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Abstract

We give a proof of the continued fraction expansion of e?*, where s > 3 is an odd integer,
by expressing the error between €2/ and its each convergent explicitly in terms of integrals.

1. Introduction

Let a = [ag; a1, as, .. .| denote the simple continued fraction expansion of a real o, where
a=ag+ 1/ay, ap = |a,
ap = ap + 1/ap1, a, = o] (n>1).
The n-th convergent of the continued fraction expansion is denoted by p,, /¢, = [ao; a1, ..., a, ],

and p, and ¢, satisfy the recurrence relation:

Pn = QpPn—1 +pn—2 (TL Z 0)7 pP-1= 1’ P—2 = O,
On = nn-1 + Gn—2 (n >0), q-1 =0, qo=1.

An irrational number « is well approximated by its n-th convergent p,/q,. In fact, for
n>0
1 Dn 1
S a{ —_— —
qn(qﬂJrl + qn) dn n4n+1

([4, p. 20]). Precisely speaking, by using the algorithm mentioned above, we can express ([1,
Lemma 5.4]) the error as

< <

Pn (—1)"
oO— — = .
dn Qn(an+1Qn + Qn—l)
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Osler [5] gave a remarkable proof of the simple continued fraction

et = [ 2k — s — L LA, (s>2)

by expressing this error explicitly in terms of integrals. Namely, when p, /g, is the n-th
convergent of the continued fraction of e/, he showed that for n > 0

n 1"
pi . el/s — __/ l’ a:/sdx,
G3n Sn-i—lnl
P3n+1 1/s __ n+1(x — 1) :z:/sd
— € - n+1op1 z
d3n+1 d3n+1 Jo st

and

n 1 Lz — 1)t

D3n+-2 e1/5 _ / ( ) €$/Sdl'.

d3n+2 43n+2 Jo

This was the direct extension of the result given by Cohn [2] concerning e. A similar expres-

sion can be seen in [3] too.

It is known that the continued fraction expansion of €?/* is given by

(6k—5)s—1

o

(6k—1)s—1
L1,

2/s __ .
(& = [1, 92 » Ly

, (12k — 6)s,

where s > 1 is odd (See [6], §32, (2)). We shall give another proof of the continued fraction
expansion of e** by showing similar errors explicitly. For convenience, for n > 0 put

3n+1 1 ,.3n 3n
A - (2 / T@ D)™ o gy
s 0 (3n)!

3n+1 1 o 3n+l(,  1\3n+l
B, = 2 / x (I 1) €2x/8d.’13,
gn+2 (3n+ 1)
B 9 3n+3 1 x3”+2(:l: - 1)3n+2 22/
C,=1[= e“dx
s 0 (3n + 2)!

3n+3 1 ,.3n+3 _ 3n+2
Dn g / Z (]I 1) 62x/sdx
s 0 (3n+2)! ’

and

3n+3 1, .3n4+2 _ 3n+3
E, = 2 / ’ (z—1) >/ dy .
s 0 (3n 4 2)!

Then, our main theorem is stated as follows.
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Theorem 1.1. Let p,/q, be the n-th convergent of the continued fraction of €*/*. Then, for
n>0

1

Psn —er=—— A,

Q5n Q5n
Pt _ s _ 1 g
d5n+1 d5n+1
Psn+2 _ e2/5 - 1 Cna
d5n+2 q5n+2
Psn+3 — 62/8 = 1 Dn )
d5n+3 d5n+3

and
Psn+4 . 62/8 _ 1 En ‘

5n+4 5n+4

2. The Continued Fraction of ¢%/s

The proof of the main theorem is based upon the following identities.

Lemma 2.1.

Ay =y~ Dy 1, (2.1)
B, = %An —E, ., (2.2)
C, = (120 + 6)sBy + A, | (2.3)
D, = —wa _B,, (2.4)

and
E, =D, —C,. (2.5)

These identities correspond with the desired relations:

Psn = Psn—1 +p5n—27 d5n = Q5n—1 + d5n—2,
(6n+1)s —1 (6n+1)s —1
Psnt1 = prn + Dsn—1, Qsn+1 = #%n + @5n—1,
Psnt2 = (12n 4 6)spsnt1 + Psns Csn+2 = (12n 4 6)S¢s5n+1 + Con,
(6n +5)s — 1 (6n+5)s —1
Psn+3 = #%nw + Dsnti, Q5n+3 = #%nw + 5041,

Psntda = Psn+3 + Dont2, I5n+4 = Q5n+3 + Qsnio-
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We shall prove Theorem 1.1 and Lemma 2.1 simultaneously.

Proof. When n = 0, the relations in Theorem 1.1 are true. Indeed,

1
Aoz—/ /5 dy = %" — 1 = qpe?/* — py .
s Jo

2 [ 1
By = 2, w(x — 1)/ *dx = 2—8[(2952 —2(s+ 1D+ s>+ s)ezx/s}é
5 — 162/8 s+
2 2

2\’ 1 !
Co = (;) 5/0 2 (z — 1)%e*/*dx

1
-2 [(2554 —4(s+ 1)z’ + 2(3s* + 35 + 1)2”
S
—25(3s% +3s + 1)x + 35" + 35 + 32)6293/8}(1)
= (352 =35+ 1)e¥* — (3> + 35 + 1) = que®/* — s .

2\°1 !
Dy = (g) 5/0 2 (z —1)%e®/*dx

1
= ——[(42° — (10s + 8)z" + (205 + 165 + 4)z” — (30s° + 24s* + 6s)x?

= 9162/8

—P1-

252
+ (305" + 245° + 65%)a — (155° + 1251 + 35%))e2/°]
15s3 3 1553 9

2\’ 1 !
Ey = (—) —/ 2 (z —1)%e®/*dx
s) 2/

1
= ——[(42° — (10s + 12)z* + (205® + 24s + 12)z* — (30s” 4 365" + 185 + 4)2”

242
+ (30s* 4 365% + 185 + 4s)x — (15s° + 185" + 9s® + 282))6236/5](1)
155° 5 9s 155° 9 B8\ 9/s 9/s
274—95 —1—5—1-1—( 5 — 6s —1—5)6/ — ps — ue?l*.

Suppose that Theorem 1.1 is true up to some integer n — 1(> 0). Since
d 3n 3n 2z/s 3n—1 3n 2z/s 3n 3n—1 2 3n 3n 2z/s
d—(x (z — 1)*"e*/*) = 3na® ' (z — 1)*"e*/° + 3na®(z — 1) + - (x — 1)7"e™
x s

by integrating from 0 to 1 we get (2.1). Hence,

Dsn — q5n62/8 = (Psn—1 + Dsn—2) — (¢5n—1 + Q5n—2)€2/8

=Lp1+ Dn—l = _An .
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Since

% (1‘3”(1’ _ 1)3n+1€2x/s)

2
_ STL.CE?m_l(.CE . 1)3n+162x/s + (3n + 1).T3n(.f13 _ 1)3n62x/s + _x?m(x _ 1)3n+162x/s
S

2 2
_ —3nx3”_1(x . 1)371621/3 + (6n +1— —){L‘3n(1' . 1)371621/3 + —J]3n+1(l’ i 1)377,62:1:/5
S S
and

% (l,?m—i-l(x _ 1)3n+162x/s)

2
_ (3n + 1)3:371(3: . 1)3n+162x/s + (3n + 1)1,371-&-1(3j _ 1)3n62x/s + —x3”+1(x _ 1>3n+162x/s
S

2
= 2(3n + 1)z*" M (z — 1)%e2/* — (3n 4+ 1)a®(z — 1)%1e?/s 4 Sl (g — 1)3nH1e2/s
s

by integrating from 0 to 1 and canceling the term of z3"+! (2 — 1)3"e?*/% we get

1 1
6 1)s—1
> (~3n) / 2 (g — 1)l g % / (1)
0 0

1 ! 3n+1
. n -1 3n+1 2x/sd =0.
s(3n+1) /0 R .

Thus, we have (2.2). Hence,

s 6n+1)s —1 6n+1)s—1 s
Psn+1 — QSn+1€2/ - (%p@n +p5n—1) - <%q5n + q5n—1) 62/
6 )s—1
_ _(Bn+1)s—1 ”*2)3 A +E, 1= —B,.

Notice that
d

- ($3n+2(x _ 1)3n+2€2x/s)

2
— (3n + 2)(1]3n+1(l’ o 1)3n+262x/s + (Sn + 2)$3n+2(l’ - 1)3n+162m/s + _l,3n+2<x . 1)3n+262:p/s
S

2
. (3n + 2)[L’3n+1 (37 _ 1)3n+162x/s + —$3n+2($ _ 1)3n+2€2x/s ’
S

— (6n + 4)x3n+2<x o 1)3n+162x/s

% (x3n+2(l, _ 1)3n+162:6/s)

2
_ (3n + 2)1’3n+1($ . 1)3n+162x/s + (Sn + 1)1,371—}-2(1, . 1)3n62z/5 + —l’3n+2($ . 1)3n+162$/5
S

2
_ (6n + 3)x3n+1<x _ 1)3n+1e2x/s + (3n + 1)1’3n+1($ _ 1)3ne2x/s + _x3n+2(x _ 1)3n+1€2x/s
S
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and
i(x?m-i-l(x _ 1)3n+162x/8)
dx
2
— 2(3n + 1)x3n+1(x o 1)377,62:17/8 . (3n + 1)$3n(x _ 1)3716217/5 + _$3n+1(l' o 1)37’L+162$/8 ]
S

Integrating these three equations from 0 to 1 and canceling the terms of z3"*%(z —
1)3n+1621‘/s and $3n+1($ _ 1)3n62x/s, we get

2\* [
(_> / I3n+2(l’ o 1)3n+262x/sdx
§ 0

1 1
= (12n+6)(3n+2) / " (2 — 1) e 5 dr 4 (3n+2)(3n + 1) / 2z —1)3re® /5
0 0

Thus, we have (2.3). Hence,

Psn+2 — q5n+262/8 = ((12n + 6)Sp5n+1 + pSn) - ((127’L + 6)Sq5n+1 + Q5n)€2/8
=—(12n+6)sB, — A, = —C, .

Notice that

% (1’3n+3($ . 1)3n+2€2x/s)

2
— (3n 4 3)$3n+2($ _ 1)3n+2€21/s 4 (3n 4 2)x3n+3(w _ 1)3n+1€2x/s + gx3n+3(x _ 1)3n+2€2x/s’

% (.T3n+3(.1‘ _ 1)3n+1€2z/s)

2
_ (377, + 3)x3n+2(x _ 1)3n+1e2r/s + (377, + 1)$3n+3($ _ 1)3n€2x/s + g$3n+3($ _ 1)3n+162x/s

2 2
_ <6n +44+ _) $3n+2(33 _ 1)3n+1€2x/s + (3n + 1)33371-#-2(37 _ 1)3n62x/s + _x3n+2<x _ 1)3n+2€2x/s7
S S

di (x3n+2(x _ 1)3n+2€2x/s)
xXr
2 2
— <6n +4— _) $3n+2(l’ - 1)3n+162x/s . (377, + 2)$3n+1(13 - 1)3n+162x/s + —$3n+3($ i 1)3n+1€2_w/s
S S
and
d 3n+2 3n+1 2z/s
d—(m (z — 1)**te?/®)
i

_ <3n + 2)$3n+1 (:U _ 1)3n+le2x/s + (3n + 1)£L’3n+2(:€ _ 1)3ne2:p/s + 2x3n+2<x _ 1)3n+1€2x/s )
S
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Integrating these four equations from 0 to 1 and eliminating the terms of z3"3(x —
1)3n+162r/s’ I‘3n+2(l’ _ 1)3n+1621‘/s and $3n+2($ _ 1)3n62x/5, we get

4 1
= / x3n+3(x _ 1>3n+262x/sdx
S Jo

2\ [! L
= — (12n +10 — —) / 2 (g — 1) 2205 dy — (3n + 2)/ 23 (z — 1) 25
s) Jo o
Thus, we have (2.4). Hence,

s 6n+5)s —1 6n+5)s —1 s
Psnts — Gsnsae”* = (%mnw + p5n+1) - <%Q5n+2 + Q5n+1) e
2
Since 23" T3 (x — 1)3772 — 232 (g — 1)37F2 = 23+ 2(gp — 1) we get D,, — C,, = E,,
which is (2.5). Hence,

Dsntda — Q5n+4€2/s = (Psnts + Psnt2) — (¢ones + C]5n+2)€2/s =D,-C,=FE,.

3. The Continued Fraction of ¢?

Let Z—ZL be the n'" convergent of the continued fraction of €2 = [7;3k — 1,1, 1,3k, 12k + 6 |32 ,.
Then, for n > 0 we have

p_; _ Dni2

q;l Qn+2
where p, /g, is the n-th convergent of the continued fraction of e** mentioned above. Thus,
by replacing p,,/q, by pi_5/q: 5 (n > 2), Theorem 1.1 with Lemma 2.1 holds for s = 1.

Y

2/s

4. Additional Comments

Some results in our theorem can be derived directly from Osler’s results. By the relation for
i=1,2,...

1
[,1 ai—§,1,...] = [...,1,(1,37;_2,4a3i_1+2,6L3i,1,...],
if we replace s by s/2 in the continued fraction [1;(2k — 1)s — 1,1, 1]32,, then we have
o s+1 1 00
[1;(2k — 1)s/2 — 1, 1,152, = [1;ks — -3 L 1.,
(6k —5)s —1 (6k —1)s—1 %
= [l (12k = 6)s, ———— L1] .
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Therefore, if we replace s by s/2 and n by 3n in the Osler’s integral for ps, — gs,e'/®, we get
our integral for ps, — gs,e?*. If we replace s by s/2 and n by 3n+2 in the Osler’s integral for
P3nt1 — q3n+161/5, we get our integral for ps, .13 — q5n+362/8. If we replace s by s/2 and n by
3n + 2 in the Osler’s integral for ps,.o — ¢sni2€'/®, we get our integral for ps,ia — @sniae?’’.
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