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Abstract

In Proofs that Really Count, Benjamin and Quinn mentioned that there was no known
bijective proof for the identity f1+2fo+---+nf, = (n+1)fuie — fara + 3 for n > 0, where
fr is the k-th Fibonacci number. In this paper, we interpret f; as the cardinality of the set Fj,
consisting of all ordered lists of 1’s and 2’s whose sum is k. We then demonstrate a bijection
between the sets Fl,1qa UUp_; ({1,2,...,k} X Fy) and ({1,2,...,n+ 1} X F40) U{1,2,3},
which gives a bijective proof of the identity.

1. Introduction

We will interpret the k-th Fibonacci number f; as the cardinality of the set F}, of all ordered
lists of 1’s and 2’s that have sum k. Thus, (fo, f1, fo, f3, f1, f5,.-.) = (1,1,2,3,5,8,...). For
an integer m, the number m f; will be interpreted as the cardinality of the Cartesian product
[m] x Fy, where [m] := {1,2,3,...,m}.

On page 14 of Proofs that Really Count [1], Benjamin and Quinn mentioned that there
was no known bijective proof for the identity fi +2fo+ ... +nf, = (n+1)foro — foia +3
for n > 0. In Section 2 we define a map

¢: Foa U (K] x Fi) — {1,2,3} U ([n+ 1] X Frua),

and in Section 3 we describe why ¢ is a bijection. This provides a bijective proof of the
identity foia+ f1+2fo+...+nf, = (n+1)fui2+ 3 for n > 0. For completeness, we also
define the inverse map

¥ {1,2,3U([n+1] x Foya) — Fops U J (K] x F)

k=1

in Section 4, and the cases in the definition of ¢) correspond to those for ¢.
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When examples are given below, ordered lists are denoted using angled brackets, e.g.,
(a1, a9, ...,a,). Also, Doron Zeilberger [4] has written a Maple package that implements
the bijection, which may be downloaded from

http://www.math.rutgers.edu/~zeilberg/tokhniot/PHIL (1)

2. The bijection ¢
In this section we define the bijection

¢ Fn+4UU | X F) — {1,2,3} U ([n+ 1] X F,2).

For X € F, 4 where the last n numbers in the list X are 1’s, define ¢ according to the
chart below.

n n+2
o (LLLL T — L0 L.D)
o (21,1, T1..1) - 1
o (1,21, T1..1) 2
o (L1,2, T1..1) w 3
6 22 TL..0) - @eln..10)

For all cases not covered by the chart above, we define ¢ by the two cases below.

Case 1: Consider X € F, 4, so X is a list of 1’s and 2’s that sums to n 4+ 4. By the above
special cases above, we know that X ends in a string of exactly ¢ 1’s, where 0 < ¢ < n (so
X has a 2 followed by ¢ 1’s at the end). Take X and delete the last 2 in X to get X , which
is an element of F), .o, and define ¢ : X — (n — ¢ + 1,)?).

Examples for n =3: ¢ (1,1,2,1,2) — (4,(1,1,2,1))
o (L1,2,2,1) — (3,(1,1,2,1))
o: (1,1,1,2)1,1) — (2,(1,1,1,1,1))

Case 2: Consider (i, X') where X € Fy and i € [k] (and thus i < k). Take X and append a 2
followed by (n—k) 1’s to get X, which is an element of F, 5, and define ¢ : (i, X) — (i, X).

Examples for n = 3: o:  (1,{1) — (1,(1,2,1,1))
¢ (1,(1,1) — (1,(1,1,2,1))
¢ (27 <2>) = (2’ <2> 2, 1))
¢: (2,(21) — (2,(2,1,2)
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3. Showing ¢ is bijective
The following three facts (which may be easily verified) help show that ¢ is injective:

1. The image of ¢ from the five special cases consists of {1,2,3} and all elements (i,Y")
of [n+ 1] x Fy,1o where i =1 and Y ends in at least n = (n+1—1) 1’s.

2. The image of ¢ from Case 1 consists of all elements (i,Y") of [n + 1] x F, 1o where
2<i<n+1andY endsin at least (n+1—14) 1’s.

3. The image of ¢ from Case 2 consists of all elements (i,Y") of [n + 1] x F, 1o where
1 <¢ < n and one of the last (n + 1 —4) entries in Y is a 2.

It is easily seen from the definition that ¢ restricted to Case 1 is injective; and similarly,
¢ is injective when restricted to Case 2 or to the five special cases. Thus, since the three
images described above are distinct, ¢ as a whole is injective. Furthermore, the union of the
three images above consists of all of {1,2,3}U([n + 1] X F,,15) (note that there is no element
(i,Y) € [n+ 1] X F,42 with i =n+ 1 and Y containing a 2 in the last (n + 1 — i) entries).
Thus ¢ is a bijection.

4. The inverse bijection v

In this section we define the inverse bijection

Y {123 U ([n+ 1] X Fois) — Fua U (K] x F).

k=1
n+2 n
—— ——
For elements of {1,2,3} and for the elements (1,(1,1,...,1)) and (1,(2,1,1,...,1)) of
[n + 1] x F, 9, define ¢ according to the chart below.

n+2 n

—— —

v (LA L...D) o~ (1,1,1,1, T.L...0D)
n

Wb - 1 — (2.1, TL....1)

—_—

b - p — 1,21, T.1,....1)

——

o : 3 — (1,12, T,L....1)
n n

v (1L,(2,1,1,...,1) — (2,2, 1,1,...,1)
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For all cases not covered by the chart above, we define ¢ as follows. Consider (i,Y),
where Y € F,, o and i € [n + 1].

Case 1: If Y ends with at least (n + 1 —1i) 1’s, then insert a 2 before the last (n + 1 — i)
1’s to get Y and define ¢ : (4,Y) — Y.

(4,(1,1,1,2)) — (1,1,1,2,2)
(3,(2,1,1,1)) — (2,1,1,2,1)
(2,(1,1,1,1,1)) — (1,1,1,2,1,1)

Examples for n = 3:

P
(1S
(TR

Case 2: If one of the last n + 1 — 7 entries in Y is a 2, then delete the last 2 in Y and all
1’s following that 2 to get Y. Define ¢ : (4,Y) — (4,Y).

Examples for n = 3: v (1,(1,2,1,1) — (1,(1))
v (1,(1,1,2,1) — (1,(1,1))
v (2,(2,2,1) = (2,(2)
v (2,(2,1,2) & (2,(2,1))
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