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ON THE IRREDUCIBILITY OF {−1,0,1}–QUADRINOMIALS
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Abstract

Let a > b > c > 0 be integers, and let β, γ, δ ∈ {−1, 1}. We give necessary and sufficient
conditions, in terms of a, b and c, for the irreducibility of f(x) = xa + βxb + γxc + δ over Q.

1. Introduction

Throughout this note we let a > b > c > 0 be integers; β, γ, δ ∈ {−1, 1}; and f(x) =
xa +βxb +γxc +δ. Previous investigations into the irreducibility of f(x) over Q have focused
mainly on the nature of the possible factors or zeros of f(x). In particular, Ljunggren proved
the following theorem in [2].

Theorem 1. [Ljunggren] The polynomial f(x) is reducible over Q if and only if f(ζ) = 0
for some root of unity ζ.

In [2], Ljunggren actually indicated how f(x) factors when it is reducible. His statement,
however, was incorrect in that he overlooked several cases. Mills [3], still using the methods
developed by Ljunggren, later published a correct version of the theorem. At the end of
[2], Ljunggren stated correctly that if a, b and c are all odd, then xa + xb + xc + δ is
irreducible. He went on to mention that, in all cases, similar criteria for irreducibility could
be straightforwardly determined using his methods, although, citing the tediousness of such
a task, he did not provide them.

Recently, using a different and less arduous approach, Dubickas [1] has given sufficient
conditions for the irreducibility of a larger class of the quadrinomials f(x) in terms of the
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exponents a, b and c. In addition to proving the condition stated by Ljunggren for xa +
xb + xc + δ, Dubickas shows that if a and b are even, and c is odd, then xa + xb + γxc + 1
is irreducible. In this paper we use techniques similar to those of Dubickas to give both
necessary and sufficient conditions, based solely on the exponents, for the irreducibility of
all quadrinomials f(x) over Q. The proof of our result relies on Theorem 1 and Lemma 1.

Our Lemma 1 is equivalent to Lemma 1 in [1], where the proof is geometric in nature.
Nonetheless, we provide a proof here since our proof is algebraic.

Lemma 1. [Dubickas] Let z1, z2 and z3 be complex numbers which lie on the unit circle,
and suppose that z1 + z2 + z3 + 1 = 0. Then zj = −1 for some j.

Proof. Since Im(z1) + Im(z2) + Im(z3) = 0, we can assume, without loss of generality, that
Im(z1) Im(z2) ≥ 0. Because 0 ≤ |Re(zj)| ≤ 1 for each j, we also have that (Re(z1) +
1)(Re(z2) + 1) ≥ 0. Now, note that |1 + z1 + z2| = 1. We can expand and rewrite this
equation to get

(Re(z1) + 1)(Re(z2) + 1) + Im(z1) Im(z2) = 0.

Therefore, it follows that Im(z1) Im(z2) = (Re(z1) + 1)(Re(z2) + 1) = 0. Suppose that
Im(z1) = 0. Then z1 = ±1. If z1 = −1, we are done. If z1 = 1, then Re(z2) = −1, and
consequently, z2 = −1. Since the same argument can be used if Im(z2) = 0, the proof is
complete.

2. The Main Result

We begin with some notation. Suppose that gcd(a, b, c) = 2km, where m is odd. Let
a′ = a/2k, b′ = b/2k and c′ = c/2k. Define ā := gcd (a′, b′ − c′) . Similarly, define b̄ and c̄.

Theorem 2. The quadrinomial f(x) is irreducible over Q if and only if f(x) satisfies one
of the following sets of conditions.

1. (β, γ, δ) = (1, 1, 1)
āb̄c̄ ≡ 1 (mod 2)

2. (β, γ, δ) = (−1, 1, 1)
b′ − c′ &≡ 0 (mod 2ā), b′ &≡ 0 (mod 2b̄), a′ − b′ &≡ 0 (mod 2c̄)

3. (β, γ, δ) = (1,−1, 1)
b′ − c′ &≡ 0 (mod 2ā), a′ − c′ &≡ 0 (mod 2b̄), c′ &≡ 0 (mod 2c̄)
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4. (β, γ, δ) = (1, 1,−1)
a′ &≡ 0 (mod 2ā), b′ &≡ 0 (mod 2b̄), c′ &≡ 0 (mod 2c̄)

5. (β, γ, δ) = (−1,−1,−1)
a′ &≡ 0 (mod 2ā), a′ − c′ &≡ 0 (mod 2b̄), a′ − b′ &≡ 0 (mod 2c̄)

Remark. It is easy to show that the case (β, γ, δ) = (1, 1, 1) can be rewritten in a somewhat
more appealing manner as follows:

The polynomial f(x) = xa + xb + xc + 1 is reducible over Q if and only if exactly
one of the integers a′, b′ and c′ is even.

Proof. First observe that f(1) = 0 for any other choice of (β, γ, δ), so that then f(x) is
reducible.

Note that case (2) is transformed into case (3) by replacing f(x) with its reciprocal,
xaf(1/x). Similarly, case (4) is transformed into case (5) by replacing f(x) with the negative
of its reciprocal. Since f(x) is irreducible if and only if ±xaf(1/x) is irreducible, it suffices
to prove cases (1), (2) and (4) to establish the theorem.

To prove the case (β, γ, δ) = (1, 1, 1), assume first that f(x) is reducible. Then, by
Theorem 1, we have that f(ζ) = 0, where ζ is some root of unity. By Lemma 1, either ζa,
ζb or ζc equals −1. If ζa = −1, then ζb−c = −1. Thus,

(−1)a′
=

(
ζb−c

)a′
=

(
ζ2k(b′−c′)

)a′

= (ζa)b′−c′ = (−1)b′−c′ ,

which implies that a′ and b′ − c′ have the same parity. Similarly, if ζb = −1, or ζc = −1,
then b′ and a′ − c′, or c′ and a′ − b′, respectively, have the same parity. Therefore, in any
case, since at least one of the integers a′, b′ and c′ is odd, we obtain that exactly one of a′,
b′ and c′ is even, which finishes the proof in this direction.

Conversely, if exactly one of the integers a′, b′ and c′ is even, then, either a′−b′ and c′ are
both odd, or a′ and b′− c′ are both odd. Consequently, x2k

+1 divides f(x) in any situation,
since

f(x) = x2kb′
(
x2k(a′−b′) + 1

)
+

(
x2kc′ + 1

)

=
(
x2ka′

+ 1
)

+ x2kc′
(
x2k(b′−c′) + 1

)
.

We now examine case (2): (β, γ, δ) = (−1, 1, 1). First suppose that the conditions hold,
but that f(x) is reducible. From Theorem 1, we know that f(ζ) = 0 for some root of
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unity ζ. Invoking Lemma 1, suppose that ζa = −1. Then ζb−c = 1. Write a′ = 2rm1 and
b′ − c′ = 2sm2, where m1 and m2 are odd. If s ≤ r, then

(−1)m2 = (ζa)m2 =
(
ζ2km2

)a′

=
(
ζ2k+sm2

)a′/2s

=
(
ζb−c

)a′/2s

= 1,

which contradicts the fact that m2 is odd. Hence, r < s. Then

2ā = 2 · gcd (a′, b′ − c′) = 2r+1 gcd
(
m1, 2

s−rm2

)
.

Now, b′ − c′ is divisible by both 2r+1 and gcd (m1, 2s−rm2), and since they are of different
parity, it follows that b′ − c′ is divisible by their product 2ā, which is a contradiction. The
argument is similar if ζb = 1 or ζc = −1.

For the converse, first suppose that b′ ≡ 0 (mod 2b̄). Then b′/b̄ is even, and since b′/b̄
and (a′−c′)/b̄ are relatively prime, we have that (a′−c′)/b̄ is odd. Therefore, x2k b̄ +1 divides
f(x) since

f(x) = x2kc′
(
x2k(a′−c′) + 1

)
−

(
x2kb′ − 1

)
.

Similar arguments show that f(x) is reducible if a′ − b′ is divisible by 2c̄, or if b′ − c′ is
divisible by 2ā.

We omit the proof of case (4) since it is similar to the proof of case (2).
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