A REMARK ON THE CHEBOTAREV THEOREM ABOUT ROOTS OF UNITY

F. Pakovich ${ }^{1}$
Department of Mathematics, Ben Gurion University, P.O.B. 653, Beer-Sheva 84105, Israel
pakovich@math.bgu.ac.il

Received: 2/21/07, Accepted: 4/8/07, Published: 4/12/07

Abstract

Let Ω be a matrix with entries $a_{i, j}=\omega^{i j}, 1 \leq i, j \leq n$, where $\omega=e^{2 \pi \sqrt{-1} / n}, n \in \mathbb{N}$. The Chebotarev theorem states that if n is a prime then any minor of Ω is non-zero. In this note we provide an analogue of this statement for composite n.

Let Ω be a matrix with entries $a_{i, j}=\omega^{i j}, 1 \leq i, j \leq n$, where $\omega=e^{2 \pi \sqrt{-1} / n}, n \in \mathbb{N}$. The Chebotarev theorem states that if n is a prime then any minor of Ω is non-zero. Chebotarev's proof of this theorem and the references to other proofs can be found in [2]. Yet other proofs can be found in recent papers [1] and [3].

For a complex polynomial $P(z)$ denote by $w(P)$ the number of non-zero coefficients of $P(z)$. It is easy to see that the Chebotarev theorem is equivalent to the following statement: if a non-zero polynomial $P(z), \operatorname{deg} P(z) \leq n-1$, has k different roots which are n-roots of unity then $w(P)>k$ whenever n is a prime.

A natural question is: How small can $w(P)$ be if n is a composite number? The example $D_{n, r, l}(z)=z^{l}\left(1+z^{r}+z^{2 r}+\cdots+z^{\left(\frac{n}{r}-1\right) r}\right)$, where $r \mid n, 0 \leq l \leq r-1$, shows that $w(P)$ could be as small as $n /(n-k)$. In this note we show that actually it is the "worst" possible case.

Theorem. Let n be a composite number and $P(z)$ be a non-zero complex polynomial, $\operatorname{deg} P(z) \leq n-1$. Suppose that $P(z)$ has exactly k different roots which are n-roots of unity. Then the inequality

$$
\begin{equation*}
w(P) \geq \frac{n}{n-k} \tag{*}
\end{equation*}
$$

holds. Furthermore, the equality attains if and only if $P(z)$ up to a multiplication by a complex number coincides with $D_{n, r, l}\left(\omega^{j} z\right)$ for some $j, 0 \leq j \leq n-1$, and r, l as above.

Proof. Let $P(z)=p_{0}+p_{1} z+\ldots+p_{n-1} z^{n-1}$ and let $C=\left(\begin{array}{cccc}p_{0} & p_{1} & \ldots & p_{n-1} \\ p_{n-1} & p_{0} & \ldots & p_{n-2} \\ \ldots & \ldots & \ldots & \ldots \\ p_{1} & p_{2} & \ldots & p_{0}\end{array}\right)$ be the

[^0]circulant matrix generated by the coefficients of $P(z)$. We will denote the row vectors of C by $\overrightarrow{t_{j}}, 0 \leq j \leq n-1$. Set $r=\operatorname{rk} C$. The key observation is that the number k is equal to the number $n-r$. To establish it notice that eigenvectors of C are
$$
\vec{f}_{i}=\left(\left(\omega^{i}\right)^{0},\left(\omega^{i}\right)^{1}, \ldots,\left(\omega^{i}\right)^{(n-1)}\right), \quad 0 \leq i \leq n-1
$$
and the corresponding eigenvalues are $P\left(\omega^{i}\right), 0 \leq i \leq n-1$. Furthermore, the vectors \vec{f}_{i}, $0 \leq i \leq n-1$, form a basis of \mathbb{C}^{n}. The matrix C is diagonal with respect to this basis and therefore $k=n-r$.

It follows that in order to prove inequality $\left(^{*}\right)$ it is enough to establish the inequality

$$
\begin{equation*}
w(P) r \geq n . \tag{**}
\end{equation*}
$$

This inequality essentially is a particular case of Theorem B in [1] and can be established easily as follows ([1]). Let V be a vector space generated by the vectors $\vec{t}_{j}, 0 \leq j \leq n-1$, and $R \subseteq\left\{\vec{t}_{0}, \vec{t}_{1}, \ldots, \vec{t}_{n-1}\right\}$ consisting of r vectors which generate V. Clearly, for any $i, 1 \leq i \leq n$, there exists a vector $\vec{v} \in V$ for which its i-th coordinate is distinct from zero. Since each vector from R has exactly $w(P)$ non zero coordinates it follows that (${ }^{* *}$) holds.

For a vector $\vec{v} \in \mathbb{C}^{n}$ denote by $\operatorname{supp}\{\vec{v}\}$ the set consisting of numbers $i, 1 \leq i \leq n$, for which the $i^{\text {th }}$ coordinate of \vec{v} is non-zero. Observe now that the equality in (**) is attained only if for any two vectors $\vec{v}_{1}, \vec{v}_{2} \in R$ we have $\operatorname{supp}\left\{\vec{v}_{1}\right\} \cap \operatorname{supp}\left\{\vec{v}_{2}\right\}=\emptyset$. This implies easily that $\operatorname{supp}\left\{\vec{t}_{0}\right\}$ consists of numbers all congruent modulo r to the same number $l, 0 \leq l \leq r-1$. Therefore, $P(z)=z^{l} Q\left(z^{r}\right)$ for some polynomial $Q(z)=q_{0}+q_{1} z+\ldots+q_{(n / r)-1} z^{(n / r)-1}$ and number $l, 0 \leq l \leq r-1$.

Furthermore, since the vectors $\vec{t}_{0}, \vec{t}_{r}, \vec{t}_{2 r}, \ldots, \vec{t}_{(n / r)-1}$ have equal supports the equality in $(* *)$ implies that any two of them are proportional. Therefore, the rank of the circulant matrix W generated by the coefficients of $Q(z)$ equals 1 . This implies that the vector $\vec{q}=\left\{q_{0}, q_{1}, \ldots, q_{(n / r)-1}\right\}$ is orthogonal to $(n / r)-1$ vectors from the collection

$$
\overrightarrow{g_{j}}=\left(\left(\nu^{j}\right)^{0},\left(\nu^{j}\right)^{1}, \ldots,\left(\nu^{j}\right)^{(n / r)-1}\right), \quad 0 \leq j \leq(n / r)-1
$$

where $\nu=\omega^{r}$. Since $\vec{g}_{j}, 0 \leq j \leq(n / r)-1$, are linearly independent this implies that there exists $\alpha \in \mathbb{C}$ such that $\vec{q}=\alpha \vec{g}_{j}$ for some $0 \leq j \leq(n / r)-1$.

References

[1] D. Goldstein, R. Guralnick, I. Isaacs, Inequalities for finite group permutation modules, Trans. Am. Math. Soc. 357, No.10, 4017-4042 (2005)
[2] P. Stevenhagen, H. Lenstra, Chebotarev and his density theorem, Math. Intell. 18, No.2, 26-37 (1996)
[3] T. Tao, An uncertainty principle for cyclic groups of prime order, Math. Res. Lett. 12, No.1, 121-127 (2005).

[^0]: ${ }^{1}$ Research supported by the ISF, Grant No. 979/05

