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Abstract

We prove that if q is a power of a prime p and pk divides a, with k ≥ 0, then

1 + (q − 1)
∑

0≤b(q−1)<a

(
a

b(q − 1)

)
≡ 0 (mod pk+1).

The special case of this congruence where q = p was proved by Carlitz in 1953 by means
of rather deep properties of the Bernoulli numbers. A more direct approach produces our
generalization and several related results.

1. Introduction

Sums of binomial coefficients of the form

∑

b

(
a

b d + r

)
= |{X ⊆ {1, . . . , a} : |X| ≡ r (mod d)}|

occur in combinatorics and number theory. Several classical results give information on the
values of such sums modulo a prime or prime power. One of the oldest results of this type is
due to Hermite, who proved in 1876 that (in modern notation) a prime p divides

∑
b>0

(
a

b(p−1)

)

if a is a positive odd integer (cf. [Dic66, p. 271]). Hermite’s result was then generalized in
a number of directions, the earliest due to Glaisher in 1899 (cf. [Dic66, p. 272]). Glaisher
showed that

∑

b≥0

(
a

b(p − 1) + r

)
≡

(
ā

r

)
(mod p) (1)
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for p a prime, a a positive integer, and 1 ≤ r ≤ p − 1, where ā denotes the smallest positive
integer congruent to a modulo p − 1. This can also be formulated by saying that the value
modulo p of the left member of (1) is a periodic function of a > 0 with period p−1. A proof
of Glaisher’s result based on Lucas’ theorem for evaluating binomial coefficients modulo a
prime can be found in [Gra97, Section 6], but see the Introduction of [Sun] for a simpler
proof. In Section 2 we present an easy generalization of Glaisher’s result which gives an
efficient formula for the value modulo p of the sum

∑
b

(
a

b d+r

)
, where d is any integer prime

to p.

In 1953 Carlitz [Car53] generalized Hermite’s theorem to a prime power modulus by
showing that

p + (p − 1)
∑

0<b(p−1)<a

(
a

b(p − 1)

)
≡ 0 (mod pk+1) (2)

if p is an odd prime and pk divides the positive integer a. (This is trivially true also for
p = 2, because the left member equals 2a in this case.) Unlike the proofs mentioned above
of Glaisher’s congruence (1), Carlitz’s proof of (2) is quite sophisticated. It relies on certain
congruences satisfied by the Bernoulli numbers, namely that Bm/m is a p-adic integer if
(p − 1) ! m, see [IR90, p. 238], and that (Bm + p−1 − 1)/m is a p-adic integer if (p − 1) | m,
see [IR90, p. 247], the latter result being due to Carlitz himself. It seems that no other proof
of Carlitz’s congruence has ever appeared, except for the special case where p− 1 divides a,
which follows from [ST, Corollary 1.1].

It appears most natural to prove Carlitz’s congruence (2) by multisection of series. In
fact, this route allows us to prove the following generalization, which does not seem amenable
to Carlitz’s original approach.

Theorem 1 If q is a power of a prime p and pk divides a, with k ≥ 0, then

1 + (q − 1)
∑

0≤b(q−1)<a

(
a

b(q − 1)

)
≡ 0 (mod pk+1).

Although our approach does not allow an evaluation modulo pk+1 (for k > 0) of the more
general sum

∑
b

(
a

b(q−1)−r

)
where r is any integer (except for the case where q − 1 divides a,

considered in Corollary 3 below), it does produce the following remarkable symmetry.

Theorem 2 Let p be a prime, q = pf , let h, k be nonnegative integers with h ≥ k and
f | h + k, and let r, s be positive integers. Then we have

(−1)p s
∑

b

(
s pk

b(q − 1) − r

)
≡ (−1)p r

∑

b

(
r ph

b(q − 1) − s

)
(mod pk+1).
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The case of Theorem 2 where q − 1 divides s has the following consequence, which
complements Theorem 1 in the special case where q − 1 divides a.

Corollary 3 If q is a power of a prime p, the number (q − 1)pk divides a, with k ≥ 0, and
q − 1 does not divide r, then

(q − 1)
∑

b

(
a

b(q − 1) − r

)
≡ −(−1)p r (mod pk+1).

Carlitz went further in [Car53] by evaluating the left member of his congruence (2) modulo
pk+2, in terms of the Bernoulli numbers B2s and Wilson’s quotient wp = ((p − 1)! + 1)/p.
With notation slightly adapted to our present needs, Carlitz’s result reads

p−k−1

{
1 + (p − 1)

∑

0≤b(p−1)<spk

(
spk

b(p − 1)

)}

≡ s

{
1

2
−

∑

0<2j<spk

p−1!2j

(
spk − 1

2j − 1

)
B2j

2j
+ δs

wp

p − 1

}
(mod p) (3)

for p ≥ 3 (although stated for p > 3 in [Car53], see the beginning of our Section 4), where
δs = 1 if p − 1 | s − 1 and δs = 0 otherwise.

Congruence (3) is useless for the purpose of a fast evaluation modulo p of its left member,
because its right member is more complicated than the former, and contains more summands.
The first of our couple of contributions to (3) is a proof that the value modulo p of the left
member of (3) is actually independent of k, which is not apparent from the form of the right
member. In particular, the left member can be most conveniently evaluated modulo p by
replacing k with 0, thus reducing the summation to about s/(p − 1) binomial coefficients.
Although the deeper connection with Bernoulli numbers shown by Carlitz’s sharper congru-
ence (3) does not extend in an obvious way with a prime power q replacing p, we keep with
the spirit of our previous results by allowing a prime power q in place of p.

Theorem 4 Let q = pf be a power of a prime p, and let s be a positive integer. Then the
value modulo p of the expression

p−k−1

{
1 + (q − 1)

∑

0≤b(q−1)<spk

(
spk

b(q − 1)

)}
,

as a function of k ≥ 0 (but k ≥ 2 if p = 2 and s = 1), depends only on the remainder of k
modulo f .

It is quite easy to see, in a way which we point out in Remark 11, that when p is odd the
value modulo p of the expression considered in Theorem 4 is also a periodic function of s > 0,
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with period dividing (q−1)p. Thus, one only needs consider the range 0 < s ≤ (q−1)p. Our
final result displays a symmetry in the dependency on s which allows one to further restrict
this range in certain cases. This is the only one among our results where we need to assume
the prime p to be odd. We expand on the reasons for this after its proof in Section 4.

Theorem 5 Let q = pf be a power of an odd prime p, and let k be a nonnegative integer.
Then the value modulo pk+2 of the expression

1 + (q − 1)
∑

0≤b(q−1)<spk

(
spk

b(q − 1)

)

is unaffected by replacing the positive integer s with pt − s, where t is any integer such that
pt > s and f | k + t.

Computer calculations performed by means of the symbolic manipulation package MAPLE
have been extremely useful for discovering and checking congruences, notably those of The-
orems 4 and 5.

2. Glaisher’s congruence

A standard way of dealing with sums like that of Glaisher is based on the identity

∑

b

(
a

bd + r

)
xbd+r =

1

d

d−1∑

j=0

ω−ir(1 + ωix)a (4)

in the polynomial ring F [x], where F is any field containing a primitive dth root of unity ω.
This is identity (1.53) in [Gou72] (where F is the complex field and ω = exp(2πi/d)), and
follows by applying the more general formula for multisection of series [Com74, Chapter 1,
Exercise 26] to the generating function of the binomial coefficients, (1 + x)n =

∑
m

(
n
m

)
xm.

Here we follow the standard convention that unrestricted summation indices run over the
integers; however, the sum in (4) is a finite sum since a is positive integer, if

(
a
c

)
is defined to

be 0 for c < 0, as usual. The following result is the generalization of Glaisher’s congruence
announced in the Introduction.

Proposition 6 Let p be a prime, let a and d be positive integers with p ! d, and let r be an
integer. If f is the period of p modulo d and ā is the smallest positive integer congruent to
a modulo pf − 1, then we have

∑

b

(
a

bd + r

)
≡

∑

b

(
ā

bd + r

)
(mod p).
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In particular, for d = q − 1 with q a power of p we have

∑

b

(
a

b(q − 1) + r

)
≡

(
ā

r

)
+

(
ā

r + q − 1

)
(mod p).

First proof. Let ω a primitive dth root of unity in the finite field of q = pf elements Fq. By
evaluating identity (4) for x = 1 we obtain

∑

b

(
a

bd + r

)
=

1

d

∑

α∈〈ω〉

α−r(1 + α)a.

The desired conclusion follows since the right member of the equality, as a function of the
positive integer a, depends only on the value of a modulo q − 1. !

We give another proof which does not use multisection of series.

Second proof. The sum
∑

b

(
a

bd+r

)
equals the coefficient of xr in the reduction of (1 + x)a

modulo xd − 1. If d divides q − 1, then xd − 1 divides xq−1 − 1, and we have

(1 − x)q = 1 − xq ≡ 1 − x (mod xd − 1).

Consequently, (1 − x)a+(q−1) ≡ (1 − x)a (mod xd − 1) if a > 0, and the desired conclusion
follows. !

Remark 7 The general case of Proposition 6 can also be deduced from its special case
d = q − 1, by writing

∑
b

(
a

bd+r

)
as

(q−1)/d∑

j=1

∑

b

(
a

b(q − 1) + r + jd

)
,

where d divides q − 1.

3. Carlitz’s congruence

Carlitz’s congruence can be read as an equality in the ring Z/pk+1Z. We could then prove it
by applying a version of identity (4) over this ring. In fact, it is easily shown that identity (4)
holds in the polynomial ring R[x], where R is any commutative ring such that d·1 is invertible
in R, and ω is a unit of R such that ωd = 1 but ωi−1 is not a zero-divisor of R for 0 < i < d.
Instead of this approach, we adopt here the equivalent but more standard way of working
in the (algebraic) integers and computing modulo pk+1. Nevertheless, a crucial ingredient of
our proof of Carlitz’s congruence would be the following basic fact concerning the finite ring
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Z/pk+1Z, for p odd [IR90, Chapter 4]: its group of units is the direct product of two cyclic
groups, one of order p − 1 and one of order pk.

In order to generalize Carlitz’s congruence and prove Theorem 1 we need a corresponding
result for the ring R = O/pk+1O, where ω is a primitive complex (q − 1)-th root of unity
and O is the ring of integers in the cyclotomic field Q(ω). Note that O/pO is the field of q
elements Fq.

Lemma 8 The group of units of R = O/pk+1O, for k ≥ 0, is the direct product of a cyclic
group of order q−1 and the group 1+pR of order qk. When p is odd the latter is isomorphic
with the additive group pR, and hence has exponent pk. When p = 2, the group 1+2R is the
direct product of its subgroup {±1} and a subgroup isomorphic with a subgroup of index two
of the additive group 2R; in particular, 1 + 2R has exponent 2k−1 if q = 2, and 2k if q > 2.

One can prove Lemma 8 in an elementary way by induction on k and similar calculations
as those performed in the standard proof, given in [IR90, Chapter 4, §1], of its special case
where q = p (namely, Equation (5) in our proof of Theorem 4 in the next section). Such a
proof can be found in [McD74], for example, where our Lemma 8 appears as Theorem XVI.9,
viewing R as the Galois ring GR(pk+1, f). However, the following proof in the context of
local fields seems more illuminating.

Proof. The finite quotient ring R is unaffected if we replace Q(ω) with its completion Qp(ω)
with respect to the prime divisor pO. In other words, we may work in the algebraic closure
Cp of the field Qp of p-adic numbers, and let ω be a primitive (q − 1)th root of unity in Cp.
Then K = Qp(ω) is an unramified extension of Qp of degree f , hence with residue field Fq.
If O = {x ∈ K : vp(x) ≥ 0} is the valuation ring of K, and P = {x ∈ K : vp(x) ≥ 1} is the
maximal ideal of O, then O/P k+1 ∼= O/pk+1O = R.

According to [Rob00, (III.4.4)], the group of units of O splits into a direct product
µq−1 × (1 + P ), where µq−1 is the group of (q − 1)th roots of unity in Cp, which is generated
by ω. Suppose first that p is odd. Since 1 + P does not contain any nontrivial root of unity
with p-power order, [Rob00, (V.4.2)] shows that the logarithm map

1 + γ )→
∑

j≥0

(−1)j−1γj/j

maps the multiplicative group 1 + P isomorphically and isometrically onto the additive
group P . In particular, it maps 1 + P j onto P j, for all positive integers j. Consequently,
the logarithm map induces an isomorphism of the multiplicative group (1 + P )/(1 + P k+1)
onto the additive group P/P k+1 ∼= pR. However, (1 + P )/(1 + P k+1) is the image of 1 + P
in the quotient ring O/P k+1, and hence is isomorphic with 1 + pR, as claimed.

Suppose now that p = 2, and assume that k > 0 as we may. Again according to [Rob00,
(V.4.2)], the logarithm map gives a group homomorphism of 1 + P into P with kernel
µ2 = {±1}, which is the set of roots of unity of 2-power order in 1 + P . Its restriction
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to 1 + P 2 is an isometry onto P 2, and hence maps 1 + P j bijectively onto P j for every
j ≥ 2. Because the index q of 1 + P 2 in 1 + P equals the index of P 2 in P , the logarithm
maps 1 + P onto a subgroup of index two of P . Since, as before, 1 + 2R is isomorphic with
(1 + P )/(1 + P k+1), its quotient (1 + 2R)/{±1} is isomorphic with a subgroup of index two
of 2R, call it A. This leaves only two possibilities for the group structure of 1 + 2R: either
it is isomorphic with 2R, or it is the direct product of its subgroup {±1} and a subgroup
isomorphic with A. The former possibility would entail that −1, being an element of order
two, should belong to (1 + 2R)2 ≤ 1 + 4R, and is therefore to be excluded. !

The crucial part of Lemma 8 needed in the following proofs is the fact that the exponent
of 1 + pR divides pk.

Proof of Theorem 1. Let ω be a primitive complex (q − 1)-th root of unity and let O be the
ring of integers in the cyclotomic field Q(ω). According to identity (4) evaluated for x = 1,
in O we have

1 + (q − 1)
∑

0≤b(q−1)≤a

(
a

b(q − 1)

)
=

∑

α∈µq−1∪{0}

(1 + α)a,

where µq−1 = 〈ω〉. Since the elements α ∈ µq−1 ∪ {0} are a set of representatives for the
cosets of the additive subgroup pO of O, so are the elements 1 + α.

Now view the above equality in the quotient ring R = O/pk+1O, denoting by µ̄q−1 the
image of µq−1 in R. In particular, because β(1+pR) = β +pR for β ∈ R, the elements 1+α
for α ∈ µ̄q−1 ∪ {0} \ {−1} are a set of representatives for the cosets of 1 + pR in the group
of units U of R. According to Lemma 8, the group U is the direct product of its subgroups
µ̄q−1 and 1 + pR, and the latter has exponent pk (or pk−1 when q = 2, a trivial case here).
Consequently, if β ranges over a set of representatives for the cosets of 1+pR in U , then βpk

ranges over the elements of µ̄q−1. Taking into account also the case where α = −1, it follows
that the elements (1 +α)pk

for α ∈ µ̄q−1 ∪ {0} are distinct and coincide with the elements of
µ̄q−1 ∪ {0}. Hence, in the ring R we have

1 + (q − 1)
∑

0≤b(q−1)≤a

(
a

b(q − 1)

)
=

∑

γ∈µ̄q−1∪{0}

γa/pk
=

{
0 if (q − 1) ! a,

q − 1 if (q − 1) | a.

In both cases it follows that

1 + (q − 1)
∑

0≤b(q−1)<a

(
a

b(q − 1)

)
= 0

in R, which is equivalent to the desired conclusion. !

In general, it does not seem possible to evaluate similarly modulo pk+1 the more compli-
cated right member of the identity

∑

b

(
a

b(q − 1) − r

)
=

1

q − 1

∑

α∈µq−1

αr(1 + α)a.
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However, one can somehow interchange the roles of the elements α and 1+α in this formula,
as in the following proof.

Proof of Theorem 2. We adopt the same setting and notation as in the proof of Theorem 1.
We postpone consideration of the case p = 2 to the end of the proof and assume for now
that p is odd.

Let α ∈ µ̄q−1 \ {−1} and consider the element β = (−1 − α)pk
of R. It is invertible and

different from −1, because β ≡ −1 − αpk .≡ 0,−1 (mod P̄ ), where P̄ denotes the image of
P in R, the unique maximal ideal of R. Lemma 8 then implies that β has multiplicative
order dividing q − 1, and hence belongs to µ̄q−1 \ {−1}. Hence the correspondence α )→ β =
(−1− α)pk

maps µ̄q−1 \ {−1} into itself, and so does the map β )→ α = (−1− β)ph
, because

h ≥ k. We claim that these maps are inverse of each other.

In fact, if β = (−1 − α)pk
then (−1 − β)ph ≡ (αpk

)ph
= α (mod P̄ ), because αq = α.

Since both (−1− β)ph
and α belong to µ̄q−1, the congruence must be an equality. Thus, the

correspondence α )→ β = (−1 − α)pk
is a permutation of µ̄q−1 \ {−1}.

Consequently, in R we have

(−1)ps
∑

b

(
spk

b(q − 1) − r

)
=

1

q − 1

∑

α∈µ̄q−1\{−1}

αr(−1 − α)spk

=
1

q − 1

∑

β∈µ̄q−1\{−1}

(−1 − β)rph
βs

= (−1)pr
∑

b

(
rph

b(q − 1) − s

)
,

which is equivalent to the desired conclusion.

The only difference when p = 2 is that β is not invertible when α = 1 and, in fact,
β = (−1 − 1)2k

= 0, because 2k ≥ k + 1. Hence, in this case the map α )→ β = (−1 − α)pk

does not send µ̄q−1\{−1} = µ̄q−1 into itself, but it does send µ̄q−1\{1} into itself. Therefore,
the final calculation remains valid by reading the summations over µ̄q−1 \ {1} rather than
over µ̄q−1 \ {−1}. !

Remark 9 When either r = 0 or s = 0, but not both, the congruence given in Theorem 2
would be off by a summand 1/(q − 1), as one can verify by going through the above proof
in this anomalous situation. In fact, this statement is equivalent to the special case of
Theorem 1 where pk is a power of q.

Remark 10 Because of the explicit formulas
∑

k

(
n
k

)
= 2n and

∑
k

(
n
2k

)
=

∑
k

(
n

2k+1

)
= 2n−1,

which follow from Equation (4), in the special cases where q = 2 or q = 3 the congruence
stated in Theorem 2 reads 2spk ≡ 2rph

(mod 2k+1), and

(−1)s · 2s·3k−1 ≡ (−1)r · 2r·3h−1 (mod 3k+1),
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which are easy to verify directly.

Remark 11 Proposition 6 (with our first proof, using Lemma 8) extends at once to deal
with congruences modulo a prime power pk+1. In view of Remark 7 this extension boils down
to the following statement, for p odd: for integers a and r with a a positive multiple of pk

we have

∑

b

(
a

b(q − 1) + r

)
≡

∑

b

(
ā

b(q − 1) + r

)
(mod pk+1),

where ā is the smallest positive integer congruent to a modulo (q − 1)pk. (When p = 2
the assertion holds only by taking a, ā ≥ k + 1, because of the exceptional role of α = 1 in
the proof of Theorem 2.) In the special case where pk divides a, such an assertion can also
be deduced (in an admittedly twisted way) from Theorem 2, where the left member of the
congruence is unaffected by adding to s any multiple of q − 1, because the right member
does.

Proof of Corollary 3. Write a = spk, thus q − 1 | s, and hence (−1)s = 1. Choose an integer
h such that h ≥ k and q − 1 | h + k. Using Theorem 2 and Theorem 1 in turn we obtain

(q − 1)
∑

b

(
s pk

b(q − 1) − r

)
≡ (−1)pr · (q − 1)

∑

b

(
r ph

b(q − 1)

)
≡ −(−1)pr,

the congruences being modulo pk+1. !

Remark 12 The above proof of Corollary 3 exploits the special case of Theorem 2 where
q − 1 divides s but not r. In contrast, the special case of Theorem 2 where both r and s are
multiples of q − 1, which reads

∑

b

(
s pk

b(q − 1)

)
≡

∑

b

(
r ph

b(q − 1)

)
(mod pk+1),

yields no new information, since both sides of the congruences are already known to be
congruent to q/(q − 1) according to Theorem 1.

4. Carlitz’s sharper congruence

As we have pointed out in the Introduction, Carlitz stated congruence (3) under the stronger
hypothesis p > 3. In fact, his proof relies on a congruence for Bernoulli numbers which is valid
only for p > 3. However, when p = 3 congruence (3) remains valid by interpreting as zero the
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empty summation in the right member. In fact, the left member equals (2s − (−1)s)/3k+1,
which is easily seen to be congruent to s(1+δs)/2 modulo 3. There appears to be no obvious
interpretation of Equation (3) for p = 2, where its left member equals 2s2k−k−1, and hence is
congruent to 0 modulo 2 except when s = 1 and k = 0 or 1.

Computer calculations show that the exceptional behaviour of (3) for small values of s
and k when p = 2 persists when generalizing to a power q of 2, as the statement of Theorem 4
reflects. The reason for this will be clear at the end of its proof.

Proof of Theorem 4. We continue with the setting introduced in the proof of Theorem 1.
Thus, let ω be a primitive complex (q − 1)-th root of unity, let O be the ring of integers in
the cyclotomic field Q(ω), and let µq−1 = 〈ω〉. We have

1 + (q − 1)
∑

0≤b(q−1)<spk

(
spk

b(q − 1)

)
= −δs · (q − 1) +

∑

α∈µq−1∪{0}

(1 + α)spk
,

where δs = 1 if q − 1 | s − 1 and δs = 0 otherwise.

We now assume that p is odd and postpone a discussion of the case p = 2 to the last
paragraph of the proof. For each α ∈ µq−1 ∪ {0} we can write

(1 + α)pk
= βα(1 + pk+1γα).

with (uniquely determined) βα ∈ µq−1 ∪ {0} and γα ∈ O. In fact, apart from the trivial case
where α = −1, Lemma 8 implies that the image of (1+α)pk

in the quotient ring R = O/pk+1O
belongs to the image µ̄q−1 of µq−1. Consequently, there exists a unique βα ∈ µq−1 such that
(1 + α)pk

β−1
α ∈ 1 + pk+1O, as desired.

For every positive integer n we have

(1 + t)n ≡ 1 + nt (mod pntO) (5)

provided t ∈ pO for p odd, and t ∈ 4O for p = 2. This can be proved by extending standard
calculations in the integers done in [IR90, Chapter 4, §1], but can also be deduced from its
slightly more elegant p-adic version given in [Rob00, (III.4.3)]. Since pk+1 > 2 by hypothesis,
it follows that

(1 + α)spk ≡ βs
α(1 + spk+1γα) (mod pk+2),

and because βq
α = βα we also have

(1 + α)spkq ≡ βs
α(1 + spk+1qγα) (mod pk+2q).

An argument seen in the Proof of Theorem 1 shows that βα ranges over µq−1 ∪ {0} when
α ranges over µq−1 ∪ {0}, and hence

−δs · (q − 1) +
∑

α∈µq−1∪{0}

βs
α = 0.
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Consequently, we have

p−k−1q−1

{
1 + (p − 1)

∑

0≤b(p−1)<spkq

(
spkq

b(p − 1)

)}
≡

∑

α∈µq−1∪{0}

βs
αsγα

≡ p−k−1

{
1 + (p − 1)

∑

0≤b(p−1)<spk

(
spk

b(p − 1)

)}
(mod p),

which implies the desired conclusion.

The peculiarity of the case p = 2 is that (1 + α)2k
cannot be expressed in the form

βα(1 + 2k+1γα) when α = 1. However, this discrepancy has no consequences if we just set
β1 = 0, provided 2s2k ≡ 0 (mod 2k+2), which is satisfied except when s = 1 and k = 0 or
1. !

Proof of Theorem 5. With notation as in the Proof of Theorem 4 we have

1 + (q − 1)
∑

0≤b(q−1)<spk

(
spk

b(q − 1)

)
=

∑

α∈µq−1\{−1}

(
(1 + α)spk − βs

α

)
,

where βα is the unique element of µq−1 which is congruent to (1+α)pk
modulo p. We already

know from Theorem 1 that the expression at the right member belongs to pk+1O.

For each α ∈ µq−1 \ {−1}, let α̃ be the unique element of µq−1 \ {−1} which is congruent
to −α/(1 + α) modulo p; equivalently, let α̃ ∈ µq−1 \ {−1} be defined by the condition
1 + α̃ ≡ (1 + α)−1 (mod p). The desired conclusion will follow from the congruence

(1 + α̃)spk − βs
α̃ ≡ (1 + α)(pt−s)pk − βpt−s

α (mod pk+2), (6)

which we prove in the following paragraphs.

Lemma 8 implies that βα ≡ (1 + α)pkq (mod pk+2). Note that we actually have βα ≡
(1 + α)pkqi

(mod pk+2) for every i > 0, because γuq = γu for all γ ∈ O/pk+2O if pk+1 divides
u. We will use this observation without mention in the sequel by multiplying or dividing
certain exponents by appropriate powers of q whenever convenient. Since βα̃ = β−1

α , the
claimed congruence (6) can be written in the equivalent form

(1 + α̃)spk − (1 + α)−spkq ≡ (1 + α)(pt−s)pk − (1 + α)(pt−s)pkq (mod pk+2). (7)

According to Lemma 8 we have α̃ ≡ −α/(1 + α)pk+t
(mod pk+2). Therefore, the left

member of congruence (7) satisfies

(1 + α̃)spk − (1 + α)−spkq ≡
(

1 − α

(1 + α)pk+t

)spk

− (1 + α)−spkq

≡ (1 + α)−spkq
((

(1 + α)pk+t − α
)spk

− 1
)

≡ (1 + α)−spkqspk
(
(1 + α)pk+t − α − 1

)
(mod pk+2)

= (1 + α)1−spkqspk
(
(1 + α)pk+t−1 − 1

)
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where we have used Equation (5) in the next-to-last passage, because (1+α)pk+t−α ∈ 1+pO.
Similarly, the right member of congruence (7) satisfies

(1 + α)(pt−s)pk − (1 + α)(pt−s)pkq ≡ (1 + α)pk+t−spk − (1 + α)pk+t−spkpk+t

≡ (1 + α)pk+t−spkpk+t(
(1 + α)(pk+t−1)spk − 1

)

≡ (1 + α)pk+t−spkqspk
(
(1 + α)pk+t−1 − 1

)
(mod pk+2)

where we have used Equation (5) in the last passage, this time because (1+α)pk+t−1 ∈ 1+pO.

In order to complete a proof of congruence (7), and hence of Theorem 5, it suffices to
observe that

(1 + α)pk+t−1 − 1 ≡ (1 + α)pk+t−1
(
(1 + α)pk+t−1 − 1

)
(mod p2).

In fact, this congruence is equivalent to

(
(1 + α)pk+t−1 − 1

)2 ≡ 0 (mod p2),

which holds because (1 + α)pk+t−1 − 1 ≡ 0 (mod p). !

The above proof breaks down for p = 2, mainly because of the two appeals to Equa-
tion (5), which requires t ∈ 4O rather than t ∈ 2O when p = 2. In fact, computer cal-
culations show that the statement of Theorem 5 fails for p = 2 and q > 4, even subject
to (reasonable) restrictions on k. We have considered the trivial case where q = 2 earlier
in this section. When q = 4, one can show by means of Equation (4) that the expression
considered in Theorem 5 equals 2s2k

for k > 0 and is, therefore, a multiple of 2k+2 except
when (s, k) = (1, 1).
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