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Abstract

Let a and m be integers such that (a, m) = 1. Let qa = aφ(m)−1
m . We call qa the Euler Quotient

of m with base a. This is called the Fermat Quotient when m is a prime. We consider some
properties of the matrix of Euler Quotients reduced modulo m and show that these quotients
are uniformly distributed modulo m.

1. Introduction

Let m and a be integers such that (m, a) = 1. Let qa = aφ(m)−1
m . We call qa the Euler Quotient

of m with base a. This is called the Fermat Quotient when m is a prime.

The following theorem summarizes some of the logarithmic properties of qa.

Theorem 1.1 Let a, b ∈ Z and r ∈ N with (a, m) = (b, m) = 1. Then

(a) q1 ≡ 0 mod m

(b) qab ≡ qa + qb mod m

(c) qar ≡ rqa mod m

Additional properties of qa are given by the following generalization of a theorem of Wells [4].
It provides conditions when qa vanishes modulo m.

Theorem 1.2 Let (a, m) = 1. If l and t are integers with (l, m) = 1 and α is a positive
integer, then for a = l + tmα

qa ≡ ql mod m +
φ(m)t

l
mα−1 (mod mα).
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2. The Euler Quotient Matrix

Let a be the ith integer such that 1 ≤ a ≤ m and (a, m) = 1. The Euler Quotient Matrix,
Mm, is the m×φ(m) matrix where the entries in column i are the least non-negative residues
of qk(mod m) for k ≤ m2 and k ≡ a(mod m). To be more precise we may call this the order
2 matrix and define the order r matrix for k ≤ mr, r = 1, 2 . . . , to be the mr−1 × φ(m)
matrix Mmr .

Example 2.1 The Euler Quotient Matrices for m = 7, 12 and 9 are given below.

a= 1 2 3 4 5 6
1 0 2 6 4 6 1
2 6 5 1 2 3 2
3 5 1 3 0 0 3
4 4 4 5 5 4 4
5 3 0 0 3 1 5
6 2 3 2 1 5 6
7 1 6 4 6 2 0

a= 1 5 7 11
1 0 4 8 8
2 4 0 0 4
3 8 8 4 0
4 0 4 8 8
5 4 0 0 4
6 8 8 4 0
7 0 4 8 8
8 4 0 0 4
9 8 8 4 0
10 0 4 8 8
11 4 0 0 4
12 8 8 4 0

a= 1 2 4 5 7 8
1 0 7 5 8 4 3
2 6 1 2 2 1 6
3 3 4 8 5 7 0
4 0 7 5 8 4 3
5 6 1 2 2 1 6
6 3 4 8 5 7 0
7 0 7 5 8 4 3
8 6 1 2 2 1 6
9 3 4 8 5 7 0

Definition 2.2 Let πi be the maximum size of the blocks of non-repeated entries in the
ith column. We call πi the period of column i.

Theorem 2.3 The period of column i is given by πi = m
(φ(m),m) for all i ≤ φ(m).

Proof. Suppose column i contains the least non-negative residue of qa(mod m) such that
a ≡ l + tm, l < m and (l, m) = 1. Then by Theorem 1.2, taking α = 1, we have qa ≡
ql + φ(m)tl−1(mod m). The residues of qa and ql are equal precisely when m divides φ(m)t.
This occurs for the first time when t = m

(φ(m),m) and subsequently for every integer multiple
of t. Thus period of column i, πi = m

(φ(m),m) .

Definition 2.4 We define the period of Mm to be the period of each column. That is,
period of Mm is given by πm = m

(φ(m),m) .

Let Am
r = {qa mod m : 0 ≤ a < mr}. It is of interest to know the size of Am

r . We list some
properties of Am

r .

(a) When m = p, a prime and r = 1, Vandiver [5] showed that
√

p ≤ |Ap
1| ≤ p − (1 +√

2p − 5)/2.

(b) When r = 2 and m is a prime or a strong psuedoprime |Am
2 | = m.
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(c) I don’t know of any bounds apart from the trivial bounds for |Am
1 | when m is not

prime.

(d) Let m be an integer with m > 2. Then we have that

m

(m, φ(m))
≤ |Am

2 | ≤
m

(m, φ(m))

φ(m)

2
.

We note that these bounds are the best possible. For example, when m is a prime, m =
4, or m = 12, the lower bound is achieved. When m = 3α, α ≥ 2, the upper bound is
achieved.

In fact we have
m

(m, φ(m))
≤ |Am

r | ≤
m

(m, φ(m))

φ(m)

2

whenever r ≥ 2.

Another area of interest is the vanishing of the quotients modulo m.

The following theorem appearing in [1] characterizes the elements of Mm and gives a formula
for the number of vanishing quotients modulo m in Mm.

Theorem 2.5 Let m = pα1 . . . pαk be the prime factorization of the integer m ≥ 2 and q
the homomorphism from (Z/m2Z)× into (Z/mZ, +) induced by the Euler quotient of m. For
1 ≤ r ≤ k put mr = pαr and

dr =

{
(mr, 2

∏k
j=1(pj − 1), when mr = 2αr ; αr ≥ 2,

(mr,
∏k

j=1(pj − 1), otherwise.

Let d =
∏k

r=1 dr. Then the image q((Z/m2Z)×) equals {td + mZ : 0 ≤ t ≤ (m/d) − 1}; it is
therefore isomorphic to (Z/(m/d)Z, +) for m > 2.

The above theorem immediately leads to the fact that the number of quotients to vanish
modulo m in Mm is dφ(m). A quick glance at the matrices for m = 7, 12 and 9 shows that a
matrix may have columns containing no vanishing quotients. Using the period of the Euler
quotient matrix and the total number of zero entries we obtain the following.

Theorem 2.6 Let d be as defined in Theorem 2.5 and m ≥ 2 be an integer. Then the
number of columns of Mm containing zeros is given by dφ(m)

(φ(m),m) .

Proof. The proof is just to recognize that the number of zeros in each column with a zero is
given by m

πm
= (φ(m), m). Now, by Theorem 2.5 the total number of zeros in Mm is dφ(m).

Thus, there are exactly dφ(m)
(φ(m),m) columns with a least one zero.

The formula for the number of columns without zeros is more interesting. This is given
by φ(m)(1 − d

(φ(m),m)). If one notes that when m is a prime or a strong pseudoprime d =

(φ(m), m) = 1, then the term d
(φ(m),m) can be considered as measure of the primeness of m.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A36 4

3. Sum of Quotients in the Columns and Rows of Mm

In the next two theorems we, respectively, show that the sum of the entries in each column
of Mm is congruent to 0 modulo m and that all rows sum to the same constant modulo m.

Theorem 3.1 Let 1 ≤ a < m with (a, m) = 1. If k < m2 and k ≡ a(mod m), then
∑

k≡a (mod m)

qk ≡ 0 (mod m).

Proof. Let k = a + im, i < m. Then

∑

k≡a (mod m)

qk =
1

m

m−1∑

i=0

(a + im)φ(m)−1 =
m−1∑

i=0

qa +

(
φ(m)

1

) m−1∑

i=0

i aφ(m)−1 +

m

{ (
φ(m)

2

) m−1∑

i=0

i2 aφ(m)−2 + · · · +
(

φ(m)
φ(m)

) m−1∑

i=0

i2(mi)φ(m)−2

}

= mqa + φ(m)m(m − 1)aφ(m)−1 ≡ 0 (mod m)

Theorem 3.2
(k+1)m−1∑

a=km+1
(a,m)=1

qa ≡
m−1∑

a=1
(a,m)=1

qa(mod m), for each k ∈ {1, 2, . . . , m − 1}.

Proof. For any k ∈ {1, 2, . . . , m − 1} we have

(k+1)m−1∑

a=km+1
(a,m)=1

qa =
m−1∑

a=1
(a,m)=1

(km + a)φ(m) − 1

m

= †
1

m

{
φ(m)mφ(m) +

(
φ(m)

1

) ∑

a<m
(a,m)=1

mφ(m)−1a +

(
φ(m)

2

) ∑

a<m
(a,m)=1

mφ(m)−2a2 + · · · +

(
φ(m)

φ(m) − 1

) ∑

a<m
(a,m)=1

m aφ(m)−1 +
∑

a<m
(a,m)=1

(aφ(m) − 1)

}

= φ(m)mφ(m)−1 + mφ(m)−2

(
φ(m)

1

) ∑

a<m
(a,m)=1

a + mφ(m)−3

(
φ(m)

2

) ∑

a<m
(a,m)=1

a2 + · · · +

φ(m)
∑

a<m
(a,m)=1

aφ(m)−1 +
∑

a<m
(a,m)=1

qa

≡
∑

a<m
(a,m)=1

qa (mod m).

1† From this point on we suppressed, without loss, the use of k in the proof.
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4. Equidistribution of the Euler Quotients

A result due to Heath-Brown [3] shows that the Fermat Quotients are uniformly distributed
mod p for 1 ≤ a < p. This result generalized nicely to the Euler Quotients. We obtain

Theorem 4.1 For any integers a, h with (a, m) = (h, m) = 1, we have

∑

M<a<M+N
(a,m)=1

exp(
hqa

m
) ( N1/2m3/8 uniformly for M, N ≥ 1.

In particular
∑

a<m
(a,m)=1

exp(
hqa

m
) ( m7/8 uniformly.

Proof. The proof is similar to that of Heath-Brown [3]. From Theorem 1.1 we have qab ≡
qa + qb(mod m) whenever (a, m) = (b, m) = 1. Thus

χ(a) =

{
0, (a, m) )= 1

exp(hqa

p ), (a, m) = 1.

is a non-principal character of order m. Hence we have

∑

M<a<M+N

exp(
hqa

m
) =

∑

M<a<M+N

χ(a).

Now Burgess [2] proved that for composite modulus m

∑

M<a<M+N

χ(a) ( N1/2m3/8.

Taking M = 1 and N = m, we obtain

∑

a<m
(a,m)=1

exp(
hqa

m
) ( m7/8, uniformly.
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