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Abstract

We investigate polyfunctions in several variables over Zn. We show in particular how the
problem of determining the cardinality of the ring of these functions leads to a natural
generalization of the classical Smarandache function.

1. Introduction

Let us consider the ring Zn := Z/nZ, n > 1, and a function

f : Zd
n → Zn

of d variables in Zn with values in Zn. Such a function is called a polyfunction if there
exists a polynomial

p ∈ Zn[x1, . . . , xd]

such that
f(x) ≡ p(x) mod n ∀x = 〈x1, . . . , xd〉 ∈ Zd

n.

The set of polyfunctions of d variables in Zn with values in Zn, equipped with pointwise
addition and multiplication, is a ring with unit element. We denote this ring by Gd(Zn), or,
for simplicity, by G(Zn) in the case of only one variable.

In the present article, we investigate polyfunctions in several variables over Zn. We show
in particular how the problem of determining the cardinality of the ring of these functions
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leads to a natural generalization of the classical Smarandache function (named after [17])

s : N → N
n '→ s(n) := min{k ∈ N : n | k!},

(1)

which was studied by Lucas in [10] for powers of primes, and by Kempner in [8] and Neuberg
in [12] for general n. Indeed, s(n) is the minimal degree of a normed polynomial which
vanishes (as a function) identically in Zn (see [5]). The key is then to reformulate the above
definition by setting

s(n) = |{k ∈ N0 : n ! k!}|.

This definition then generalizes in a natural way to d > 1 dimensions (see (10) and (11)),
where the number can be interpreted as the number of irreducible monomials xk modulo n
(see Section 5).

The number of polyfunctions in Gd(Zn) is multiplicative in n (see Section 5). It therefore
suffices to compute the values for n = pm, p prime. By analysing the structure of the additive
group of Gd(Zpm), which is completely described in Proposition 7, we find

|Gd(Zpm)| = p
∑m

i=1 sd(pi)

(see Theorem 6). However, the factors psd(pi) do not correspond to additive subgroups of
Gd(Zpm).

In Section 3 we present a characterization which allows us to test whether a given function
f : Zd

n → Zn is a polyfunction, and if so, to determine a polynomial representative of f . In
Section 4 we characterize the units in the ring Gd(Zn).

We conclude this introduction with a short overview on the history of polyfunctions. The
study of polyfunctions in one variable goes back to Kempner who discussed polyfunctions
over Zn in connection with Kronecker modular systems [9]. He also gave a formula for
the number of polyfunctions over Zn. Later, Carlitz investigated properties of polyfunctions
over Zpn for p prime [2]. Keller and Olson gave a simplified proof of Kempner’s formula
[7] and also determined the number of polyfunctions which represent a permutation of Zpn .
Null-polynomials over Zn (i.e., polynomials which represent the zero-function) have been
investigated by Singmaster [15]. Certain aspects of polyfunctions in several variables over
Zn were addressed in [11]. Recently, polyfunctions from Zn to Zm have attracted increasing
attention (see [3], [4] and [1]). The focus there is to find conditions on the pair 〈m, n〉 such
that all functions (or certain subclasses) from Zn to Zm are polyfunctions. In [13] and [14]
polyfunctions over a general ring were discussed: the question asked being “for which rings
R one can find a ring S, such that all functions on R can be represented by polynomials over
S?”
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2. Notation, Definitions and Basic Facts

In order to keep the formulas short, we use the following multi-index notation. For k =
〈k1, k2, . . . , kd〉 ∈ Nd

0 and x := 〈x1, x2, . . . , xd〉, let

xk :=
d∏

i=1

xki
i

and

k! :=
d∏

i=1

ki!.

Furthermore, we write

|k| :=
d∑

i=1

ki

and (
x

k

)
:=

d∏

i=1

(
xi

ki

)
.

Let ei := 〈0, . . . , 0, 1, 0, . . . , 0〉 ∈ Zd
n, with the 1 at place i. Then, we define the (forward)

partial difference operator ∆ by

∆ig(x) := g(x + ei) − g(x)

∆0
i := identity

∆k
i := ∆i ◦ ∆k−1

i .

For a multi-index k, let
∆k := ∆k1

1 ◦ . . . ◦ ∆kd
d .

Notice that the ∆ operators commute and that ∆k1 ◦ ∆k2 = ∆k1+k2 . We recall that

∆rg(x) =
∑

k!r

g(x + r − k)(−1)|k|
(

r

k

)
, (2)

where k ! r means 0 ! ki ! ri (see e.g. [16]). A polynomial p equals its “Taylor expansion”

p(x) =
∑

|k|!deg(p)

∆kp(0)

(
x

k

)
(3)

(see e.g. [6]). Observe, that the monomial xl defines by ((x + n)l)n∈Z for any fixed x an
arithmetic sequence of order l. Therefor, one easily checks by induction, that

∆rxl =

{
0 if r > l,

r! if r = l.
(4)
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Hence, the summation in (3) can be restricted to the shadow of p, i.e., the multi-indices k
with the property that 0 ! k ! r for a monomial xr in p. Indeed, if k does not belong to
the shadow of p, then ∆kp(0) = 0 by (4).

It is well known (see e.g. [6]) that a polynomial p has integer coefficients if and only if
the condition

k! | ∆kp(0) (5)

holds for all k in the shadow of p (for other values of k, the condition (5) is trivially satisfied
by the previous remark).

3. Characterization of Polyfunctions

Let f : Zd
n → Zn be a polyfunction, i.e., there exists a polynomial p ∈ Zn[x1, . . . , xd] such

that

f(x) ≡ p(x) mod n for all x ∈ Zd
n. (6)

Since for all x ∈ Zn
n−1∏

i=0

(x − i) = 0 in Zn,

we may assume, without loss of generality, that the degree of p is, in each variable separately,
strictly less than n. Thus, in Zn we have for arbitrary x ∈ Zd

n,

f(x)
by (6)
= p(x)

by (3)
=

∑

ki<n

∆kp(0)

(
x

k

)

by (6)
=

∑

ki<n

∆kf(0)

(
x

k

)

︸ ︷︷ ︸
=:h(x)

.

Hence, the polynomial h represents f , but it does not necessarily have integer coefficients.
However, observing (5) and exploiting the fact that in Zn,

∆kp(0) = ∆kf(0)

holds for all k, we obtain:

Lemma 1 If f : Zd
n → Zn is a polyfunction, then
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(i) for all multi-indices k with components ki < n, there exist αk ∈ Z such that for the
numbers βk := ∆kf(0) + αkn,

k! | βk, (7)

and

(ii) the polynomial
∑

ki<n

βk

(
x

k

)
has integer coefficients and represents f .

From (7) it follows, that

(n, k!) | ∆kf(0) 1 (8)

for all k with ki < n. We will show now that this condition characterizes polyfunctions. To
this end, we consider an arbitrary function f : Zd

n → Zn. Since there exists an interpolation
polynomial for f , with degree in each variable strictly less than n, which agrees with f on
the set {0, 1, . . . , n − 1}d, we infer from (3) that, in Zn,

f(x) =
∑

ki<n

∆kf(0)

(
x

k

)

for all x ∈ Zd
n. If condition (8) is satisfied for f , we find coefficients βk = ∆kf(0) + αkn, as

above in Lemma 1(i), such that k! | βk. Hence, in Zn

f(x) =
∑

ki<n

βk

(
x

k

)
mod

( n−1∑

k=0

βk

(
x

k

)
, n

)
,

for all x ∈ Zd
n. In other words, condition (8) implies that f is a polyfunction and we have

the following characterization:

Theorem 2 f : Zd
n → Zn is a polyfunction over Zn if and only if (n, k!) | ∆kf(0) for all

multi-indices k with ki < n.

4. The Inverse of a Polyfunction

Let f : Zd
n → Zn. Then f is invertible (i.e., there exists a function g : Zd

n → Zn, such that for
all x ∈ Zd

n there holds f(x)g(x) = 1) if and only if Image(f) ⊂ U(Zn). Here, U(Zn) denotes
the multiplicative group of units in Zn. We want to show that the same characterization
holds for invertible polyfunctions over Zn.

Proposition 3 A polyfunction f : Zd
n → Zn is invertible in the ring of polyfunctions (and

hence a unit in Gd(Zn)) if and only if

Image(f) ⊂ U(Zn).
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Proof. The necessity of the condition is trivial. In order to prove that it is also sufficient,
let k := lcm{ord(x) | x ∈ U(Zn)}2. Then, if p denotes a polynomial representing f , we have

pk(x) = 1 in Zn

for all x ∈ Zd
n. Hence, the polynomial pk−1 represents the inverse of f . !

5. The Number of Polyfunctions

Let a be an element of Zn. We say, the monomial axk ∈ Zn[x] is reducible (modulo n)
if a polynomial p(x) ∈ Zn[x] exists with deg(p) < |k| such that axk ≡ p(x) mod n for all
x ∈ Zd

n. Moreover, we say that axk is weakly reducible (modulo n) if axk ≡ p(x) mod n
for all x ∈ Zd

n, for a polynomial p ∈ Zn[x] with deg(p) ! |k| (instead of deg(p) < |k|), and
such that xk (or a multiple of it) does not appear as a monomial in p.

The following lemma characterizes the tuples k for which axk is (weakly) reducible.

Lemma 4 (i) If axk ∈ Zn[x] is weakly reducible modulo n, then n | ak!.
(ii) If n | ak!, then axk is reducible modulo n.

In particular, a monomial is reducible if and only if it is weakly reducible.

Proof. (i) We assume, that p(x) reduces axk weakly. Hence, q(x) := axk − p(x) is a null-
polynomial (i.e., a polynomial which represents the zero-function) in d variables over Zn.
Then, we write q in the form

q(x) =
∑

l∈Nd
0

|l|!|k|

qlx
l (9)

for suitable coefficients ql ∈ Zn, with qk = a. Using the linearity of the ∆ operator, we
obtain that, modulo n,

0 = ∆kq(x)
(9)
=

∑

l∈Nd
0

|l|!|k|

ql∆
kxl (4)

= ak!.

In fact, all terms in the above sum with l += k vanish by (4), since |l| ! |k| and l += k implies
that k is not in the shadow of xl. And the only remaining term, ∆kxk, equals k!, again
by (4).

2 lcm(M) is the least common multiple of all integer numbers in a finite set M . ord(x) denotes the order
of an element x in a finite multiplicative group G, i.e., ord(x) is the smallest number k ∈ N such that xk = 1.
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(ii) We assume, that n | ak!. Then, the polynomial

q(x) := a
d∏

i=1

ki∏

l=1

(xi + l) = ak!

(
x + k

k

)

is a null-polynomial over Zn and the term of maximal degree is axk. Hence, q(x) − axk

reduces to axk. !

Lemma 4 allows us to count the number of monomials xk, k ∈ Nd
0, which are not

reducible. Let

Sd(n) := {k ∈ Nd
0 : n ! k!} (10)

denote the set of multi-indices k such that xk is not reducible modulo n. Its cardinality is
the natural generalization of the Smarandache function to the case of several variables:

sd(n) := |Sd(n)|. (11)

Of course, for d = 1 the function s1 agrees with the usual number theoretic Smarandache
function (see introduction)—except for n = 1, since s(1) = 1, but s1(1) = 0. Actually, by
defining s(n) := min{k ∈ N0 : n | k!} (i.e., the minimum is taken over k ∈ N0 rather than
over k ∈ N), this discrepancy could be removed. Incidentally, Kempner originally defined
s(1) = 1 in [8], but changed to s(1) = 0 in [9]. The following table displays sd(n) for the
first few values of d and n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
s1 0 2 3 4 5 3 7 4 6 5 11 4 13
s2 0 4 9 12 25 9 49 16 27 25 121 13 169
s3 0 8 27 32 125 27 343 56 108 125 1331 39 2197
s4 0 16 81 80 625 81 2401 176 405 625 14641 113 28561

Table 1: Values of sd(n)

Before we now start to compute the number of Ψd(pm) poyfunctions in Gd(Zpm), it is useful
to include a general remark. The notion of the ring of polyfunctions G(Zn) generalizes in
a natural way to the ring G(R) of polyfunctions over an arbitrary ring R. If R and S are
commutative rings with unit element, then G(R ⊕ S) and G(R) ⊕ G(S) are isomorphic as
rings in the obvious way. In particular, since Zn⊕Zm

∼= Znm if m and n are relatively prime,
we have that G(Znm) ∼= G(Zn) ⊕ G(Zm) if (m, n) = 1.

Analogously in several variables, we have the decomposition Gd(Zmn) ∼= Gd(Zm)⊕Gd(Zn)
if (m, n) = 1. This means, e.g., that the number Ψd(n) of polyfunctions in Gd(Zn) is
multiplicative in n. Therefore, we may restrict ourselves to the case n = pm for p prime.
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Now, the strategy to count the number of polyfunctions is to seek a unique standard
representation of such functions by a polynomial. Such a representation is given in Proposi-
tion 5 below. Then, we will just have to count these representing polynomials. Let us first
consider the case of one variable. Obviously,

s1(n)∏

i=1

(x − i) =

(
x + s1(n)

s1(n)

)
s1(n)!

is a normed3 null-polynomial in G(Zn), and from Lemma 4 it follows in particular that there
is no polynomial of smaller degree with this property. Therefore, every polyfunction in one
variable over Zn has a (not necessarily unique) representing polynomial of degree strictly less
than s1(n) (and here s1(n) cannot be replaced by a smaller number). Basically by the same
argument, Lemma 4 allows us to construct a unique representation of every polyfunction in
d variables over Zpm .

Proposition 5 Every polyfunction f ∈ Gd(Zpm) has a unique representation of the form

f(x) ≡
m∑

i=1

pm−i
∑

k∈Sd(pi)

αkix
k (12)

where αki ∈ Zp.

Proof. It is common to write n =
∏

pνp(n) for the prime decomposition of a positive integer
n. We adopt this notation and write

νp(k!) = max{x ∈ N0 : px | k!}

for the number of factors p in k!. Notice that νp(k!) < i if and only if k ∈ Sd(pi). Then,
as an immediate consequence of Lemma 4, we obtain, that every polyfunction f ∈ Gd(Zpm)
has a unique representation of the form

f(x) ≡
∑

k∈Nd
0

νp(k!)<m

αkxk, (13)

where αk ∈ {0, 1, . . . , pm−νp(k!)−1}. Since, on the other hand, every number αk ∈ {0, 1, . . . ,
pm−νp(k!) − 1} has a unique representation of the form

αk =
∑

{i!m : k∈Sd(pi)}

pm−iαki

for certain coefficients αki ∈ Zp, we can rewrite (13) such that we obtain (12). !

As an immediate consequence of Proposition 5, we now get the formula for the number
of poyfunctions in the following theorem. Observe that we use the notation expp a := pa for
better readability.

3i.e., its leading coefficient is 1
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Theorem 6 The number of polyfunctions in Gd(Zpm), p prime, is given by

Ψd(p
m) = expp

( m∑

i=1

sd(p
i)
)
.

Example. To compute the number of polyfunctions Ψ2(8) in two variables over Z8, we need:

S2(2) = {〈k1, k2〉 : 0 ! k1 ! 1, 0 ! k2 ! 1}
s2(2) = 4

S2(4) = {〈k1, k2〉 : 0 ! k1 ! 3, 0 ! k2 ! 3, k1k2 < 4}
s2(4) = 12

S2(8) = {〈k1, k2〉 : 0 ! k1 ! 3, 0 ! k2 ! 3}
s2(8) = 16.

This gives Ψ2(8) = 24+12+16 = 232. ©

Notice that the formulas (13) and (12) reflect the structure of the additive group of
Gd(Zpm). In fact

Adk(Zpm) := {f ∈ Gd(Zpm) : f(x) ≡ αxk, α ∈ Zpm−νp(k!)} ∼= Zpm−νp(k!)

are additive subgroups in Gd(Zpm) and hence, by (13):

Proposition 7 (Gd(Zpm), +) ∼=
⊕

k∈Nd
0

νp(k!)<m

Zpm−νp(k!) .

As an immediate consequence of Theorem 6 and Proposition 7, we note the following identity:

Corollary 8
m∑

i=1

sd(p
i) =

∑

k∈Sd(pm)

(
m − νp(k!)

)
= m sd(p

m) −
∑

k∈Sd(pm)

νp(k!).

For completeness, we add an explicit formula for Ψd(n) = |Gd(Zn)| for general n. We start
from the identity

Ψd(n) = Ψd(
k∏

i=1

p
νpi (n)
i ) =

k∏

i=1

Ψd(p
νpi (n)
i ).

By taking the logarithm on both sides and using Theorem 6 we obtain

ln Ψd(n) =
k∑

i=1

ln Ψd(p
νpi (n)
i )

=
k∑

i=1

ln pi

νpi (n)∑

j=1

sd(p
j
i ). (14)
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Observe that the Mangoldt function

Λ : N → N, x '→
{

ln p if x = pk, p prime, k " 1

0 else

allows us to simplify (14) further and to obtain

ln Ψd(n) =
k∑

i=1

νpi (n)∑

j=1

sd(p
j
i )Λ(pj

i ).

Since the Mangoldt function is zero on all numbers which are not powers of primes, this last
expression can be interpreted as a sum over all divisors of n. Moreover, since Λ(1) = 0, the
value of sd(1) is irrelevant. Hence, using the Dirichlet convolution

(f ∗ g)(n) =
∑

d|n

f
(n

d

)
g(d)

with f ≡ 1 and g = sd Λ, we arrive at

ln Ψd(n) =
(
1 ∗ (sd Λ)

)
(n).

Hence, we have the following Theorem:

Theorem 9 The number Ψd(n) of polyfunctions in Gd(Zn), n > 1, is given by

Ψd(n) = e1∗(sd Λ)(n).

6. The Towers of Hanöı

The Smarandache function can be used to solve the Towers of Hanöı problem. In Theorem 6,
for p = 2 and one variable, we need the numbers

s(2k).

Let us consider the first difference sequence

ak := s(2k) − s(2k−1), k = 1, 2, 3, . . .

The sequence starts with

(ak)k∈N = (2, 2, 0︸︷︷︸
ε1

, 2, 2, 0, 0︸︷︷︸
ε2

, 2, 2, 0︸︷︷︸
ε3

, 2, 2, 0, 0, 0︸ ︷︷ ︸
ε4

, 2, 2, 0︸︷︷︸
ε5

, 2, 2, . . . ).
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Two 2s alternate with groups of εk 0s. The sequence

(εk)k∈N = (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5,

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, . . . ),

with the property that 2εk divides exactly 2k, is now indeed the solution of the Towers of
Hanöı. It provides the number of the disk, which is to be relocated in the k-th move.

Alternatively, knowing the solution of the Towers of Hanöı one has an efficient way to
compute s(2k).
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