also

2] n+1 n+1—k
( ), for n > 0,

and we find the relations given in Problem 6.98 of [10], which state that

" on 2n —k
Fop 1+ Fopy1 = g — < )
p on —k k
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and
" o2n41 on+1—k
F2n+F2n+2:E 7( )
k:02n+1—k k

Application 2. For ¢ > 1, let (G,@) be the generalized Fibonacci sequence as cited in
n>0

8], and let <H7(Lq)> be a sequence of numbers defined as follows:
n>0

G(()Q) — GglI) .. = G((;I) — 17 nd H{g‘]) — Hf‘I) — e = Hé‘I) — 17
Gfﬂl =G + G;q,)q for n > ¢, Hf;ﬁl = HY — ng for n > q.

We can extend easily the above sequences to (Gn),~_, and (Hy),_, by

GW=0 for1<j<gq, HY =0 for1<j<gq,
G(()Q) — 17 and H(()Q) — 1’
GW =aW+ G forn>0, HY = HY —HY  forn>0.

The application of Corollary 1 gives us, for n > —gq, the relations

G = Lij ( ”_kkq ) ., and HY = & (—1)F ( ”_k’“-’ ) .

k=0 k=0

Notice that G4 = F.i1 = p,, and HY is the integer function studied by L. Bernstein
[1], who showed that the only zeros of H? are at n = 3 and n = 12. This result was treated
also by L. Carlitz [2, 3] and recently by J. McLaughlin and B. Sury [8].

The following theorem gives us an explicit formulation for u, in terms of n, ay, as, ... ,
Gy Qgy Q14+ .., 1, and thus generalizes Theorem 2.

Theorem 3. Let (u,) be a sequence of elements of A defined by

n>—m

u_j=a; for0<j<m-—1, (10)
Up = A Up_1 + A2Up_9 + +++ + QlUp_pm forn > 1.
Let ()\j)0<j<m_1and (Un)ps_m be the sequences of elements of A defined by
m—1
Aj=— Z ag—jo, for0<j<m-—1, withay= -1, (11)
k=j
and
- ki+ky+ -+ ky ki ko o
Yn = Z ( by ko o, )a1a2...am, forn > —m.

k1+2ko+-+mkm=n
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Then for all integer n > —m, we have u, = X\oYn + MYns1 + -+ M 1Ynsm—1-

Remark. Note that (11) is equivalent to

Ao 1 —ay —ay -+ —ap_2 —Gp_ Qg
)\1 0 1 —a; —a s —Q—2 aq
)\2 0 0 1 —a tee —Am—3 (0%
)\m_Q 0 0 cee 0 1 —a A—2
Am—1 0 0 0o - 0 1 Q1
or
[>\Oa)\17"' 7)\m—1]t - C[OZOaa/h'" 7am—1]t7
where
0 iti> .
C = (Cij)lgi,jgm s with Cij = 1 if 1 = j,
—Qj—j if 1 < ]

We deduce also from relations (10) and (12) the matrix equality

Up, Yn Yn+1 e Yn+m—2 Yn+m—1
n+1 n+1 n+2 e n+m—1 n+m
u Y Y Y Y
. _ . . . . . «
Un4+m—2 Yn+m—-2 Yn+m—1 " Yn+2m—4 Yn4+2m—3
n+m—1 n+m—1 n+m n+2m— n+2m—
u Y Y o Yndo2m—3  Yni2m—2
1 —ay —ay -+ —apy o
0 1 —ai e (05}
X . —as
0 0 1 —aq Am—2
0 O e 0 1 Q1

Proof. Let S be the A-module of sequences (v,,) satisfying the recurrence relation

n>—m

Up — A1Up—1 — AoUp_9 — ==+ — QmUn—m = 0 for all n > 1.

Let us consider the family of sequences <vg€)> , for 0 < k <m — 1, defined by
n>—m

( U7(10) = YUn,
RO _
n = Yn+1 A1Yn,
W@

= Ynt+2 — A1Yny1 — A2Yn,

(m—1) _
Un = Un+m—1 — W1Yn4+m—-2 — @2Yn+m-3 — *** — Am—1Yn,

\

(12)



INTEGERS:

ie.,
v = ik — (OYnsk-1 + 2Ynira +
k
= Z —QiYntk—iy with ap = —1.
i=0

By Theorem 2, we have (y,,)
we deduce that

€ S. Consequently, (Y1)

n>—m

(Uék))w,m S

It is easy to observe that we also have, for j,k € {0,1,2,... ,;m
o 5 — 1 ifk=y
T RT 0 kA

In fact, with ap = —1, we can write, for j, k € {0,1,...,

Ifk<j then —j+k—i<0 for 1 <i<kand o™

, J
k = j, then v(_k]) = v(_jj) =—> ay_; = —agyo = 1. If k > j, then for r =
i=0
r > 1 and
M0 —( .
I Yr a1Yr—1 + QoYr—2 + + arYr—
= Yr— (alyr—l + a2Yr—2 + -+ QpYr—k + -
=0 because (Yn),~_,, €S and 7 > 1.

Relations (14) and (15) give easily, that for all n > —m,u,, =

m—1 k
(677 g —QiYn4k—i
i=0
k
= E —Ak—jOkYn+j

Jj=0

m—1
= E Qg | Yntj

=Jj

il
Ho

3

<.
Il
_.o

3

= )\jynJrj?

.
Il
=)

where ), is as defined in (11).
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+ akyn)

n>—m

for0<k<m-—1.

m— 1} ,v(_kj) =" a

#A12

€ S for ¢ > 0, and finally

(14)

-1},

(15)

iY—j+k—i-

7 =0 (because y, = 0 for ¢ < 0). If

k —j <0, we have

k), and by usingr —k=—5 <0,
+ amyr—m)

m—1 k
S ool and, with (13),

k=0
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Theorem 3 allows us to find various formulae for the Fibonacci numbers.

Corollary 2. For all integers n > 1,

n

k=1

Remark. In this summation, we may, in fact, restrict the sum to those integers i ranging

between ”T“ and "T“, the binomial coefficient of the formula being zero for the other integers.
Proof. Note that F,,=2F,, _>+F,,_3 for n > 3. Denoting by (y”)n272 the sequence defined by
Y2 =Yy-1=0,
Yo = ]-7

Yn = 2%—2 + Yn—3 for n > 17
we see that, for n > 1,F,, = y,_1 + yn_2. Theorem 3 allows us to state that, for n > —2,
n= S (7= (L)
2k+3l=n 0<t<n
and Corollary 2 follows by simple calculations. O

The following result can also be easily deduced from Theorem 3.

Lm/3]
' m+k ( m—k m—1—3k
Corollary 3. For all integers m > 1, Fy,, 1 = kz—o m—k ( 2%k ) 2 ’

Now, let us consider for ¢ > 1, the “multibonacci” sequence ( SP) defined by
n>-—q

P9 = ¢£qu1 + ¢£Lq_)2 4ot gbgq for n > 1,

where <b,(12) =@, =F,11 = GV Theorem 3 also implies that, for all n > 0,
kv ke + o+ k
() — 1 2 q
Pn > ( ki ko, ... kg )
k14+2ko+--+qgkq=n
Thus, for ¢ = 3, we obtain

B i+j+kY n—i—2j it
K ( i,k )‘ Z( i+ >( ! )

i+2j+3k=n 2i+3j<n
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We deduce from (16) that gbﬂl = 20\ — gbﬁflq, for n > 1. Let us consider (¢n),>

the sequence defined by ¢, := gb%q), for n > —¢ and v_, =1, which satisfies the recurrence
relationt,, 11 = 24, — ¥4, for n > 0. After applying Theorem 3, we find that, for n > 0,

Yo (= 00) = Xozn + MZns1 + + AgZnig

= Zn = 2Zn+q—1 + Zn4q»

L
with z, = Z ( " —kkq ) on—k(a+1) (—1)k, for n > —q. We know, via Theorem 3 and
k=0

Corollary 1, that the sequence (z,),~_ ‘ satisfies the recurrence relation 2,41 — 2z, + 2, =
0, for n > 0. This gives, for n > 0,

¢£LQ) = Znp—Zp-1t (Zn+q - 2Zn+q71 + anl)
= Zp — Zp—1-
Applying relation (9) in Corollary 1, we can write, for n > 1,
LanlJn_k(q_l) n — kq 1—k(g+1 k
gbglq) — Z ( . ) gn-l=hla+l) (_1)k

Thus,

k1+...+kq n—k(q—l) n — kq —1—k(q+1 k
_ n—rwe—l) on o) (). (7
> ( ki, kg ) n —kq k =0T

k1+2k2+--+qkg=n

For ¢ = 3, we obtain

Z i1+7+k Z n—i—2j 1+
- i, 7,k = i+ i
i+25+3k=n 2i+3j<n

4]

. n — 2k k n — 3k n—1—4k
— Zn—sk(_l)( p )2 :

k=0

3. Powers of a Square Matrix of Order m

We start this section with the main result of this paper.

Theorem 4. Let A€ M,, (A) and let P(X)= X" —ay X" ' — -+ —a,, 1 X — a,, be the
characteristic polynomial of A. Let Agy, Ay, ..., Apn_1 be matrices of M., (A) defined by
k
A = — ZaiAk_i, for0 <k <m-—1, with ag = —1, (18)

=0
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and let (Z/n)n>,m be the sequence of elements of A satisfying
— k1+k2++km by kg .
Yn = Z ( kl,kQ,...,km )a1a2"'am7 fOTn> m.

Then, for all integers n > 0,

A" = ynAO + yn—lAl + -+ yn—m—i-lAm—l (19)

Proof. Define, for 0 < k < m,
k
Pe(X) ==Y a; X" with ag = —1. (20)
i=0
For 0 < k <m — 1, we have
XPk(X):PkH(X)—i—akH. (21)

Relation (20) shows that the degree of Py is k for 0 < k < m. It implies that (Py, Py, ... , Ppn_1)
is a basis of the free A-module A,,_; [X] consisting of polynomials of A [X] of degree < m—1.

For all n > 0, the remainder R, of the euclidean division of X™ by P, is written as
a linear combination of polynomials Py, P;,..., P,_1. Then, for all n > 0, there exists a
unique family (anx)ycp<,,_; Such that

m—1
Rn = an,kpk- (22)
k=0
For 0 <n <m-—1, we have R, (X) = X™, where X" is a linear combination of P, ... , P, _1,

and

{ a0 =1 (23)

anr =0 forn<k<m-—1

Relations (21) and (22) imply that

3

XR,(X) = ke (Prr1 (X) + aps1)

>
Il
- O

m—1

= Q4100 k + Z an,kflpk (X> + Oén,mflpm (X> .
k=1

3

>
Il
o

As a consequence, the polynomial R, 1 (X) — X R, (X) — anm-1Pm (X), of degree < m —1,
is divisible by P, (X), which is of degree m. This polynomial is thus the zero polynomial as
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well as its components in the basis (P, Py, ... , Pp—1). This provides us with the following
relations:
m—1
Qpi10 = Z Aft1Qn ), forn >0, (24)
k=0
Qpi1k = Qpg—1 for 1 <k<m-—1. (25)

Let us set, for all integers n € Z,

JR for n > 0,
" 10 for n < 0.

One checks easily that for all integers n > 0 and for 0 < k <m — 1,
an,k = Zn—k- (27)

Indeed, if n > k this relation follows from (25) and (26), and if 0 <n < k < m —1 it follows
from (23) and (26). From (25), (26) and (27), we find that

z, =0 forn <0,
zZ0 — 1,
Zp = Q12p—1 + Q2Zp—2 + A1 Zp—m—1 + A 2Zn—m forn > 1.

Theorem 2 implies that z, = yy,, for all n € Z, where

— kl+k‘2—|—+km . .

" Z ( ki, ko, ...  km )%%-..am,
k1+2ko+--+mkm=n

This last fact, together with the Cayley-Hamilton Theorem, (22), (20), (18) and (27) now
give that

m—1 m—1 m—1
A" = Rn (A) = Z Qap sz (A) = Zn—zAz - yn—zAz
i=0 =0 i=0
which completes the proof of (19). O

4. Further Combinatorial Identities

Some nice combinatorial identities can be derived from Theorem 4 by considering various
particular matrices with simple forms.

Corollary 4. Let n be a positive integer. Then

Z kl + e + k;m (_1)n7(k1+---+km) m k1 m km_ n + m — 1
ki ko m—1)""\0/) \ m-1 )

k14+2ko+--+mkm=n
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m—1
and the summation is taken over all m-tuples (ky, ks, ... ,kn) of integers k; > 0 satisfying
the relation ki + 2ky + - - - + mk,, = n.

-1 . o . . .
where < nam ) is the number of m- combinations with repetition of finite set {1,... ,n},

Proof. Let J,, be the m x m Jordan matrix,

11 0 0
01 1

Jn=10 0 0
P 1 1
00 - 0 1

The characteristic polynomial of J,, is (X — 1)™. We also have J" = (( i 71 ; )) .
1<i,j<m
Applying Theorem 4 with A = J,,,, and considering the (1,m) entries of both sides of

(19), we obtain the relation ( ) = Yn—(m—1), Which leads to the result. O

m—1
From Corollary 4, we obtain the following combinatorial identities, for m = 2, 3, 4.

Z(—l)i(”;i)zn—%_nﬂ,

2i<n

= () (e (1)
2i+3j<n 1+ ! 2
Z (—1)+* n —.i —.2]' — 3k Z‘f'] - k Z‘f'] g2n-3i-4j-skgi _ (T 3
t+j+k i+ i 3

2i43j+4k<n

Like J. Mc Laughlin and B. Sury [8, Corollary 6], we can also derive Corollary 4 from the
following result.

Corollary 5. ([8, Theorem 1]) Let x1,xs,... ,x,, be elements of the unitary commutative
ring A with s, = Z Ty Tiy -+ Ty, for 1 <k <m. Then, for each positive integer n,
1<i1 <2< <1 <m

Z o P Z ky+-+ ki k= —km 1 kom
113'1 ...:L‘m —_— ( kl k (_]_) Sl ...Sm 3
k1 +ko+-+km=n k1 +2kg+-+mkm=n o

with the summations being taken over all m-tuples (k1, ks, ... , ky) of integers k; > 0 satis-
fying the relations ki +ko+---+k,, =n for the left-hand side and ky +2ky+---+mk,, =n
for the right-hand side.
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Proof. Let us give a proof of this result by using Theorem 2. For n > —m and 1 <1 < m,
consider qr(f) = Z xlflx’;z ) ml cand ¢, := ¢"™. Let E : 8, — Bni1 be the shift

n
ke kot +ky=
operator which acts on any sequence (Bn),,, and, for 1 <1 < m, let Q; be the operator given

by Q; := (F —x1) (E — x3)--- (E — x;) . Notice that Q,,, = E™ — $;E™ ' + .- + (=1)" 3,,,.
Then, for n > 1 and 2 <[ < m, we have (E — 1) - qu)l q(l (11) - Therefore,

Qun (4,) = Quo (4700)) = =@ (42)) =0
Thus,

Qn = S14n—1 — S2Qn—2 + o+ (_1)m—1 Smn—m, for n Z 1. (28)

By the definition of ¢,, we also have
¢ =0 forn <0 and ¢y =1. (29)

Applying Theorem 2 to the sequence (gy,) we obtain the result. O

n>—m’

Corollary 4 follows immediately by setting x; = 1 for all ¢ in the previous corollary.

The following theorem is an extension of a result of J. Mc Laughlin and B. Sury |8,
Theorem 3].

Theorem 5. Let K be a field of characteristic zero, and let x1, xo, ..., T, be independent
variables. Then, in K (x1,%2,... ,ZTm),
Tyt .
1+t km=n i=1 HJ#Z — ;)

Proof. For v1,7, ... ,Ym € K (x1,%9,... ,2m), let V (v1,72,...,%m) denote the Vander-
monde determinant defined by V (v1,72, ... ,7m) = det (v, J= 1)1 <ij<m It is well known that

Vivsye, o s9m) =TI (9 —7)- By (28), the sequence (q_n)n;_m defined by

1<i<j<m
— ky k2 k
qn = g Ty Ty . T

ki+ko+-t+km=n

is a recurrent sequence with characteristic polynomial
X" g X ()" S = (X —2) (X —20) - (X — )

This polynomial has m distincts roots zy, s, . . . , z,,. We deduce that there exist m elements
A=A (21,29, ,2p) € K (21,22,... %), 1 <i < m, such that

m
= ZA,Q:? for n > —m.
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The initial conditions given by (28) lead to the Cramer system Z — =00 for 0 <j <

i—1 i

m — 1. The resolution of this system gives

V<L7"'7 ! 70; L ,...,L> m—1
i- i m €T. ]
A= = e ’ :H (@ i for 1 <i<m.
1 1 1 1 1 s — 1
V<a7 7$i—17$_i’$i+17”' ’E) jF#i [ 7
This completes the proof. -

Let us now give an application to Stirling numbers. For n > 0, with the notations of [5],
n

the Stirling numbers of the first kind { 1

} , and the Stirling numbers of the second kind

{ Z } , can be defined by the equations

k=0
_ = ] 1ifn=0,

X":ZH:{ Z }XE, (31)

1 ifk=0
. k. )
with X .—{X(X_1>(X_2)...(X—k+1) itk >1.

k
1 (K

It is well known [p. 38 (Vol. 2), 4] that { Z } = E (—1)F <)z” From Theorem 5
: i

and Corollary 5, we deduce

m n+m—1
S (B ey ey @
k1+2ko+--+mkm=n b m i=1 Hj#i (xl a xj)

m

If we take z, = — (kK — 1) for 1 < k < m, Wehavesk:(—l)k{m_k

] , for 1 <k <m,
and relation (32) gives the following result
Corollary 6. For all positive integers m and n,

Z kl _|_ e + k;m (_1)n—(k1+"'+km) m k1 m km: n + m — ]_
k?la...,km m—1 0 m—1 |

k1+2ko+-+mkm=n
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Note that Theorem 5 gives the following relation, which is stated in [p. 42, (Vol. 2), 4].

.. . n + m — 1 _ k1 ok km—1
For all positive integers m and n, { 1 } = o ; 1M2% . (m—1) .
1+ thkm—1=n

For m = 3,4 and 5, we obtain

Z (_1)z‘ ( n Z— t > 9ign—2i _ on+l _ 1,

o2\ it T e N
z : (_1)1 n . ? 2] ? +j 6n—21—2]112 — + 7
147 ) 2

2i+3j<n

itk ((m—1—27 =3k i+J+k i+ n—2i—2j—kqkrn—i—j—Akwi
S e () () ()

2i4+3j+4k<n
4n+3 _ 3n+4 +3. 2n+3 -1
= 6 .

Corollary 7. Let n be a positive integer and let x and y be indeterminates. Then

itk [ m—1—2j =3k 1+ 5+ k 1+ n—2i—2j—4k
2. D ( i+j+k )( i+ j i) Gt 2y) X
2i+3j+4k<n

(n+1) (" —y"*3) — (n+3) vy (2" — y"“)'
(z —v)

X (xy)j+2k (ZE2 +dzy + y2)i =

Corollary 8. Let n a positive integer and x,y be indeterminates. Then

Z (_1)i+k<n—i—2j—3k)(i+j+k>(i+j)x
2i+3j+4k<n igtk it ‘
X (3x 4 )" AT TR G ERE (30 4 3y)! (@ + 3y)’
(n+1)(n+2) (2" —y"*) = (n+3)y[n (" —y"*?) + (n +2) 2" (x — y)]
2(x —y)° ‘

Proof of Corollaries 7 and 8. It suffices to put, in Corollary 4, x1 =2y =z and 23 = x4 =y
to obtain Corollary 7; x1 = x5 = x3 = z and x4 = y to obtain Corollary 8. U
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