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Abstract

In 1836 E. Midy published at Nantes, France, a pamphlet of twenty-one pages on some
topics in number theory with applications to decimals. He was the first to actually prove
something about our topic. We formulate our own version, and investigate generalizations,
of his main result.

1. Introduction

It is well known–and a proof will appear in our subsequent discussion–that any rational
number c/d, with d relatively prime to 10, has a purely periodic decimal expansion of the
form I.a1a2 . . . ana1 . . . ana1 . . . , where I is an integer, a1, a2, . . . , an are digits, and the block
a1a2 . . . an repeats forever. The repeating block is called the period and n is its length. We
write the decimal as I.a1a2 . . . an, the bar indicating the period. Consider a few examples:
1/3 = 0.3, 1/7 = 0.142857, 2/11 = 0.18, 1/13 = 0.076923, 2/13 = 0.153846, 1/17 =
0.0588235294117647, 1/37 = 0.027, 1/73 = 0.01369863. Note that when the period length is
even and the period is broken into two halves of equal length which are then added, the result
is a string of 9’s. Thus 142+857 = 999, 1+8 = 9, 076+923 = 999, and so on; the numerator
plays no role. In each of these examples the denominator is a prime number. Try a few
composite denominators: 77 = 7× 11, 1/77 = 0.012987; 803 = 11× 73, 1/803 = 0.00124533;
121 = 11×11, 1/121 = 0.0082644628099173553719. We see the property holds for 77 and 121
but fails for 803. According to Dickson [1, p. 161, footnote 19], H. Goodwyn was apparently
the first to observe (in print, 1802) this phenomenon for prime denominators, based on
experimental evidence. Over the past two centuries it has been rediscovered many times; it
is called the ‘nines property’ by Leavitt [4] and ‘complementarity’ by Shrader-Frechette [8].
This latter reference contains a historical perspective and a bibliography of the topic.

In 1836 E. Midy [6] published at Nantes, France, a pamphlet of twenty-one pages on
some topics in number theory with applications to decimals. He was the first to actually
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prove something about our topic. We formulate our own version of his main result. As usual,
gcd(a, b) denotes the greatest common divisor of the integers a, b.

Midy’s Theorem. Let x and N be positive integers, with N > 1, gcd(N, 10) = 1, gcd(x, N) =
1 and 1 ≤ x < N . Assume x/N = 0.a1a2 . . . a2k has even period length 2k. If

(i) N is a prime, or

(ii) N is a prime power, or

(iii) gcd(N, 10k − 1) = 1,

then, for 1 ≤ i ≤ k,

ai + ak+i = 9. (1)

Note that (iii) explains the difference between 1/77 where k = 3 and gcd(77, 103−1) = 1,
which has the Midy property (1), and 1/803 where k = 4 and gcd(803, 104 − 1) = 11, for
which (1) fails.

Various authors have given proofs of this theorem, or parts of it, most being unaware
of Midy; see, for example, [2], [4], [7] and [8]. (As an aside, note that Rademacher and
Toeplitz, [7, p. 158], who prove the Midy property for N prime, introduce the topic by
saying “we conclude ... with a property which is more amusing than significant.” We leave it
to the reader to decide if that comment is more significant than amusing.) Even those who
do cite him do so only through Dickson’s reference [1, p. 163], undoubtedly this is due to
the obscure publication of Midy’s paper. Recently, Ginsberg [2] extended Midy’s theorem
to the case where the period has length 3k; he showed that when the period is broken into
three pieces of length k each and then added, the sum is again a string of 9’s. However, his
result is stated only for fractions 1/p, p a prime, and numerator restricted to be 1. Example:
1/13 = 0.076923, 07+69+23 = 99. However, note that 2/13 = 0.153846, 15+38+46 = 99,
3/13 = 0.230769, 23+07+69 = 99, 1/21 = 0.047619, 04+76+19 = 99, all of which suggest
a wider application of the result. But 4/13 = 0.307692, 30 + 76 + 92 = 198 = 2 × 99. Thus
here the numerator plays a role. This will be explained in Theorem 6.

Eventually, I decided to actually look at Midy’s paper–it is available on microfilm at the
New York Public Library–and, remarkably, Midy’s approach enables one to prove a general
theorem that includes the above results and even more. Midy himself considered the case of
period length 3k, but he focused on the sums ai + ai+k + ai+2k, 1 ≤ i ≤ k, which do not give
smooth results. For example, with 1/7 as above, 3k = 6, k = 2, 1+2+5 = 8, 4+8+7 = 19,
even though 14 + 28 + 57 = 99. In fact, one easily sees that for period length 2k the two
halves adding up to a string of 9’s is equivalent to ai + ak+i = 9, 1 ≤ i ≤ k, but for length
3k it is not so, as carrying may occur.

We now give a brief survey of the rest of the paper. Section 2 contains the main results
as we study the Midy property in a more general setting. We consider fractions x/N as
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before whose decimal period of length e is a multiple of a given integer d; e = dk, for some
positive integer k. If upon breaking up the period into d blocks of length k each, and then
adding the blocks, the sum S(x) is a multiple of 10k − 1 = 99 · · · 9, a string of k 9’s, then
we say N has the Midy property for the divisor d in base 10. Theorem 2 shows that this
property depends only on N and not the numerator x. Furthermore, a sufficient condition
for the Midy property to hold is that gcd(N, 10k − 1) = 1. To obtain these results we first
examine in detail how the digits in the decimal expansion arise. Since it is just as easy to
carry out the analysis for an arbitrary number base B as it is for the decimal base 10, we do
so. Now the definition of the Midy property in base B is the same as above with 10 replaced
by B. Theorem 3 shows that if p is a prime not dividing B and e, the order of B mod p, is
a multiple of d, then N = ph, h ≥ 1, has the Midy property for the divisor d in base B. In
Theorem 4 we analyze when the Midy property for an integer N can be deduced from its
prime factorization.

In Section 3 we consider the “multiplier.” Namely, when N has the Midy property for
B, d, then for given x/N , we have S(x) is a multiple of Bk − 1. Thus S(x) = m(Bk − 1) for
a positive integer m, which we call the multiplier. In general m = m(x) depends on x, not
just N . But in Theorem 6 we show that if N has the Midy property for the divisor 2 of e
then it has it for every even divisor d of e, and the multiplier is m = d/2, independent of
x. The Remark after Theorem 6 shows that our original Midy’s Theorem is now a special
case, B = 10, d = 2, of Theorems 2, 3 and 6. However, for odd divisors d of e the situation
is quite unpredictable. In Theorem 7 we give an extended version of Ginsberg’s theorem,
mentioned above, showing that for d = 3, e = 3k, the multiplier is 1 for fractions 1/N and
2/N (provided N is odd) and also 3/N (provided 3 does not divide N) except for N = 7.

2. Base B and Midy

Let B denote an integer > 1 which will be the base for our numerals. The digits in base
B, B-digits for short, are the numbers 0, 1, 2, . . . , B − 1. Every positive integer c has a
unique representation as c = dn−1Bn−1 + dn−2Bn−2 + . . . + d1B + d0, where n is a positive
integer, each di is a B-digit and dn−1 > 0. As in the decimal case, where B = 10, we write
c in base B as the numeral dn−1dn−2 . . . d0. When necessary to indicate the base, we write
[dn−1dn−2 . . . d0]B. For B = 10 we use the usual notation. We now fix some notation. Unless
otherwise noted, our variables a, b, . . . denote positive integers. a|b indicates a divides b.
B is the base and N , which will be the denominator of our fractions, is greater than 1 and
relatively prime to B. N∗ is the set {x|1 ≤ x ≤ N and gcd(x, N) = 1}, the set of positive
integers less than N relatively prime to N . These will be the numerators of our fractions.
For x ∈ N∗, x/N is a reduced fraction strictly between 0 and 1 and we are interested
in the base B expansion of such a fraction. Recalling the elementary school long division
process for the decimal expansion of fractions one sees that it amounts to the following. Set
x1 = x, let a1 be the integer quotient and x2 the remainder when Bx1 is divided by N . Thus
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Bx1 = a1N + x2, 0 ≤ x2 < N and a1 = &Bx1/N' where & ' is the greatest integer, or floor,
function. Continuing inductively, we obtain the following infinite sequence of equations,
which we call the long division algorithm.

Bx1 = a1N + x2

Bx2 = a2N + x3
...

Bxi = aiN + xi+1
...

(2)

Since 0 < x1/N < 1, Bx1/N < B, a1 = &Bx1/N' < B, so a1 is a B-digit. Also
B and x1 are both relatively prime to N so Bx1 ≡ x2 (mod N) shows (x2, N) = 1, so
x2 ∈ N∗. In the same way, for all i ≥ 1, ai is a B-digit and xi ∈ N∗. Dividing the
first equation by BN , the second by B2N , and in general the ith by BiN shows x1/N =
a1/B + a2/B2 + . . . + ai/Bi + xi+1/BiN . Since 0 < xi+1/BiN < 1/Bi which tends to 0
as i → ∞ we have x1/N =

∑∞
i=1 ai/Bi which we write as x1/N = 0.a1a2 . . . ai . . . . This is

the base B expansion of x1/N ; B being fixed we omit it from the notation. Reading the
equations (2) mod N shows that for i ≥ 1

xi+1 ≡ Bxi ≡ B2xi−1 ≡ . . . ≡ Bix1 (mod N). (3)

Let e be the order of B mod N ; denoted e = ord(B, N). This means e is the smallest
positive integer for which Be ≡ 1 (mod N) and Bf ≡ 1 (mod N) if and only if e|f . By
(3), xe+1 ≡ Bex1 ≡ x1 (mod N) and xi+1 +≡ x1 (mod N) for 1 ≤ i < e. Since x1, xe+1

both belong to N∗, |x1 − xe+1| < N , so their congruence forces xe+1 = x1. Then ae+1 = a1,
xe+2 = x2 and in general xi+e = xi, ai+e = ai, i ≥ 1. Thus the system (2) consists of the
first e equations which then repeat forever. In particular, the base B expansion of x1/N is
periodic with length e and we write it as x1/N = 0.a1a2 . . . ae. Since e depends only on N
and B, not x1, we see that every fraction x/N with x ∈ N∗ has period length e. Grouping the
terms of the infinite series for x1/N into blocks of e terms each, and setting A = [a1a2 . . . ae]B,
produces the geometric series

∑∞
i=1(A/Bei) and shows x1/N = A/(Be−1). It may be helpful

to do a simple numerical example: find the periodic expansion of 1/14 in base 5. N = 14,
B = 5, x1 = 1; we don’t need to know e = ord(5, 14) in advance. The equations (2) now are

5 · 1 = 0 · 14 + 5
5 · 5 = 1 · 14 + 11
5 · 11 = 3 · 14 + 13
5 · 13 = 4 · 14 + 9
5 · 9 = 3 · 14 + 3
5 · 3 = 1 · 14 + 1

(4)

Having reached the remainder x7 = 1 = x1, we know that e = 6 and 1/14 = 0.013431 in
base 5.
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Let d be a divisor of e and let k = e/d, e = dk. Break up the first e equations of (2)
into d groups of k equations each. For 1 ≤ j ≤ d, the jth group consists of the following k
equations:

Bx(j−1)k+1 = a(j−1)k+1N + x(j−1)k+2

Bx(j−1)k+2 = a(j−1)k+2N + x(j−1)k+3
...

Bxjk = ajkN + xjk+1.

(5)

Multiply the first equation by Bk−1, the second by Bk−2, . . . , the (k − 1)th by B, and
the kth by B0 = 1 to obtain

Bkx(j−1)k+1 = a(j−1)k+1Bk−1N + Bk−1x(j−1)k+2

Bk−1x(j−1)k+2 = a(j−1)k+2Bk−2N + Bk−2x(j−1)k+3
...

Bxjk = ajkN + xjk+1.

(6)

In (6), the rightmost term of each equation is the left side of the next equation; so replace
the rightmost term of the first equation by the right side of the second equation, then replace
the rightmost term of the resulting equation by the right side of the third equation, and so
on. Eventually one has

Bkx(j−1)k+1 = (a(j−1)k+1B
k−1 + a(j−1)k+2B

k−2 + . . . + ajk)N + xjk+1. (7)

The quantity in parentheses is [a(j−1)k+1a(j−1)k+2 . . . ajk]B, the number represented by the
base B numeral consisting of the jth block of k B-digits in the period; denote this number
by Aj. So (7) now becomes Bkx(j−1)k+1 = AjN + xjk+1. Add these equations (7) for j = 1,
2, . . . , d to obtain

Bk
d∑

j=1

x(j−1)k+1 = N(
d∑

j=1

Aj) +
d∑

j=1

xjk+1. (8)

But both sums over x are equal since xdk+1 = xe+1 = x1, so (8) may be rewritten as

(Bk − 1)
d∑

j=1

x(j−1)k+1 = N(
d∑

j=1

Aj). (9)

This relation between the two sums is the key to all that follows. It is convenient to define

Rd(x) =
d∑

j=1

x(j−1)k+1 and Sd(x) =
d∑

j=1

Aj. (10)

Call the set {x1, xk+1, . . . , x(d−1)k+1} = {xjk+1 | j mod d} the d-cycle of x1; more generally,
for any i ≥ 1, {xi, xk+i, . . . , x(d−1)k+i} = {xjk+i | j mod d} is the d-cycle of xi. For any two
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indices s and t, xs and xt have the same d-cycle if and only if s ≡ t (mod k) and for any
x ∈ N∗, Rd(x) and Sd(x) depend only on the d-cycle of x. Of course, R and S depend also
on B, N and e = dk, but we consider these fixed for the discussion. We summarize the
above as

Theorem 1. Given positive integers N and B > 1, let e = ord(B, N) and e = dk, with d
and k positive integers. Let x ∈ N∗ and x/N = 0.a1a2 . . . ae in base B. Break up the period
a1a2 . . . ae into d blocks of length k each. For j = 1, 2, . . . , d, let Aj = [a(j−1)k+1 . . . ajk]B,
the number represented by the base B numeral consisting of the jth block. Let x1 = x, x2,
. . . be the remainders in the long division algorithm (2) for x/N . Then the following hold:

Sd(x) = (Rd(x)/N)(Bk − 1), (11)

Sd(x) ≡ 0 (mod Bk − 1) iff Rd(x) ≡ 0 (mod N). (12)

Proof. (11) is just a rewriting of (9) in the notation (10) and then (12) is immediate.

Definition. Let N , B, e, d, k be as above. We say N has the base B Midy property for the
divisor d (of e) if for every x ∈ N∗, Sd(x) ≡ 0 (mod Bk − 1). We denote by Md(B) the set
of integers that have the Midy property in base B for the divisor d.

Theorem 2. The following are equivalent:

(i) N ∈ Md(B)

(ii) For some x ∈ N∗, Sd(x) ≡ 0 (mod Bk − 1)

(iii) For some x ∈ N∗, Rd(x) ≡ 0 (mod N)

(iv) (Be − 1)/(Bk − 1) = Bk(d−1) + Bk(d−2) + . . . + Bk + 1 ≡ 0 (mod N).

Furthermore gcd(Bk − 1, N) = 1 implies N ∈ Md(B).

Proof. The equivalence of (ii) and (iii) follows from Theorem 1. Noting (3), we have Rd(x) =
d∑

j=1

x(j−1)k+1 ≡ (
d∑

j=1

B(j−1)k)x (mod N). Since gcd(x, N) = 1, Rd(x) ≡ 0 (mod N) if and

only if
∑d

j=1 Bk(j−1) ≡ 0 (mod N), showing (iv) equivalent to (ii) and (iii). Now (iv) is
independent of x, so (iv) is equivalent to saying Sd(x) ≡ 0 (mod Bk − 1) for every x ∈ N∗,
which, by definition, is (i). For the last statement, let Fd(t) be the polynomial td−1 + td−2 +
. . . + t + 1, so (iv) amounts to Fd(Bk) ≡ 0 (mod N). But (Bk − 1)Fd(Bk) = Be − 1 ≡ 0
(mod N), by definition of e. Thus gcd(Bk − 1, N) = 1 implies (iv), hence N ∈ Md(B),
completing the proof.
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Here is an example to show that gcd(Bk − 1, N) = 1 is only sufficient for N ∈ Md(B),
but not necessary. Take B = 10, N = 21, 1/21 = 0.047619, e = 6. With d = 3, k = 2,
S3(1) = 04 + 76 + 19 = 99 ≡ 0 (mod 102 − 1), so 21 ∈ M3(10), but gcd(102 − 1, 21) = 3 += 1.

For a numerical illustration, take N = 14, B = 5, e = 6, x = 1, as in (4) above. The
period is 013431 and the remainders x1, . . . , x6 are 1, 5, 11, 13, 9, 3, respectively. With d = 2,
k = 3, S2(1) = A1+A2 = [013]5+[431]5 = [444]5 = 53−1 and R2(1) = x1+x4 = 1+13 = 14;
thus 14 ∈ M2(5). With d = 3, k = 2, S3(1) = A1 + A2 + A3 = [01]5 + [34]5 + [31]5 = 36 +≡ 0
(mod 52 − 1), R3(1) = x1 + x3 + x5 = 1 + 11 + 9 = 21; so 14 +∈ M3(5). Note that the relation
(11) holds: 36 = (21/14)(52 − 1).

For d = 1, k = e, we never have N ∈ M1(B), for this would imply 1 = R1(1) ≡ 0
(mod N), which is impossible. Equivalently, N ∈ M1(B) says that for any x ∈ N∗, S1(x) ≡ 0
(mod Be − 1). But S1(x) = A = [a1a2 . . . ae]B, and we have seen that A/(Be − 1) = x/N .
So M1(B) is empty; from now on we consider only d > 1. For d = e, k = 1, Se(x) is∑e

j=1 aj, the sum of the B-digits in the period. By Theorem 2, Se(x) ≡ 0 (mod B − 1) if
(B − 1, N) = 1. In particular, with B = 10, the period of the decimal for x/N has the sum
of its digits divisible by 9 whenever N is not divisible by 3.

Given B > 1 and d > 1 we would like to describe all numbers having the base B Midy
property for the divisor d; here we make only a few observations in this direction.

Theorem 3. If p is a prime that does not divide B and e = ord(B, p) is a multiple of d,
then p ∈ Md(B). Then also ph ∈ Md(B) for every h > 0.

Proof. Write e = dk; k < e since d > 1, so Bk +≡ 1 (mod p), hence gcd(Bk − 1, p) = 1
and the result follows from Theorem 2. Note that p is not 2, for if so then B is odd and
B1 ≡ 1 (mod 2), so ord(B, 2) = 1, which is not a multiple of d. For p += 2 it is known that
eh = ord(B, ph) = epg, where g, depending on h, is an integer ≥ 0 whose exact value is not
relevant here; see [5, p. 52]. Thus eh = dK, where K = kpg. By Fermat, BK = (Bk)pg ≡ Bk

(mod p), so gcd(BK −1, ph)=gcd(Bk−1, p) = 1, and the result follows from Theorem 2.

Suppose p1, p2, . . . , pr are distinct primes all belonging to Md(B) and N = ph1
1 ph2

2 . . . phr
r ,

where h1, h2, . . . , hr are positive integers. Does N ∈ Md(B)? It turns out that the
answer does not depend on the values of the the hi. For i = 1, 2, . . . , r, let ord(B, pi) =
ei = dki, Ei = ord(B, phi

i ) = eip
gi
i , gi ≥ 0. Now E = ord(B, N) = lcm(E1, . . . , Er) =

lcm(dk1p
g1
1 , . . . , dkrpgr

r ). Set Ki = Ei/d = kip
gi
i and K = E/d, so K = lcm(K1, . . . , Kr). We

need some preliminary remarks. If q is a prime and w a positive integer, denote by vq(w)
the multiplicity of q as a factor of w. Thus

w =
∏

q

qvq(w), the product taken over all prime numbers q, (13)

where almost all the exponents are 0. For positive integers w1, . . . , wr,

lcm(w1, . . . , wr) =
∏

q

qmq , where mq = max(vq(w1), . . . , vq(wr)). (14)
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If Q is a set of primes, denote by Q′ its complement in the set of all primes. Define the Q
part of w to be u =

∏
q∈Q qvq(w) and the Q′ part y =

∏
q∈Q′ qvq(w) so by (13) w = uy. In

the same way, (14) says lcm(w1, . . . , wr) = lcm(u1, . . . , ur) lcm(y1, . . . , yr). Returning to N
above, let Q be the set of primes which divide d, and Q′ the complementary set. Note that
each pi belongs to Q′, because d|ei ≤ pi − 1 < pi. Finally, let ci be the the largest integer
≥ 0 for which dci divides ki; so ki = dciwi and d + | wi. Let ui be the Q part of wi and yi the
Q′ part. Thus Ki = kip

gi
i = (dciui)(yip

gi
i ) is the factorization of Ki into the product of its Q

part and Q′ part, and K = lcm(K1, . . . , Kr) = lcm(dc1u1, . . . , dcrur) lcm(y1p
g1
1 , . . . , yrpgr

r ).
Set

U = lcm(dc1u1, . . . , dcrur), Y = lcm(y1p
g1
1 , . . . , yrp

gr
r ). (15)

so K = UY is the factorization of K into the product of its Q part U and Q′ part Y .

Theorem 4. Let p1, . . . , pr be primes each belonging to Md(B) and h1, . . . , hr positive
integers and N = ph1

1 . . . phr
r . With the notations introduced above, N ∈ Md(B) if and only if

for i = 1, . . . , r, U/(dciui) +≡ 0 (mod d). (16)

This condition depends only on the primes p1, . . . , pr and not the exponents h1, . . . , hr. If
d is a prime q, N ∈ Mq(B) if and only if q occurs with the same multiplicity in each ei:

vq(e1) = vq(e2) = . . . = vq(er). (17)

Proof. Clearly, by definition of U , U/(dciui) is an integer for each i. If for some i, U/(dciui) ≡
0 (mod d) then ddciui|U and, since also yip

gi
i |Y , it follows that Ei = ddciuiyip

gi
i |UY =

K. Hence BK ≡ 1 (mod phi
i ) and, in particular, BK ≡ 1 (mod pi). Then Fd(BK) =∑d

j=1(B
K)j−1 ≡

∑d
j=1 1 ≡ d (mod pi). Now by Theorem 2, if N ∈ Md(B) then Fd(BK) ≡ 0

(mod N) implying Fd(BK) ≡ 0 (mod pi), which combined with the previous congruence
shows d ≡ 0 (mod pi) which is absurd since d|ei < pi. So the condition (16) is necessary
for N ∈ Md(B). Suppose now that (16) is satisfied. Then for each i, ddciui + | U , so
ei = ddciuiyi + | UY = K and so BK +≡ 1 (mod pi). Thus for each i, (BK − 1, pi) = 1,
hence (BK − 1, N) = 1, which, by Theorem 2, implies N ∈ Md(B). This proves (16) is also
sufficient, and clearly (16) is independent of h1, . . . , hr. Now consider the case where d is a
prime number q, then Q = {q} consists of the single prime q. Then the definition of ci as
the the largest integer for which qci|ki says ci = vq(ki); thus ki = qciwi and q + | wi so the Q
part ui of wi is 1 which means U = lcm(qc1 , . . . , qcr) = qc, where c = max(c1, . . . , cr). Hence
the conditions of (16) become simply that for each i, qc/qci is not divisible by q, so ci = c
and vq(ei) = vq(qki) = 1 + c. This completes the proof.

Theorem 4 was first proved by Jenkins [3] in the case d = 2. In [8, p. 94], the author
seems to claim that if d is any integer, prime or not, then N ∈ Md(B) if and only if all the
ci are equal: c1 = c2 = . . . = cr. As our proof shows, this is true only when d is a prime.

Here are numerical illustrations of some of our results, which will also show that the
above claim is false. We keep the usual notations. Let p1 = 7, p2 = 9901, p3 = 19, B = 10:
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1/7 = 0.142857, e1 = 6; 1/9901 = 0.000100999899, e2 = 12; 1/19 = 0.052631578947368421,
e3 = 18. One checks easily that each pi ∈ Md(10), for each d|6, d > 1, as stated in Theorem
3. For example, for 19 with d = 6, k = 3, S6(1) = 052+631+578+947+368+421 = 2997 ≡ 0
(mod 103 − 1). Note that in the setup of Theorem 4, whenever some hi = 1, then gi = 0,
Ei = ei, Ki = ki; this will be the case in what follows. Now for p1p2 = 7 × 9901 = 69307,
E = lcm(6, 12) = 12, 1/69307 = 0.000014428557. Consider, for Theorem 4, those d which
divide both 6 and 12: 2, 3, which are primes, and 6 which is not. Now v3(6) = 1 = v3(12),
so 69307 ∈ M3(10), while v2(6) = 1 += v2(12) = 2, so 69307 +∈ M2(10), as one also easily
verifies from the period. For d = 6, Q = {2, 3}, K1 = k1 = 1, K2 = k2 = 2, c1 = c2 = 0,
u1 = y1 = 1, u2 = 2, y2 = 1, and (15) gives U = lcm(1, 2) = 2, Y = lcm(1, 1) = 1,
K = UY = 2. Now (16) is satisfied: for i = 1, 2/1 +≡ 0 (mod 6); for i = 2, 2/2 +≡ 0 (mod 6).
Thus we know 69307 ∈ M6(10); again we verify this directly from the period. We have
S6(1) = 00 + 00 + 14 + 42 + 85 + 57 = 198 ≡ 0 (mod 102 − 1). For a later application we
note here that S4(1) = 000 + 014 + 428 + 557 = 999.

Now consider p1p2p3 = 7 × 9901 × 19 = 1316833, E = lcm(6, 12, 18) = 36, 1/1316833 =
0.000000759397736842864660894737601503. For d = 2, v2(6) = 1, v2(12) = 2, v2(18) = 1
and for d = 3, v3(6) = v3(12) = 1, v3(18) = 2, so 1316833 is not in Md(10) for d = 2 and
3–again this can be verified from the period. With d = 6, K1 = k1 = 1, K2 = k2 = 2,
K3 = k3 = 3; none of these is divisible by 6, so c1 = c2 = c3 = 0. Q = {2, 3}, u1 = 1,
u2 = 2, u3 = 3 while y1 = y2 = y3 = 1, U = lcm(1, 2, 3) = 6, Y = 1, K = 6. Now
consider (16): for i = 1, U/(dc1u1) = 6/1 ≡ 0 (mod 6), so the condition is not satisfied and
1316833 +∈ M6(10). This is a counterexample to the aforementioned claim. To check this
numerically, S6(1) = 000000 + 759397 + 736842 + 864660 + 894737 + 601503 = 3857139 +≡ 0
(mod 106 − 1). In fact, 3857139/999999 = 27/7. The other divisors of 36 which do not arise
from Theorem 4 are d = 4, 9, 12, 18, 36 and the reader may verify that 1316833 ∈ Md(10)
for each of these. The next theorem shows that not all of this is accidental, but that once it
is known for 4 and 9 the result follows for their multiples 12, 18, 36.

Theorem 5. Suppose e = ord(B, N) and d1|d2, d2|e. If N ∈ Md1(B) then N ∈ Md2(B).

Proof. An anonymous referee suggested the following simple proof. We have

Be − 1

Bk2 − 1
=

(
Be − 1

Bk1 − 1

) (
Bk1 − 1

Bk2 − 1

)
.

Both fractions on the right are integers since k1 divides e and k2 divides k1. The first factor
is ≡ 0 (mod N) by Theorem 2(iv), because N ∈ Md1(B). Thus the product (Be−1)/(Bk2 −
1) ≡ 0 (mod N) and so N ∈ Md2(B), again by Theorem 2(iv).

We also include our somewhat complicated proof because the result (18) below will be
used later in the proof of Theorem 6.

Proof. Write e = d1k1 = d2k2 and set c = d2/d1 = k1/k2. Since N ∈ Md1(B), Rd1(x) ≡ 0
(mod N) for every x ∈ N∗. By definition, Rd2(x) =

∑d2−1
j=0 xjk2+1. We will show that
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Rd2(x) =
∑c−1

r=0 Rd1(xrk2+1), hence Rd2(x) is a sum of terms ≡ 0 (mod N) so it is also ≡ 0
(mod N) which implies Sd2(x) ≡ 0 (mod Bk2 − 1) and N ∈ Md2(B). The numbers j = 0, 1,
. . . , d2 − 1 = cd1 − 1 may be written as j = ic + r, where i = 0, 1, . . . , d1 − 1 and r = 0, 1,
. . . , c − 1; then jk2 + 1 = ick2 + rk2 + 1 = ik1 + rk2 + 1. Thus

Rd2(x) =
c−1∑

r=0

d1−1∑

i=0

xik1+rk2+1, (18)

and the inner sum is just Rd1(xrk2+1); this completes the proof.

The basic idea here is that the d2-cycle of x is a union of c d1-cycles.

3. The Multiplier

For N ∈ Md(B) and x ∈ N∗ we have, by definition, Sd(x) ≡ 0 (mod Bk − 1), and more
precisely, by (11), Sd(x) = md(x)(Bk − 1) where md(x) = Rd(x)/N is an integer, which we
call the multiplier; in general it depends on both d and the d-cycle of x.

Theorem 6. If N ∈ M2(B) then for every even d|e, N ∈ Md(B) and md(x) = d/2 for every
x ∈ N∗.

Remark. Midy’s Theorem of the Introduction now follows. For taking B = 10, the con-
ditions stated there about N show, by Theorems 3 and 2, that N ∈ M2(10) and then this
Theorem shows m2(x) = 1, so S2(x) = 10k − 1, which is a string of k = e/2 9’s.

Proof. Let e = 2k. By Theorem 2(iv), Bk +1 ≡ 0, or Bk ≡ −1 (mod N), which, by (3) with
i = k + 1, shows xk+1 ≡ −x1 (mod N). But the only member of N∗ that is congruent to
−x1 is N −x1, hence xk+1 = N −x1, so R2(x) = x1 +xk+1 = x1 +(N −x1) = N , m2(x) = 1;
this proves the case d = 2. Now say d > 2, 2|d, d|e, c = d/2, k′ = e/d; as shown in the
proof of Theorem 5 the d-cycle of x is a union of c 2-cycles and Rd(x) =

∑c−1
r=0 R2(xrk′+1) =∑c−1

r=0 N = (d/2)N , hence md(x) = d/2.

The condition N ∈ M2(B) in Theorem 6 cannot be omitted. For example, we have seen–
after the proof of Theorem 4–that for N = 69307, e = 12, N does not belong to M2(10) but
N does belong to M4(10) and S4(1) = 999 = (103 − 1). Thus in this case d = 4 is even and
m4(1) = 1 += 4/2.

We now study the multiplier m3(x) for N ∈ M3(B), e = 3k. Recall the result of Ginsberg
[2] stated in the Introduction which, in our current notation, says m3(1) = 1 if N is a prime.
We now show that such a result holds much more extensively.

Theorem 7. Suppose N ∈ M3(B), e = 3k. Then
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(i) m3(1) = 1

(ii) if N is odd, m3(2) = 1

(iii) if 3 + | N and N += 7, m3(3) = 1.

Proof. For x ∈ N∗, R3(x) = x1 + xk+1 + x2k+1 < N + N + N = 3N . Since R3(x) ≡ 0
(mod N), R3(x1) = N or 2N . If x = 1 or 2, then xk+1, x2k+1 are at most N − 1, N − 2 (in
some order). Thus R3(x) ≤ 2+(N−1)+(N−2) < 2N , which forces R3(x) = N , m3(x1) = 1,
proving (i) and (ii). Now take x = 3; R3(3) ≤ 3 + (N − 1) + (N − 2) ≤ 2N , where equality
holds if and only if xk+1 = N − 1, x2k+1 = N − 2, or xk+1 = N − 2, x2k+1 = N − 1. In the
former case, by (3), N − 1 ≡ 3Bk and N − 2 ≡ 3B2k (mod N), so 9B3k ≡ 2 (mod N). But
3k = e, B3k ≡ 1 (mod N), so 9 ≡ 2 (mod N), hence N = 7. In the latter case the argument
is the same with N − 1, N − 2 interchanged. This proves (iii).

Note that 7 really is exceptional; take, say, B = 10, 3/7 = 0.428571, S3(3) = 42+85+71 =
198 = 2(102 − 1), so here m3(3) = 2.

4. Conclusion

Midy’s Theorem and its extensions deserve to be better known and certainly have a place
in elementary number theory. These patterns in the decimal expansions of rational numbers
provide an unexpected glimpse of the charm, and structure, of mathematical objects. Many
questions and unexplored pathways remain to be investigated.
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