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Abstract

Five new classes of Fibonacci-Hessenberg matrices are introduced. Further, we introduce
the notion of two-dimensional Fibonacci arrays and show that three classes of previ-
ously known Fibonacci-Hessenberg matrices and their generalizations satisfy this prop-
erty. Simple systems of linear equations are given whose solutions are Fibonacci fractions.

1. Introduction

The Fibonacci sequence is defined by f0 = 0, f1 = 1 and fn = fn−1 + fn−2, n ≥ 2. An
n×n matrix A is called a (lower) Hessenberg matrix if all entries above the superdiagonal
are zero. As an example set A1 = (1) and define An by:

An :=





2 1 0 · · · · · · 0

1 2 1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 2 1
1 · · · · · · · · · 1 1





n×n.

These matrices are Hessenberg and the determinant of An is the nth Fibonacci number
fn. Several Hessenberg matrices whose determinants are Fibonacci numbers have been
introduced in [1], [2], [4], and [5]. Strang [5] has introduced real tridiagonal matrices such
that their determinants are Fibonacci numbers, while in [2] we see complex Hessenberg
matrices with this property. It has been shown in [4] that the maximum determinant
achieved by n×n Hessenberg (0, 1)-matrices is the nth Fibonacci number fn and a class
of matrices (denoted in this paper by En,0) achieving this bound has been introduced.
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In this paper, we consider sequences of Hessenberg matrices whose determinants are
in the form tfn−1+fn−2 or fn−1+tfn−2 for some real or complex number t. Such matrices
will be referred to as Fibonacci-Hessenberg matrices.

In Section 2 we introduce five new classes of Fibonacci-Hessenberg matrices. As a new
concept, the two-dimensional Fibonacci array is introduced in Section 3. Three classes
of Fibonacci-Hessenberg matrices satisfying this property are given.

2. More Fibonacci-Hessenberg Matrices

As mentioned above, several connections between the Fibonacci sequence and Hessenberg
matrices have been given in [1], [2], [4], and [5]. In this section we develop some of these
connections and provide more examples.

The Fibonacci recurrence relation an = an−1 +an−2 beginning with a1 = 1 and a2 = t
produces the sequence 1, t, t + 1, 2t + 1, 3t + 2, 5t + 3, · · ·. Thus an = tfn−1 + fn−2 for
n ≥ 1 and an = fn if and only if t = 1. On the other hand, the sequence an = an−1 +an−2

starting at a1 = t and a2 = 1 satisfies an = tfn−2 + fn−1.

Definition 1 Given a real or complex number t and an integer n, we refer to numbers
tfn−1 + fn−2 and fn−1 + tfn−2 as type 1 and type 2, respectively, (t, n)-Fibonacci, briefly
t-Fibonacci, numbers. A sequence of Hessenberg matrices A1, A2, A3, · · ·, where An is
an n×n matrix, is defined to be a Fibonacci-Hessenberg matrix if there exists an integer
m > 0 and a number t such that, for each n ≥ m, the determinant of An is a t-Fibonacci
number and such that the determinants are of the same type.

Example 1 Given a number t, let Rn,t denote the n × n matrix given below.

Rn,t :=





2 1 0 · · · · · · 0

1 2 1
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 2 1
1 · · · · · · · · · 1 t + 1





n×n.

The determinant of Rn,t is denoted by rn,t. It can be shown that rn,t = tfn+1 +fn, n ≥ 1,
(see relation (10) in the proof of Theorem 2) and hence Rn,t is a Fibonacci-Hessenberg
matrix. Thus, for instance, rn,−1 = −fn+1 + fn = −fn−1; that is rn,−1 generates the
additive inverse of the Fibonacci sequence. The Lucas numbers are defined by l1 = 1,
l2 = 3 and ln = ln−1 + ln−2 for n > 2. One can easily verify by induction that ln =
fn−1 + fn+1. Hence rn,3 = 3fn+1 + fn = fn+1 + fn+3 = ln+2. For t = 0 we have rn,0 = fn,
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Table 1: Determinant rn,t for 1 ≤ n ≤ 5 and t = −1, 0, 1, 2, 3.

t\n 1 2 3 4 5

3 4 7 11 18 29
2 3 5 8 13 21
1 2 3 5 8 13
0 1 1 2 3 5
−1 0 −1 −1 −2 −3

while rn,1 = fn+1 + fn = fn+2 and rn,2 = 2fn+1 + fn = fn+3. These are illustrated by
Table 1.

Given a positive integer n, let Cn,t be the n×n matrix in which the entries below the
diagonal are 1, the lowest entry of the nth column is t + 1 and the other diagonal entries
are 2, the entries on the superdiagonal are −1 and the entries above the superdiagonal
are zero. Changing the first element of the first column in Cn,t to 2, we get another
Hessenberg matrix denoted by Bn,t. Matrices C5,t and B5,t are given below.

C5,t :=




2 −1 0 0 0
1 2 −1 0 0
1 1 2 −1 0
1 1 1 2 −1
1 1 1 1 t + 1



 B5,t :=




1 −1 0 0 0
1 2 −1 0 0
1 1 2 −1 0
1 1 1 2 −1
1 1 1 1 t + 1





Proposition 1 The determinant of Cn,t, denoted cn,t, is cn,t = f2n + tf2n−1, n ≥ 1, and
Bn,t has determinant bn,t = f2n−1 + tf2n−2, n ≥ 1.

Proof. We prove the statements by induction on n. It is obvious that these statements
hold for n = 1, 2. Suppose n ≥ 3. By the cofactor expansion along the first row we get
cn,t = 2cn−1,t + bn−1,t and bn,t = cn−1,t + bn−1,t. It follows from these two relations that

bn,t = cn,t − cn−1,t. (1)

Relations (1) and cn,t = 2cn−1,t + bn−1,t imply that cn,t = 3cn−1,t − cn−2,t. Using the
induction hypothesis we get

cn,t = 3cn−1,t − cn−2,t

= 3(f2n−2 + tf2n−3) − (f2n−4 + tf2n−5)
= (3f2n−2 − f2n−4) + t(3f2n−3 − f2n−5)
= f2n + tf2n−1.

Finally, it follows from bn,t = cn,t − cn−1,t and cn,t = f2n + tf2n−1 that
bn,t = f2n−1 + tf2n−2. !

The three classes of Fibonacci-Hessenberg matrices given above are generalizations of
matrices Dn, Cn, and Bn introduced in [1]. In fact the matrices Dn, Cn, and Bn given in
[1] are Rn,1, Cn,1, and Bn,1, respectively.
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Now we introduce five new classes of Fibonacci-Hessenberg matrices. Given a number
t, let Kn,t be the n × n Hessenberg matrix in which the superdiagonal entries are −1,
the entry located on the nth row and nth column is t + 1 and the other diagonal entries
are 2, and the entries on each column and below the diagonal are alternately −1 and 1
starting with −1. The matrix K5,t is given by (2).

Replacing the top-left entry (the entry located in the first row and first column) in
Kn,t with 1, we obtain another Hessenberg matrix denoted by Ln,t. Replacing the super-
diagonal entries in both Kn,t and Ln,t with 1, two more classes of Hessenberg matrices,
denoted Kn,t and Ln,t, respectively, are obtained.

K5,t =




2 −1 0 0 0

−1 2 −1 0 0
1 −1 2 −1 0

−1 1 −1 2 −1
1 −1 1 −1 t + 1



L5,t =




1 −1 0 0 0

−1 2 −1 0 0
1 −1 2 −1 0

−1 1 −1 2 −1
1 −1 1 −1 t + 1





K5,t =




2 1 0 0 0

−1 2 1 0 0
1 −1 2 1 0

−1 1 −1 2 1
1 −1 1 −1 t + 1



L5,t =




1 1 0 0 0

−1 2 1 0 0
1 −1 2 1 0

−1 1 −1 2 1
1 −1 1 −1 t + 1





(2)

Theorem 1 Let kn,t, ln,t, kn,t and ln,t denote the determinants of Kn,t, Ln,t, Kn,t and
Ln,t, respectively. Then






kn,t = fn + tfn+1, n ≥ 1;

{
l1,t = t + 1,
ln,t = kn−2,t = fn−2 + tfn−1, n ≥ 2;

kn,t = f2n + tf2n−1, n ≥ 1;

{
l1,t = 1 + t,
ln,t = kn−1,t + ln−1,t = f2n−1 + tf2n−2, n ≥ 2.

Therefore, the four introduced classes of Hessenberg matrices are indeed Fibonacci-
Hessenberg matrices.

Proof. The proof is by induction on n. Due to the similarity between matrices Kn,t (Ln,t)
and Kn,t (resp. Ln,t), we just prove the first two statements. It is easily verified that the
statements hold for 1 ≤ n ≤ 3. Assume that n ≥ 4. Using cofactor expansion along the
first row we obtain: {

ln,t = kn−1,t − ln−1,t, n ≥ 4;
kn,t = 2kn−1,t − ln−1,t, n ≥ 4.

(3)

Therefore,
ln,t = kn−1,t − ln−1,t

= (2kn−2,t − ln−2,t) − (kn−2,t − ln−2,t)
= kn−2,t.

(4)
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Relations (3) and (4) imply

kn,t = 2kn−1,t − ln−1,t = 2kn−1,t − kn−3,t, n ≥ 4. (5)

This, together with the induction hypothesis, result in:

kn,t = 2kn−1,t − kn−3,t = 2 (fn−1 + tfn) − (fn−3 + tfn−2)
= (fn−1 + fn−1 − fn−3) + (tfn + tfn − tfn−2)
= (fn−1 + fn−2 + fn−3 − fn−3) + (tfn + tfn−1 + tfn−2 − tfn−2)
= fn + tfn+1. !

Define E1,t = (t + 1) and E2,t =
(

1 1
0 t + 1

)
. Given the n × n matrix En,t, a new matrix

En+1,t is formed by adding one row of weight one and starting with 1 to the top of En,t

and then adding a new column with alternating 1’s and 0’s, starting with a 1, to the left
of the obtained matrix. The matrix E5,t is given below. The matrix En,0 was introduced
in [4] and it was shown in [4] that the determinant of En,0, n ≥ 1, is fn. Let i denote
the usual complex unit with i2 = −1. Replacing the entry of En,t located in the ith row
and (i + 1)th column, 1 ≤ i < n, with (−1)i+ni, we obtain another Hessenberg matrix
denoted by Hn,t. The matrix H5,t is shown below.

E5,t =




1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 1 0 1 1
1 0 1 0 t + 1



 H5,t =




1 i 0 0 0
0 1 −i 0 0
1 0 1 i 0
0 1 0 1 −i
1 0 1 0 t + 1





Proposition 2 The determinants of En,t and Hn,t, denoted by en,t and hn,t, respectively,
are e1,t = h1,t = t + 1 and en,t = hn,t = tfn−1 + fn for n ≥ 2. Thus En,t and Hn,t are
Fibonacci-Hessenberg matrices.

Proof. Consider Hn,t. Obviously we have h1,t = h2,t = t + 1 and h3,t = 2t + 3. Suppose
n ≥ 4 and that the statement holds for each integer 0 < m < n. Let H′

n,t be the
matrix obtained from Hn,t by means of deleting the first row and second column. It
is easy to see that using cofactor expansion along the first row on both Hn,t and H′

n,t

results in hn,t = hn−1,t + hn−2,t. Therefore, it follows from the induction hypothesis that
hn,t = hn−1,t +hn−2,t = (tfn−2 + fn−1)+ (tfn−3 + fn−2) = tfn−1 + fn. The same argument
applies to En,t. !

3. Two-dimensional Fibonacci Arrays

From among the introduced Fibonacci matrices, the matrices Rn,t, Cn,t and En,t have a
further interesting property. Given an n× n matrix M, let M(i) be the matrix obtained
from M by replacing its ith column with the all one column vector 1. The mentioned
matrices have the property that the determinants of their associated matrices R(i)

n,t, C
(i)
n,t
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and E (i)
n,t, 1 ≤ i ≤ n, are t-Fibonacci numbers. This leads to a connection between

Fibonacci fractions and the all one vector 1.

Theorem 2 Let r(i)
n,t, c(i)

n,t and e(i)
n,t be determinants of R(i)

n,t, C(i)
n,t and E (i)

n,t, respectively.
Then we have 





r(i)
n,t = tfn−i + fn−i−1, n ≥ i ≥ 1;

rn,t = t +
∑n

i=1 r(i)
n,t;

c(i)
n,t = f2(n−i)+1 + tf2(n−i), n ≥ i ≥ 1;

cn,t = t +
∑n

i=1 c(i)
n,t;

e(1)
1,t = 1; e(1)

n,t = tfn−3 + fn−2, n ≥ 2;

e(i)
n,t = tfn−i + fn−i+1, n ≥ i ≥ 2;

2en,t = (t + 1) +
∑n

i=1 e(i)
n,t, n ≥ 2.

(6)

Proof. We use induction on n to prove the statements related to the Fibonacci-Hessenberg
matrices Rn,t; similar arguments apply to the other two classes of matrices. Setting f0 = 0
and f−1 = 1, it is easy to verify that the statements hold for 1 ≤ n ≤ 3. Evaluating
the determinants of matrices Rn,t and R(1)

n,t by cofactor expansion along the first row, we
have {

r(1)
n,t = rn−1,t − r(1)

n−1,t, n ≥ 3;

rn−1,t = 2rn−2,t − r(1)
n−2,t, n ≥ 3.

(7)

Therefore,
r(1)
n,t = rn−1,t − r(1)

n−1,t

=
(
2rn−2,t − r(1)

n−2,t

)
−

(
rn−2,t − r(1)

n−2,t

)

= rn−2,t.

(8)

It follows from (7) and (8) that

rn,t = 2rn−1,t − r(1)
n−1,t = 2rn−1,t − rn−3,t, n ≥ 3. (9)

This together with the induction hypothesis result in

rn,t = 2rn−1,t − rn−3,t

= 2 (tfn + fn−1) − (tfn−2 + fn−3)
= t(2fn − fn−2) + (2fn−1 − fn−3)
= tfn+1 + fn,

(10)

and hence
r(1)
n,t = rn−2,t = tfn−1 + fn−2. (11)

By cofactor expansion along the first row, one can easily verify that r(i)
n,t = r(i−1)

n−1,t if
2 ≤ i ≤ n − 1, and thus

r(i)
n,t = rn−i−1,t = tfn−i + fn−i−1, 2 ≤ i ≤ n − 1. (12)
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The augmented matrices obtained from a given matrix M by adding the all one column
vector 1 to the left and the right of M are denoted by 1M and M1, respectively.
Evaluating the determinants by using cofactors along the first row, we obtain r(n)

n,t =

2r(n−1)
n−1,t + (−1)n+1det(1M) where M1 is the matrix R(n−1)

n−1,t . Therefore,

r(n)
n,t = 2r(n−1)

n−1,t + (−1)2n−1r(n−1)
n−1,t = r(n−1)

n−1,t = 1 = tf0 + f−1. (13)

It is easily checked by induction on n that
∑n

j=−1 fj = fn+2. This together with the

equations rn,t = tfn+1 + fn and r(i)
n,t = tfn−i + fn−i−1 imply that rn,t = t +

∑n
i=1 r(i)

n,t. !

Corollary 1 (Fibonacci Fractions and Hessenberg Matrices) The system of equations
Rn,tx = 1 has the unique solution

xi =
fn−i−1 + tfn−i

fn + tfn+1
, 1 ≤ i ≤ n. (14)

Similarly, the system of equations Cn,tx = 1 has the solution

xi =
f2(n−i)+1 + tf2(n−i)

f2n + tf2n−1
, 1 ≤ i ≤ n. (15)

We also have x1 = tfn−3+fn−2

tfn−1+fn
and xi = tfn−i+fn−i+1

tfn−1+fn
, 2 ≤ i ≤ n, as the unique solution of

En,tx = 1.

Proof. It follows from (6) and Cramer’s rule that the system Rn,tx = 1 has unique

solution xi =
r
(i)
n,t

rn,t
= fn−i−1+tfn−i

fn+tfn+1
, 1 ≤ i ≤ n. The same argument applies to the systems

Cn,tx = 1 and En,tx = 1. !

In particular, according to (14), for t = 0, 1, 2 the system Rn,tx = 1 has solutions:






xi = fn−i−1

fn
, t = 0;

xi = fn−i+fn−i−1

fn+1+fn
= fn−i+1

fn+2
, t = 1;

xi = 2fn−i+fn−i−1

2fn+1+fn
= fn−i+2

fn+3
, t = 2.

It also follows from (15) that for t = 0, 1, 2 the system Cn,tx = 1 has solutions






xi =
f2(n−i)+1

f2n
, t = 0;

xi =
f2(n−i+1)

f2n+1
, t = 1;

xi =
f2(n−i+1)+f2(n−i)

f2n+1+f2n−1
, t = 2.

Consider the n × n Fibonacci-Hessenberg matrix Rn,t. For 1 ≤ i ≤ n we have r(i)
n,t =

tfn−i + fn−i+1. This t-Fibonacci number depends on both n and i, and hence we have a
two-dimensional array r(n, i; t) of t-Fibonacci numbers.
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Table 2: The Values of r(i)
n,t for 1 ≤ n, i ≤ 6.

n\i 1 2 3 4 5 6

1 tf0 + f−1

2 tf1 + f0 tf0 + f−1

3 tf2 + f1 tf1 + f0 tf0 + f−1

4 tf3 + f2 tf2 + f1 tf1 + f0 tf0 + f−1

5 tf4 + f3 tf3 + f2 tf2 + f1 tf1 + f0 tf0 + f−1

6 tf5 + f4 tf4 + f3 tf3 + f2 tf2 + f1 tf1 + f0 tf0 + f−1

Table 3: The Values of r(i)
n,1 for 1 ≤ n, i ≤ 6.

n\i 1 2 3 4 5 6

1 1
2 1 1
3 2 1 1
4 3 2 1 1
5 5 3 2 1 1
6 8 5 3 2 1 1

Table 2 represents r(n, i; t) for 1 ≤ n, i ≤ 6. Asymptotically, all rows and columns of
the array r(n, i; t) are the same. Table 3 represents r(n, i; 1) for 1 ≤ n, i ≤ 6. For a fixed
n the nth row of the array consists of the first n Fibonacci numbers and, for each i, the
ith column, starting at the ith entry, is also the Fibonacci sequence.

In the context of systems theory [3], we may consider the determinant function as an

operator and interpret r(n, i; t) = Det(R(i)
n,t) as a two-dimensional system. The results

show that this system is invariant in the sense that its output is always a t-Fibonacci
number. We can also say that the system is invariant with respect to fixing any of the
two variables n and i; that is, its output with a fixed n is identical to the output when i
is fixed and n varies.
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