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Abstract

In this paper we study the k-fized-points statistic over the symmetric group. We will give
some combinatorial interpretations to the relations defining them as well as their generating
functions. A combinatorial interpretation directly on derangements of the famous relation
on derangement numbers d,, = nd,,_1 + (—1)" will be given.

1. Introduction

Euler (see [1] and [4]) introduced the difference table (e)o<j<n, where e are defined by

n_ k=1 _ k _ k-1
ey =nland e, " =e, —e,_; forl <k <mn,

without giving their combinatorial interpretation. In our previous paper [11], we studied

these numbers, which generalize the derangement theory, through the study of k-successions.

The first values of the numbers e are given in the following table:

E=0 1 2 3 4 5
o!
o 1!
11 2
4 3!
9 11 14 18 4l
44 53 64 78 96 5!

QU W N = O
w
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and their generating functions are defined by

1y xp(—u)
ZenJrk - 1 . u)k“

n>0

exp(—u)
B

k>0 n>0

The motivation of this paper is to study the numbers d* which are obtained from the numbers
ek by dividing them by k!. It follows straightforwardly that their generating functions are
defined by

k Rou" exp(—u)
DP(w) = dypr = (-t
n>0
_ exp(—u)
Z Zdn+k nl l—z—u
k>0 n>0

We then obtain the following table for some first values of the numbers d”:

d,
k=0 1 2 3 4 5
n=>0 1

1 0 1
2 1 1 1
3 2 3 2 1
4 9 11 7 3 1
5 44 53 32 13 4 1

By a simple computation, we can find that the numbers d* satisfy the following recurrences:

dr =1
{dk (n—1d* , +(n—k—1)d*_, forn>k>0.

The aims of this paper are to give combinatorial interpretations of these numbers. We will
give a combinatorial bijection to the unexpected relation

d" +d""L = ndt_

which is a generalization of the famous recurrence on derangement numbers (see, e.g., [2],
[5], [14]):
dn = ndn_l + (_1)77,

The derangement case corresponds to k = 0, if we set
d1=1andd;', +d;' =0d,
that is, d, ', +d;' = 0, then we obtain
At = (=1,
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Désarmenien [2], Remmel [12] and Wilf [16] each gave a combinatorial proof of this last
relation with other objects which are in bijection with derangements, but never directly on
derangements. Many authors (see, e.g., [3], [6], [7], [8], [9], [10], [15]) have studied in depth
the numbers d,,. A bijective proof directly over derangements, or permutations without fixed
points, for this last relation of derangement numbers will be given in a separate section. Let
us denote by [n] the interval {1,2,--- ,n}, and by ¢ a permutation of the symmetric group
S,.. In this paper, we will use the linear notation ¢ = o(1)o(2)---0(n), as well as the
notation of the decomposition into a product of disjoint cycles, to represent a permutation.

Definition 1.1. We say that an integer i is a fized point of a permutation o if o(i) = i. We
will denote by Fix(o) the set of fixed points of the permutation o.

Definition 1.2. We say that a permutation o is a k-fized-points-permutation if for all inte-
gers i in the interval [k], oP(i) ¢ [k] \ {i} for all integers p and Fix(o) C [k].
We will denote by DF the set of k-fixed-points-permutations of the symmetric group &,,.

Example 1.3. We have

D(l) - {}7 D% - {1}’
Dy = D; = {21}, D5 = {12}.
Dg = {231,312}, Dé = {132,231,312}, Dg = {132, 312}, Dg’ = {123}

Remark 1.4. The permutation 12 - - - k is the only k-fixed-points-permutation of the symmet-
ric group Sy

2. Numbers d*

2.1. First Relation for the Numbers d*

Theorem 2.1. For 0 < k <n —1, we have

df=n—-1)dE_,+(n—k—1)d:_,.

n

To prove this theorem, let us consider the following definition.

Definition 2.2. Let the map ¢ : D¥ — [n—1] x D¥_ U[n—k—1] x D¥_,, which associates

n—2
to each permutation o a pair (m,o’) = ¢(o), be defined as follows:
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1. If the integer n is in a cycle of length greater than or equal to 3, or the length of
the cycle which contains the integer n is equal to 2 and o(n) < k, then the integer
m is equal to 071(n) and the permutation ¢’ is obtained from the permutation o by
removing the integer n from his cycle. (Note that the permutation ¢’ is indeed an
element of the set DF_,.)

2. If the length of the cycle which contains the integer n is equal to 2 and o(n) > k, then
the integer m is equal to o(n) and the permutation o’ is obtained from the permutation
o by removing the cycle (o(n),n) and then decreasing by 1 all integers between o(n)+1

and n — 1 in each cycle. (Note that the permutation ¢’ is indeed an element of the set
Dy 5

Remark 2.3. If the integer n is greater than k and o € D, then o/(n) # n.

n

Proposition 2.4. The map ¢ is bijective.

Proof. Notice that a pair (m,¢’) in the image ¢(DF) is contained either in the set of all pairs
of [n — 1] x DF_, if the integer n lies in a cycle of length greater than 2 or equal to 2 and
o'(n) < k , or in the set of all pairs of [n — k — 1] x D, if the integer n lies in a cycle of
length equal to 2 and ¢/(n) > k. Defineamap @: [n—1]x D¥  U[n—k—1]x D¥ , — DF
so that the permutation ¢’ = ¢(m, o) is obtained as follows:

e cither by inserting the integer n in a cycle of the permutation o after the integer
m € [n—1] if o is an element of the set D¥ . In such case, the integer n lies in a cycle
of length greater to 2 or in a transposition and o(n) < k.

e or by creating the transposition (m,n) with & < m < n — 2 and then increasing by 1
all integers between m and n — 2 in each cycle of the permutation o if the permutation
o is an element of the set D* ,. In such case, the integer n is in a transposition and
o(n) > k.

The map ¢ is the inverse of the map ¢. O

Corollary 2.5. The number d* equals the cardinality of the set of k-fized-points-permutations
in the symmetric group S,,.

Proposition 2.6. For all integers k, we have df = 1.

Proof. The permutation 12...k is the only k-fixed-points permutation of the symmetric
group Gg. O
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2.2. Second Relation for the Numbers d*

Another relation satisfied by the numbers d* can be easily deduced from the generating
function, but we will give its combinatorial interpretation.

Definition 2.7. Let the map 9 : D*"1UDF~! — [k] x DF, which associates to a permutation
o a pair (m,o’) = ¥(0), be defined as below:

1. If o € DF71, then the integer m is equal to & and the permutation ¢’ is obtained
from the permutation o by creating the cycle (k) and then increasing by 1 all integers

greater than or equal to k in each cycle of the permutation o.

2. If 0 € DF!) then the integer m is equal to the smallest integer in the cycle that
contains the integer k, and the permutation ¢’ is obtained from the permutation o
by removing the word ko(k)---o~1(m) from that cycle and then creating the cycle
(ko (k) -0~ (m)).

Proposition 2.8. The map 9 is a bijection.

Proof. The map ¢ is injective. It suffices to show that ¥ is surjective. Let us look at various
cases of the pair (m, o).

1. If m = k and o'(k) = k, then we define the permutation o by deleting the cycle
(k) and then decreasing by 1 all integers greater than k in each cycle. It follows
straightforwardly that the permutation ¢ is an element of the set D1,

2. If m =k and o’(k) # k, then 0 = ¢’ and o € DF1.

3. If m # k, then the permutation o is obtained from the permutation ¢’ by removing the
cycle which contains k and then inserting the word ko’ (k)o’(k) - - - in the cycle which
contains the integer m just before the integer o'~!(m). The permutation o is indeed
an element of the set D1

It is impossible by construction of the map ¢ that m = k and the integer £ is in the same
cycle as an integer smaller than k. O

Theorem 2.9. For all integers 1 < k < n, we have
kdl = di”) +di "

Proof. By the bijection ¢, we have
#D,"1 +#D, ' = #[k] x Dy,

n’

that is,
kdl = di=y +dit
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2.3. Third Relation for the Numbers d*

The following unexpected relation is a generalization of the famous relation on derangement
numbers and we will give a bijective proof of it.

Theorem 2.10. For all integers 0 < k < n — 1, one has

k k k—
ndnfl = dn + dnfé'

Proof. Let us consider the map ¢ : [n] x D¥ | — DFUDF™} which associates to a pair (m, o)

a permutation o’ = ¢((m, o)), defined in the following way:

1. If m < n, then the permutation ¢’ is obtained from the permutation ¢ by inserting
the integer n in the cycle which contains m just before the integer m itself. The
permutation o’ is indeed an element of the set DF.

2. If m = n and o(1) # 1, then the permutation ¢’ = ¢((n,0)) is obtained from the
permutation ¢ by removing the integer (1) and then creating the cycle (n  o(1)).
The permutation ¢’ is indeed an element of the set D¥ and o'(n) > k.

3. If m = n and o(1) = 1, then the permutation ¢’ = ¢((n,0)) is obtained from the
permutation o by removing the cycle (1) and then by decreasing by 1 all integers in
each cycle. It follows straightforwardly that the permutation ¢’ is an element of the
set DF .

It is clear that the map ¢ is injective. Hence, to show it is bijective, it suffices to show that
¢ is surjective. Let us look at the various cases of the permutation o’.

1. If the permutation o’ is an element of the set D¥ and the cycle that contains n is
different from the transposition (n  ¢’(n)) where o'(n) > k, then the pair (m, o) is
defined by m = ¢'~!(n), and the permutation ¢ is obtained by removing the integer n
from the cycle containing it.

2. If the permutation ¢’ is an element of the set D and the ¢ ycle that contains n is a
transposition (n  ¢’(n)) where o’(n) > k, then the pair (m,o) is defined by m = n
and the permutation ¢ is obtained by removing the cycle (n  ¢’(n)) and inserting the
integer ¢’(n) in the cycle that contains the integer 1 just after 1.

3. If the permutation ¢’ is an element of the set D*2 then the pair (m, o) is defined by

m = n and the permutation ¢ is obtained by increasing by 1 all the integers in each
cycle of the permutation ¢’ and then creating the new cycle (1).
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Remark 2.11. Theorems 2.1 and 2.9 together imply Theorem 2.10 as follows. Let
F(n,k) =ndi_, —df —di7}
G(n, k) = kd* —dF=1 — a1
Then the identity in Theorem 2.1 can be rewritten as
F(n,k)+ F(n—1,k) = G(n —2,k).
So, since G(n,k) =0 for all n > k > 0, by Theorem 2.9, we get
F(n,k) = (=1)""*'Ff =0 (from Theorem 2.1) for all n >k > 0.

It seems worth considering whether or not the sieve method can also be generalized using
the above relation between F and G.

3. The Famous d,, = nd,_; + (—1)"

Notice that the set D,, of derangements or permutations without fixed points is equal to the
set DY,

Definition 3.1. Let us define the critical derangement A, = (12)(34)---(n—1 n) if the
integer n is even, and the sets

e E, ={A,} if the integer n is even, and E, = () otherwise,

o F, ={(n,A,_1)} if the integer n is odd, and F,, = () otherwise.

Let 7 : [n] x D,—1 \ F,, — D, \ E, be the map which associates to a pair (i,0) a permutation
8 =7((i,0)) defined as follows:

1. If the integer i < n, then the permutation ¢’ = d(¢ n). In other words, the permuta-
tion 0’ is obtained from the permutation 0 by inserting the integer n in the cycle that
contains the integer ¢ just after the integer 1.

2. If the integer + = n, then let p be the smallest integer such that the transpositions
(12),(34),...,(2p — 1 2p) are cycles of the permutation § and the transposition
(2p+1 2p+2)is not.

(a) If §(2p+1) = 2p+ 2, then the permutation ¢’ is obtained from the permutation §
by removing the integer 2p 4+ 1 from the cycle that contains it, and then creating
the new cycle 2p+1 n).
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(b) If §(2p + 1) # 2p + 2, then we have to distinguish the following two cases:

i. If the length of the cycle that contains the integer 2p + 1 is equal to 2, then
the permutation ¢’ is obtained from the permutation § by removing the cycle
(2p 4+ 10(2p + 1)), and then inserting the integer 2p 4+ 1 in the cycle that
contains the integer 2p+ 2 just before the integer 2p+ 2 and creating the new
cycle (6(2p+1) n).

ii. If the length of the cycle that contains the integer 2p + 1 is greater than 2,
then the permutation ¢’ is obtained from the permutation § by removing the
integer 0(2p + 1) and then creating the new cycle (6(2p+ 1) n).

Proposition 3.2. The map 7 is bijective.

Proof. Notice that the only pair (7, d) which is not defined by the map 7 is the pair (n, A,_1)
if the integer n — 1 is even. Notice also that the image 7([n — 1] x D,,_1) is contained in the
set of all derangements D,, where the integer n lies in a cycle of length greater than or equal
to 3, and the image 7({n} x D,,_1 \ F},) is contained in the set of all derangements D,, where
the integer n lies in a cycle of length 2. So we need only show that there exists a map ¢ such
that

e associates an element of [n — 1] x D,,_; with every derangement of D,, in which the
integer n lies in a cycle of length greater or equal to 3.

e associates an element of {n} x D,_; \ F,, with every derangement of D,, in which the
integer n lies in a cycle of length 2.

e is the inverse of 7.

It is straightforward to verify that the map ( is defined as follows:

1. If the integer n lies in a cycle of length greater or equal to 3, then () is the pair (,0")
where i = 671(n), and the permutation § is obtained by removing the integer n from
the derangement 0. The permutation ¢’ is a derangement of D,,_; and the integer i is
smaller than n.

2. If the integer n lies in a cycle of length 2, then let p the smallest nonnegative integer such
that (12),(34),...,(2p—1 2p) are cycles of the derangement ¢ while the transposition
(2p+1 2p+2)is not.

(a) If 6(n) = 2p+ 1, then ((6) is the pair (n,d") where the permutation ¢’ is obtained
from the derangement § by deleting the cycle (n 2p+ 1) and then inserting the
integer 2p+ 1 in the cycle which contains the integer 2p+ 2 just before the integer
2p + 2. In other words, we have § = (12)(34)---(2p—1 2p)(2p+1 n)(2p +
2.. ) and ¢ =(12)(34)---(2p—1 2p)(2p+1 2p+2...)---.
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(b) If §(2p + 1) # n, then we have to distinguish the following two cases:

i.

ii.

If 6(2p+ 1) # 2p + 2, then ((9) is the pair (n,d’) where the permutation ¢’
is obtained from the derangement § by deleting the cycle (nd(n)) and then
inserting the integer §(n) in the cycle which contains the integer 2p + 1 just
before the integer 2p + 1. In other words, we have § = (12)(34)---(2p —
1 2p)2p+1...)---(6(n) n)--- and &' = (12)(34)--- 2p—1 2p)(2p +
If 6(2p+ 1) = 2p + 2, then ((9) is the pair (n,d’) where the permutation ¢’
is obtained from the derangement ¢ by deleting the cycle (n d(n)) and the
integer 2p+ 1 and then creating the new cycle (2p+1 §(n)). In other words,
we have 0 = (12)(34)--- (2p—1 2p)(2p+1 2p+2...)---(6(n) n)--- and
V=012)(34)---(2p—1 2p)(2p+1 d(n)2p+2...)---.

Notice that the derangement A,,, if the integer n is even, is the only derangement which is
not defined by the map (. O

Corollary 3.3. If the integer n is even, then we have d, = nd,_1 + 1. If the integer n is
odd, then we have d,, + 1 = nd,,_1.

Acknowledgements. The author is very grateful to the referree for his/her kind suggestions
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