INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A28

THE NUMBER OF REPRESENTATIONS BY SUMS OF SQUARES AND
TRIANGULAR NUMBERS

Heung Yeung Lam
Institute of Information and Mathematical Sciences, Massey University, Albany Campus, Private Bag 102
904, North Shore Mail Centre, Auckland, New Zealand
h.y.lam@massey.ac.nz

Received: 11/27/06, Revised: 4/12/07, Accepted: 4/22/07, Published: 6/11/07

Abstract

In this paper, we present eighteen interesting infinite products and their Lambert series
expansions. From these, we deduce formulae for the number of representations of an integer
n by eighteen quadratic forms in terms of divisor sums.

—Dedicated to the memory of my grandmother Yuet Kwai Mah.

1. Introduction and Statement of Results

Let 7 be a fixed complex number satisfying Im (7) > 0 and let ¢ = €™, so that |¢| < 1. Let
2
plg)= Y. ¢,
j=—00

and
Y (q) = Z gutD/2,
j=0

The purpose of this paper is to study and give proofs of eighteen theorems in the area of the
number of representations by sums of squares and triangular numbers. Most of these results
appear to be new. The results in this paper can be found in the author’s thesis [7]. Section
2 contains preliminary results and will be used as a basis for Section 3. In Section 3, we will
prove the following results.
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p(q) e (d") v (¢") = %Z -

Theorem 3
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(11)

(12)

(13)

(14)

(15)

(16)

Formula (16) was given by S. Ramanujan [8, Chapter 17, Entry 17] [1, p. 139]. Proofs of
(5), (6), and (16) were given by S. H. Chan [2]. In the author’s thesis [7], a total 51 identities



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A28 4

are given; only identities (1)—(18) are stated here because either they appear to be new or
involve both sums of squares and triangular numbers.

Finally, we will demonstrate an arithmetic interpretation of Theorems 1-3 in terms of
divisor sums. For example, (4) implies that the number of solutions in integers x1, s, x3, and
y of 22 + 23 + 22+ (21 + 1)° = m, is

m) Yy d, (19)

where

k(m) =

O 0 WD
1T 1
O W N

SIEIE I

An arithmetic interpretation of identity (3) appeared in M. D. Hirschhorn [6].

2. Preliminary Results

Following [4, pp. 120-121], we define f; (6), f2 (f), and f5(6) by

1) = fi(0;q) = 1 tg -2 @ 10 (20)
1 1(0;q 2co 5 2 T sin j6,

f (9) = f (9' ) 5 Q 2 C] _ 1 0 (21)
o 5 (0;q csc 5 + g Csin ( j 5 )Y

f3(0) = f3(0;q) = 1 Q -2 —qu_l i | — 1 0 (22)
3 3 (0;q 5 cse 5 ;:1 T i sin | j 5 )¢

It can be shown [4, p. 121] that the series in (20)—(22) converge for —Im (277) < Im () <
Im (277). By Ramanujan’s 171 summation formula [8, Chapter 16, Entry 17], we have [4,
p. 121]:

1> (1 +q2k—2€w) (1 + q% —10) (1 . q2’€)2
h(0) = % LL (1 — 26 (1 — g2he) (1 + )2’ (23)

B oi0/2 > (1 gk1el )(1 . —19)( q2k)2

R(0) = i g (1— q2k 26i0) (1 — g2ke=10) (1 — g2—1)2 (24)
B pi0/2 (1 + g2h1let 9) (1 + g2 1e ) (1 _ q2k)2

fs(6) = i H (1 — %260 (1 — g2ke=i0) (1 + g2h—1)% (25)
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These are valid for all values of 0 except 0 = 2mm + 2n77, where there are poles of order
1. Equations (23)—(25) provide an analytic continuation for the functions fi, fa, f3. The
functions fi, fa, f3 are the Jacobian elliptic functions cs, ns, and ds, respectively. See [3, p.
77] for precise identification.

From [4, p. 124] we have

fi0) = —f2(0) f5(0), (26)
fé(e) = _fl(e)fii(e)a (27)
f500) = —f1(0) f2(0) (28)
Letting
:o= 2l =[O+ (1), (29)
k=1
B B 00 1 +q2k
T = = 16 H = (30)
, 00 i 1)8
o = 1;[ 1+q2k 3 (31)
we have ([4, p. 124-134)):
x4+ = 1, (32)
plg) = Z ¢ =z, (33)
U(g) = Zq I/ \/fzi (34)

Using the infinite products for f1, fo, f3, and comparing with (29)—(31), we obtain [4, p. 129]
the values in Table 1.

Table 1. Values of fi, fo, and fs.

m T | TATT
pey| o | LR
RO 5 | 0 @
By | T
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We also summarize 3 transformations of the functions 2’, z, and z from [1, pp. 125-126] in
Table 2.

Table 2. Three transformations of the functions 2/, z, and z.

/

q x x z
1 x

q——q - - v
x x

1-ve)' | 4@
(1+v2)" | (14 va)

2 (14 y/x)

q—>q%

2

N G . %z(1+\/?)

(1+ve)" | (1+

q9—4q

2D
S— [~—

We shall give some explanation for Table 2. For example, if we apply the transformation
q — —q to the functions 2/, x, and z, then the second row of Table 2 implies that =’ (—¢q) =

1
—,x(—q) = —E/, and z (—¢q) = zv/2'. The transformations ¢ — g and ¢ — ¢2 can be read
T x

similarly.

The results in Table 3 can be easily obtained by applying the results of Table 2.

Table 3. Four transformations of the functions z’, x, and z.

7

q x x z
s | a+ve)” —4\/w
T v | amver | Y
N G I R G ) -
q— —q 4\/5 4\/; 2V
i) (\/:?—z\/a?)z 4iN/xa’ 2 Z(\/?Hﬁ)
(\/37—1—2'\/E> (\/?ﬂ\/i)
q— —iq? (\/?JFZ\/E): i’ 2 Z(ﬁ—zﬁ)
(o) | o)
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3. Proofs of Theorems 1-3

The following 3 lemmas are required to prove Theorems 1-3.

Lemma 1
0@ e(qd") = (@) +ifi(v+77¢%),
c@ ) = g [Rlrm) —ih (m+ )]
P ) = [ (rrmiad) + A (b))
Lemma 2
()Y (¢°) = —lf{ (W'iq%>+1f{ (W'q2)+2fé (7 + 775 ¢%)
q ’ q ’ q Y
e’ () v* (q) = 2(% [fé (mq%> —ifs (7?+7T7;q%>],
“1, a1,
S0 (¢") = 5 fi(miat) + 5 ),
“1,( 1, 1., .
o’ ()v* (%) = 4—q2f1 (Mq >+2—q2f1 (mq2)+2—q22f3 (m+77;¢%)
1
_4—q2f{ (Tr)?
e(q)v’ (¢°) = —Lf’ (W'iqé)—if'(ﬂ)Jrif’ (7 ¢%)
1§q3 AN 16¢371 4371\
+8Lq3f?/’ (7 +775¢%),
Lo (gt + — 1 (o —g?
e (Y v® () = @fz (7T7',q >+ o688 f5 (m—, q )
3 , 1 .
—1:3(]% fa (WT;iq5> + mfé (7T+7T7';i6]§) ,
1 N ;
(@) (¢ o (¢) = —4—qf{ (m'(ﬂ) +4—qf{ (W)—;—qfé (m+77:¢%),
(@) (@) () = —o St (miad) = oo fL )+ S (i)
2q 1 ) 2q 1 q 1 ) )
1 1 ;
eV (¢ v () = —8—q2f1( q >+8—q2f{ (7?)+4;2fé (m+775¢%) .

(41)

(42)
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Lemma 3

e (@) ® (¢°) = 4f3 (m) —4if! (w7) +4f3 (7)), (47)
¢’ ()¢ () = 4f5f(7r)—2if{’(7rf)+4fé’(ﬂ), (48)
V@ (@) = gl ). (49)
SV = ), (50)
902 (q) 1/}4 (q4) — %(]2 " (71') o 8Lq2 " (7_[_7_) . %(]2 " (7‘(’) : (51)
4 24_1//,/T_z//7r7__1//7T

SO(Q)w(Q)—qz() qfl( ) q3()- (52)

Proof. The proofs of Lemmas 1-3 follow by using (26)—(28), (32)—(34), and Tables 1-3. We
express both sides of (35)—(52) in terms of z and x. We give complete details for ¢ (¢*) 13 (¢?)
only; the other formulae can be proved in a similar way.

By employing (33), (34), and Table 2, the left hand side of (38) can be rewritten as

(@) v (¢°) = 4%22 (1 — :c’zl{) : (53)

Next by substituting the values of § = 7 and 7 + 7 into (26) and (28), respectively, and
then using Table 1, we find that

A pE— (50

;52 /
film+mr) = —=—. (55)

Now if we employ the results of Table 2, Table 3, (54), and (55) in the right hand side of
(38) we get

1 1 l
——fi <7T;iq%> +-fi(md*) + =~ f3 (7 + 77 ¢°)
q q q
1 1 1 1 1 1 1
_ @ZQ _ 8_q22:[/21 (1 _'_3:/5) _ @Z%ﬂ (1 _ x/?)
1 5
= —2(1—=x (56)
4q
Combining (53) and (56) we obtain (38). This completes the proof of Lemmas 1-3. O

We now prove Theorems 1-3.

Proofs of Theorems 1-3. We use the series expansions of fi (), f2(0), and f3(#) in (20),
(21), and (22), while the right hand sides of the results in Lemmas 1-3 can be represented
explicitly as Lambert series. We give complete details for (4) only; the others can be proved
in a similar way.
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First, differentiating (21) and (22) with respect to 6 we have

1 1 0 = j¢¥ ,
/ _ 2

fi) = —5— ooty =2 ]-E_l e cos jf,

1 0 0 =(2j—1)¢¥! 1
fé(e) = _ZCSC§COt§_jEITq2j_1COS ]_5 0.

Substituting # = 7 into (57) we have
fim =3 - 23 S
P 1 + q%

7j=1
Substituting § = m + 77 into (58) and recalling that ¢ = €™, we have

ei(7r+7r’r)/2 + 6—i(7r+7r7')/2

(T +7T) =
I3 ( ) ) (ei(7r+7r‘r)/2 _ 6—i(7r+7r7')/2)2

© (o, 2j—1
=S G Z VG igmtmenn) _ gmiti=1/2)mem))

27—1
2 = 14 g%
Qg2 (1—-q) 1 i (=172 (25 = 1) ¢ V21 =1+ g%
T T 5/1 N2 o 2j—1
2(1+q) 2j=1 14 q%
)R -
27—1
2 = 14 qg%
1/2 o0
_ Zq/ (1_3) _EZ( 1)’ 1/2(2] 1) ¢ 1/2
2(1+q) 2
00 _1j1/22 1) gi—1/2
+Z( ) 145]23—1)61
=1 q
We observe that
DT =T = Y i) =D 25(-
j=1 j=1 j=1
_ (=9 2(-g)
1-(—q)2)* (1-(-q)
iq"? (1 —q)

(14q)°

Substituting these into (60) we obtain

(57)

(58)

(59)

(60)

(61)
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Using (59) and (61) in the right hand side of (38) and simplifying the results we obtain (4).
This completes the proofs of Theorems 1-3. O

Next we present an arithmetic interpretation of Theorems 1-3 in terms of divisor sums.

Let £ and m be positive integers. Let Ay, Ao, ... , A\p and py, po, ... , iy, be positive inte-
gers, where Ay < X\ < --- < A\ and py < g < --+ < iyy. The function

rOMO+ X0+ + MO+ A+ g A+ + ) (n)
will denote the number of solutions in integers of

where n =0,1,2,3,... . We also define r(A\00 4+ -+ - + MO + A+ -+ - + ) (0) = 1.

Ale +/\2x§ —l—---—l—)\kmi +

Then the generating function for 7(AM O+ X0+ - -+ MO+ A+ po A+ -+ pnN) (n)
1s

Zr()\lm—i—)\gm—i—---+)\kD—I—M1A—|—,u2A—{—---—l—,umA)(n)q”
n=0

= (™) e (@) e (@) (@) (@) (¢"). (63)

We remark that since (62) is equivalent to

2 2 2
1 1 1 m
2A1x?+2)\2x§+-~-+2)\kxi+u1 <y1+§> + w2 <y2+§> + o U <ym+§> =2n+ R (64)

then geometrically, 2"r(AMO + A0 + -+ - + MO 4+ iy A + o A+ -+ - + pN) (n) counts the
number of lattice points on the k 4+ m dimensional ellipsoid centred at (0, 0, ... , 0, —%, —%,
. —%), the point whose first k coordinates are 0 and remaining m coordinates are —-

.. 29
with radius ,/2n + 7.

Now we give complete details for an arithmetic interpretation of (4) in terms of divisor
sums.

Corollary 1 Forn > 1,

r(0+0+0+4848)(n) =k(n) ) _ d, (65)

where

o
—~
S
~—
I
O = 00 W o
S
I
AAEAA
o
[
0]
~— —
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Proof. First use (63) and expand the right hand side using the geometric series in (4) to get

Y r(@+0+0+84) (n)q"
n=0

= 92 (_1)mj G+ 1)q(j+1)(m+1)_1
2D 03 (=)™ (j + 1)gtrnim =
j=0 m=0
=3O (=1 (25 + 1)g D e
j=0 m=0
= 2 Z 2] + 1 (2]+1)(m+1 + 2 Z Z 2] + 2) (2j+2)(m+1)71
o 7=0 m=0
—2) > (=) (25 + 1)gt DD
+2 Z Z (_1)m+1 (2] + Q)Q (2j42)(m+1)
7j=0 m=0
a ( 1)m+J (25 + 1)q(2ﬂ+1)(2m+1)

- i 2 > (2i+D+2 > (D" 2i+ 1

n=0 | (2j+1)(m+1)=n+1 (27+2)(m+1)=n+1

—2 > (=)™ (25 4+ 1)

4(2j+1) (m+1)=n+1

19 > (—=1)™ (25 + 2)

4(25+2)(m+1)=n+1

- Y e

(2j+1)(2m+1)=n+1

_ i 23 d+a Y da-2Y (D a-1Y 4

n=0 dln+1 dln+1 dln+1 dln+1
d odd n,d odd n=3 (mod 4),d odd n=7 (mod 8),d odd

N

D> (-id
dln+1

n even, d odd
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By comparing coefficients of ¢" on both sides we obtain

rO+0+0+88)(n) = 2> d+4> d—2 (1% d

din+1 dln+1 dln+1
d odd n,d odd n=3 (mod 4),d odd
n
~4Yd - Y (-
dln+1 dln+1

n=7 (mod 8),d odd n even, d odd

If n=1 (mod 4), then n+ 1 = 4k + 2 and so

rO+0+0+8A)(n) = 2> d+4 ) d

d|n+1 d|ak+2

d odd d odd
= 2> d+4) d

dln+1 dln+1

d odd d odd
= 6> d

dln+1

d odd

Similarly, if n = 2 (mod 4), then n + 1 = 4k + 3 and so

FrO+0+0+80)n) = 23 d- 3 ()5 d

dln+1 d|4k+3

d odd d odd
= 2 E d+ E d

dln+1 dln+1

d odd d odd
= 3 E d.

din+1

d odd

If n =3 (mod 8), then n+ 1 = 8k + 4 and so
rO+0+0+80)(n) = 23 d+4 Y d-2 3 (-)% d

din+1 d|8k+4 d|8k+4

d odd d odd d odd
= 2 E d+4 E d+2 E d

din+1 dln+1 din+1

d odd d odd d odd
= 8 E d.

din+1

d odd

If n=0 (mod 4), then n+ 1 =4k + 1 and so

rO+0+0+88)(n) = 2> d- Y (-1)%d

djn+1 dldk+1
d odd d odd
dln+1 dln+1
d odd d odd

= > d

d|n+1
d odd

12

(66)

(67)
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If n =7 (mod 8), then n+ 1 = 8k + 8 and so

rO+0+0+88)(n) = 23 d+4 Y d-2> ()W d-4Y d

din+1 d|8k+8 d|8k+8 d|8k+8
d odd d odd d odd d odd

= 0. (70)
Combining (66)—(70), we obtain (65). O

By (64), formula (65) is equivalent to (19).

4. Remarks

The results in this paper can also be proved using the theory of modular forms. I thank the
referee for his/her permission to reproduce the following remark.

Consider identity (15). We have that qi* (¢) ¥? (¢*) is a modular form of weight 3 on
I (4). On the other hand, it is easy to check that

J°q
F(Q): Z 1_|_q2j

j=—o0

is an Eisenstein series in that same space. To see this, let xy be the non-trivial Dirichlet
character mod 4, and let o (n) :=>_, X (n/d)d*. Define

n=1

It is known that E (¢) is in the space (see [5, chapter 4] for a complete discussion). It is not
hard to check that E (q) = F'(q) directly. The identity qu* (¢) v? (¢*) = F (q) then follows
by checking that the first few terms agree.

An arithmetic interpretation of other identities can be found in the author’s thesis [7].
We shall remark that Hirschhorn [6] also presented many others which give the number of
representations of an integer n by various quadratic forms in terms of divisor sums.
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