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Abstract

For sufficiently differentiable univariate functions f, g and their composite h = g(f) we
prove that

dng(f(x))

df(x)n
=

n∑

j=0

djh(x)

dxj

n−j∑

k=0

(−1)k df(x)

x

−(n+k)

Rn,j,k(x),

Rn,j,k(x) =
∑

b1+···+bk=
=n+k−j,

bi≥2

1

k!

(
n + k − 1

j − 1, b1, . . . , bk

)
db1f(x)

dxb1
· · · dbkf(x)

dxbk

using combinatorial considerations (set partitions in particular). We also discuss the case
of multivariate f .

1. Introduction

Faà di Bruno’s formula, the chain rule of higher derivatives, can be given in a convenient
form as

dkg(f(x))

dxk
=

k∑

i=0

Bk,i(f(x), f ′(x), . . . , f (k−i+1)(x))
dig(f(x))

df(x)i
,

where the Bk,i are the Bell polynomials (see e.g., [3, Section 2]).

Our aim is to find rational functions Ck,i such that

dkg(f(x))

df(x)k
=

k∑

i=0

Ck,i(f(x), f ′(x), . . . , f (k−i+1)(x))
dig(f(x))

dxi
.
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Setting h(x) = g(f(x)) (and taking care of the proper derivation variables), we can say
the Faà di Bruno formula expresses h(k)(x) as a linear combination of g(i)(f(x)), whilst
we try the reverse, to express g(k)(f(x)) as a linear combination of the h(i)(x).

The problem has been treated previously by Hess [1], of which there is a summary
review in [2]. The motivation of this paper is to give an alternative proof and additionally
to give some more insight into the combinatorial aspects of the problem.

Faà di Bruno’s formula, especially its multivariate form, admits a nice combinatorial
interpretation in terms of set partitions that are in a one-to-one relation with monomials
in the derivatives [5]. If, as a kind of inverse relation, we try to express the derivatives
dkg(f(x))/df(x)k in terms of dkg(f(x))/dxk, similar combinatorial relations hold, but the
partition structure is a bit more involved.

2. Set Partitions

We define πn,j,k as the set of partitions of the set {1, . . . , n+k−1} into one distinguished
block of length j − 1 ≥ 0 and k blocks of length at least 2. Here the blocks are not
necessarily adjacent.

Let us examine the extreme cases.

• n = j = k = 0: The empty set admits exactly one partition, namely the empty set
itself: π0,0,0 = {{∅}} = {{{}}}.

• j ≤ 0: Since we would need the distinguished set to be of negative length, we get
πn,0,k = ∅ unless we are partitioning the empty set, i.e., n = k = 0 which we already
considered.

• k ≤ 0: Setting k = 0, for πn,j,0 we have to consider a partition of {1, . . . , n − 1}
into one set of length j − 1 and no additional sets. So for n = j we get πn,n,0 =
{{{1, . . . , n − 1}}} and πn,j,0 = ∅ else.

• j + k ≥ n + 1: We would have to partition {1, . . . , n + k − 1} into one set of j − 1
elements and k blocks that total to n − j + k ≤ 2k − 1 which is not possible since
these blocks are required to have length at least 2.

As more generic examples, consider

π2,1,1 = {{∅, {1, 2}}} and

π3,2,1 = {{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}}.
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One of the key points of the proof is that the πn,j,k can be defined recursively in n.
We make a case distinction according to the set in which the new element n + k − 1 is
contained. (This section and the next are modeled closely after [4]).

1. This set may be the distinguished set of length j − 1. Removing it from this set,
we are left with a set partition from πn−1,j−1,k.

2. The new element may be in a two-element set. In this case we have the choice of
n+k−2 elements for the second member of that set. Removing this two-element set
from the partition we are left with a partition that is in one-to-one correspondence
with an element of πn−1,j,k−1 (one set less, and the special set still has the same
length).

3. Finally, the new element may appear in a non-distinguished set of size ≥ 3. The
old partition will then have been an element of πn−1,j,k.

3. Derivative Monomials

As next step we introduce the map between set partitions and monomials. To a par-
tition π = {π0, . . . , πk} ∈ πn,j,k, where without loss of generality π0 is the special set
of cardinality j − 1, we associate the monomial f (π) := f (|π1|)f (|π2|) · · · f (|πk|). Setting
Rn,j,k :=

∑
π∈πn,j,k

f (π), we use the recursive relations of πn,j,k to derive a recursion for
Rn,j,k.

1. The partitions of πn−1,j−1,k correspond directly to the terms of Rn−1,j−1,k, so these
are terms of Rn,j,k as well (since there is change only in the special set that does
not affect the monomials).

2. A two-element set of the partition corresponds to a term f ′′(x), hence the terms
corresponding to this case are (n + k − 2)f ′′(x)Rn−1,j,k−1.

3. The term in this case is (d/dx)Rn−1,j,k, since derivation adds one summand for each
factor of a monomial with the differentiation increased by one for that factor. This
increase mirrors the addition of the new element to a set of the partition.

All in all, from these considerations we get

Rn,j,k = Rn−1,j−1,k + (n + k − 2)f ′′Rn−1,j,k−1 +
d

dx
Rn−1,j,k. (1)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A34 4

4. Result

Theorem 1 For sufficiently differentiable univariate functions f, g and h = g ◦ f

g(n)(f(x)) =
n∑

j=0

h(j)(x)
n−j∑

k=0

(−1)kf ′(x)−(n+k)Rn,j,k(x), (2)

Rn,j,k(x) =
∑

b1+···+bk=
=n+k−j,

bi≥2

1

k!

(
n + k − 1

j − 1, b1, . . . , bk

)
f (b1)(x) · · · f (bk)(x),

where Rn,0,k(x) := !
(
n = k = 0

)
, Rn,j,0(x) := !

(
n = j

)
and Rn,j,k(x) := 0 else.

Proof. The proof is done by induction (again, compare [4]). To begin with, observe
that the Rn,j,k given in the statement is just the explicit version of the combinatorial
version given previously, and that the definitions of Rn,j,0, Rn,0,k are compatible with the
combinatorial definition and the usual conventions about empty sets, sums and products.

Applying d/df(x) = 1/(df(x)/dx) ·d/dx to the equation gives (we use n∗ = n+1, j∗ =
j + 1, k∗ = k + 1)

g(n+1)(f(x)) =
n∑

j=0

h(j+1)(x)f ′(x)−1
n−j∑

k=0

(−1)kf ′(x)−(n+k)Rn,j,k

+
n∑

j=0

h(j)(x)
n−j∑

k=1

(−1)k(−n − k)f ′(x)−(n+k+2)f ′′(x)Rn,j,k

+
n∑

j=0

h(j)(x)
n−j∑

k=1

(−1)kf ′(x)−(n+k+2)f ′(x)
d

dx
Rn,j,k

=
n∗∑

j∗=0

h(j∗)(x)
n∗−j∗∑

k=0

(−1)kf ′(x)−n∗−kRn∗−1,j∗−1,k

+
n∗∑

j=0

h(j)(x)
n∗−j∑

k∗=0

(−1)k∗−1(−n∗ − k∗ + 2) ·

· f ′(x)−n∗−k∗
f ′′(x)Rn∗−1,j,k∗−1

+
n∗∑

j=0

h(j)(x)
n∗−j∑

k=0

(−1)kf ′(x)−n∗−k d

dx
Rn∗−1,j,k

=
n∗∑

j∗=0

h(j)(x)
n∗−j∗∑

k∗=0

(−1)k∗
f ′(x)−n∗−k∗

Rn∗,j∗,k∗ .

In the last equation we made use of the recursion for Rn,j,k.
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Note that we did indeed not introduce any additional terms when extending the
summation ranges (this follows from the discussion of the extreme cases of πn,j,k). E.g.,
in the second sum (where the factor (−n∗−k∗+2) appears ) we have additional summands
with j = n+1 or k = −1 or k = n− j +1. However, in all these cases the corresponding
partition is empty, hence Rn,j,k = 0.

To conclude the proof we need to check the induction start. For n = 0 we get

g(f(x)) = h(0)(x)f ′(x)0(−1)0R0,0,0 = h(x),

which is a trivially true assertion (by usual conventions, e.g., f ′(x)0 ≡ 1). For n > 0, the
j = 0 term is always zero by definition, so for n = 1 we get

g′(f(x)) = h(1)(x)(−1)0f ′(x)−1−0R1,1,0 = h′(x)/f ′(x),

which is also true. Finally let us also check n = 2, where we have

g′′(f(x)) =
2∑

j=1

h(j)(x)
2−j∑

k=0

(−1)kf ′(x)−2−kR2,j,k

=
h′(x)

f ′(x)2
R2,1,0 −

h′(x)

f ′(x)3
R2,1,1 +

h′′(x)

f ′(x)2
R2,2,0

= 0 − h′(x)f ′′(x)

f ′(x)3
+

h′′(x)

f ′(x)2
.

This ends the proof. !

Observe that if we take g = f−1, i.e., the inverse function of f , we get the formula
for the higher derivatives of the inverse function (see e.g., [4]). Perhaps other choices of
g may lead to interesting special cases as well.

5. The Multivariate Case

Now we consider a function f in n variables, a function g in one variable and let h = g(f)
be their composite. We introduce the abbreviations

gi :=
di

df(x)i
g(f(x)), hi = hi(x1, . . . , xn) :=

∂i

∂x1 · · · ∂xi
h(x1, . . . , xn),

and

fi1···im = f{i1,... ,im} :=
∂i1+···+im

∂xi1 · · · ∂xim

f(x1, . . . , xm).

Note the special cases g0 = g(f(x)) = h(x) = h0, and f∅ = f .
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For a set of partitions T we define

fT : =
∑

τ∈T

∏

σ∈τ

fσ, e.g., f{{{1,2},{3}},{{1,2,3}}} = f12f3 + f123.

Let τn,j denote the set of all partitions of {1, . . . , n} into j nonempty blocks. We point
out the special cases fτ0,0 = 1, fτn,0 = 0 for n > 0 which follow from τ0,0 = {∅} and
τn,0 = ∅ for n > 0 and the usual conventions on empty sums and products.

With these notations the multivariate forward Faà di Bruno formula (see e.g., [5]) can
be written very concisely.

hn =
n∑

j=0

gjfτn,j

(
=

∑

j=0n

djg(f(x))

df(x)j

∑

τ∈τn,j

∏

σ∈τ

∂|σ|f(x)∏
i∈σ ∂xi

)
.

To state the inverse case in a similar manner we need some further notation. We set
θn,k :=

∏n
i=k fτi,i , so e.g.,

θ3,2 = f 2
1 f 2

2 f3, θ5,3 = f 3
1 f 3

2 f 3
3 f 2

4 f5.

Further set

ρn,k := !(n = k) +
∑

{uk+1,... ,un}=
={k,... ,n−1},

uj≤j

(−1)|{i:k<i≤n,i(=ui}|
n∏

i=k+1

fτi,ui
.

Theorem 2 The inverse multivariate Faà di Bruno formula is given by

gn =
n∑

k=0

hk
ρn,k

θn,k
. (3)

This is actually a simple corollary of the following formula for the inverse of a lower
triangular matrix.

Theorem 3 Let ai,j, (i, j = 1, . . . , n) be the entries of a lower triangular matrix, denote
the entries of its inverse matrix by bi,j and define αi,j := 1/(aj,j · · · ai,i). Then

bi,j = αi,j

(
!(i = j) +

∑

{uk}∈Hi,j

i∏

k=j+1

(−1)!(uk (=k)ak,uk

)
, (4)

where Hi,j is the set of all (uj+1, . . . , ui) that are permutations of (j, . . . , i−1) and fulfill
uk ≤ k.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A34 7

Proof. We use induction on i − j to prove this where the base cases bi,i = 1/ai,i and
bi,i−1 = −ai,i−1/(ai−1,i−1ai,i) correctly coincide with the formulas.

Now since (bi,j) is the inverse of the lower triangular matrix (ai,j) we get the recursion

!(i = j) =
n∑

k=1

ai,kbk,j =
i∑

k=j

ai,kbk,j ⇐⇒

ai,ibi,j = !(i = j) −
i−1∑

k=j

ai,kbk,j.

Using the induction hypothesis this equals

ai,ibi,j = −
i−1∑

k=j

ai,kαk,j

∑

{ul}∈Hk,j

k∏

l=j+1

(−1)!(jk (=k)al,ul
.

We will employ the following recursion for Hi,j, the set of all admissible (uj+1, . . . , ui).
The recursion is also in i−j, so the initial values are Hi,i = ∅. Now observe that if ui = k
it is necessary that uk+1 = k + 1, . . . , ui−1 = i − 1 because of the condition ut ≤ t. The
remaining (uj+1, . . . , uk) fulfill the conditions for Hk,j, so

Hi,j =
i−1⋃

k=j

{
(h, k + 1, k + 2, . . . , i − 2, i − 1, k), h ∈ Hk,j

}
.

(The elements of the union set are made up of these three components: h, a range of
integers and the final k, where the first two components might be empty.) It follows that

ai,ibi,j = αi−1,j

i−1∑

k=j

∑

{ul}∈Hk,j

−ai,kai−1,i−1 · · · ak+1,k+1

k∏

l=j+1

(−1)!(jk (=k)al,ul

= αi−1,j

∑∗

{ul}∈Hi,j

i∏

l=j+1

(−1)!(jk (=k)al,ul
,

which gives the stated formula after division by ai,i. !

Returning to the Faà di Bruno formula, the forward case may be written as h =
Mg, where h = (h0, . . . , hn)), g = (g0, . . . , gn)) are the vectors of derivatives of h, g
respectively and M = (fτi,j)

n
i,j≥0 is a lower triangular matrix. So (4) applies and by

g = M−1h, equation (3) follows directly from (4).

To better illustrate the structure of the formulas we give examples for n = 3

g3 =
h3

f1f2f3
− h2

f 2
1 f 2

2 f3

(
f1f23 + f2f13 + f3f12

)

+
h1

f 3
1 f 2

2 f3

(
f12(f1f23 + f2f13 + f3f12) − f1f2f123

)

=
h3

θ3,3
− h2

θ3,2
fτ3,2 +

h1

θ3,1

(
fτ2,1fτ3,2 − fτ2,2fτ3,1

)
,
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and for n = 4

g4 =
h4

θ4,4
− h3

θ4,3
fτ4,3 +

h2

θ4,2

(
fτ3,2fτ4,3 − fτ3,3fτ4,2

)

− h1

θ4,1

(
fτ2,1fτ3,2fτ4,3 − fτ2,2fτ3,1fτ4,3 − fτ2,1fτ3,3fτ4,2 + fτ2,2fτ3,3fτ4,1

)

(this last formula has 45 terms in full notation, n = 5 has 363).

5.1. Remarks

There is a difference to the forward case, since the coefficients of the derivative monomials
are not only ±1 but can assume other integer values. For instance, in g4 the term
fM , M = {1, 2, 3, 4, 12, 123} appears with coefficient +2 since fM is a term of fτ2,ifτ3,jfτ4,k

for {i, j, k} equal to {2, 1, 3} and {1, 3, 2}. This can be expressed by writing M in two
different tableaus built from the same blocks.

It would be interesting to find a general formula for the coefficients.

There is an alternative form for Hi,j that may be more convenient for generating
all possible {uk}. Any admissible {uk} is in one-to-one correspondence with strictly
monotone sequences: as discussed, ui < i and uk = k for k = ui + 1, . . . , i − 1. Set
k0 = ui. Then also uk0 < k0 and again uk = k for k = uk0 + 1, . . . , k0 − 1. We obtain a
strictly descending sequence k0 = i, k1, k2, . . . until ukt = j. Its length can range from 1
to i− j. On the other hand any such sequence gives rise to an admissible {uk} by setting
ui = k0, ukt = kt+1 and uk = k for the remaining k. So

Hi,j :=
{

(uj+1, . . . , ui)
∣∣{uj+1, . . . , ui} = {j, . . . , i − 1}, uk ≤ k

}

=
i−j⋃

m=1

⋃

k0,... ,km
i=k0>···>km=j

{
{uk}

∣∣ukt = kt+1, 0 ≤ t < m, uk = k else
}

=
i−j⋃

m=1

⋃

k0,... ,km
j=k0<···<km=i

{
{uk}

∣∣ukt = kt−1, 1 ≤ t ≤ m, uk = k else
}

.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A34 9

As one of the referees pointed out, there is yet another, even simpler alternative view.
Observe that there is also a one-to one correspondence between Hi,j and the subsets of
{j + 1, . . . , i − 1}. Given a set of Hi,j consider the subset of indices such that us = s.
Conversely, given any subset, set us = s for all indices in this subset, the remaining
values of us are uniquely determined by considerations as in the previous paragraph. As
a consequence of this we also immediately see that the size of Hi,j is 2i−j−1 if i > j and
0 for i ≤ j, (i, j) *= (0, 0).

Finally note that if some xi are identified, for example, f(x1, x2, x3) = f(x1, x2, x2) =
f(x1, x3, x3) = f(x1, x2), the formula will stay valid. In particular, formula (2) is the
special case f(x1, . . . , xn) = f(x, . . . , x) of (3). To obtain the proper multiplicity (i.e.,
the coefficients) of the occurring terms after identifications, possibly the enumeration
considerations of [5] can be applied here as well. However, as stated above, we do not
even know the coefficients of the general case; perhaps then this is a way to obtain these
unknown quantities.
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