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Abstract

In this work we prove that in the semigroup (N, +) if 〈xn〉∞n=1 is a sequence such that
FS(〈xn〉∞n=1) is piecewise syndetic, then for any central* set A there exists a sum subsystem
〈yn〉∞n=1 of 〈xn〉∞n=1 with the property that FS(〈yn〉∞n=1) ∪ FP (〈yn〉∞n=1) ⊆ A.

1. Introduction

Given any discrete semigroup (S, ·), βS is the Stone-Čech compactification of S and the
operation · on S has a natural extension to βS making βS a compact right topological
semigroup with S contained in its topological center. (By “right topological” we mean that
for each p ∈ βS, the function ρp : βS → βS is continuous, where ρp(q) = q · p. By
the “topological center” we mean the set of points p such that λp is continuous, where
λp(q) = p · q.)

As a compact right topological semigroup, βS has a smallest two sided ideal denoted
by K(βS). Further, K(βS) is the union of all minimal right ideals of βS and is also the
union of all minimal left ideals. (See [5], Chapter 2 for these and any other unfamiliar facts
about compact right topological semigroups.) Any compact right topological semigroup has
an idempotent and one can define a partial ordering of the idempotents by p ≤ q if and only
if p = p · q = q · p. An idempotent p is “minimal” if and only if p is minimal with respect to
the order ≤. Equivalently, an idempotent p is minimal if and only if p ∈ K(βS).

The algebraic structure of the smallest ideal of βS has played a significant role in Ramsey
Theory. For example, a subset A of (S, ·) is defined to be central if it is a member of an
idempotent in K(S). It is known that any central subset of (N, +) is guaranteed to have
substantial additive structure. But Theorem 16.27 of [5] shows that central sets in (N, +)
need have no multiplicative structure at all. On the other hand, in [2] we see that sets

1The author thanks Neil Hindman for his useful hints and remarks. I also thank the referee for giving a
compact proof of Theorem 2.4.
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which belong to every minimal idempotent of N, called central* sets, must have significant
multiplicative structure. In fact central* sets in any semigroup (S, ·) are defined to be those
sets which meet every every central set.

We now present three results that will be useful in this article. Theorem 1.1 is in [5] as
Corollary 16.21, Theorem 1.2 is in [2] as Theorem 2.6, and Theorem 1.3 is in [4] as Theorem
2.11.

Theorem 1.1. If A is a central* set in (N, +) then it is central in (N, ·).

In [5], it is also proved that IP* sets in (N, +) are guaranteed to have substantial combined
additive and multiplicative structure, where a set A ⊆ N is called an IP* set if it belongs to
every idempotent in N. Given a sequence 〈xn〉∞n=1 in N, we denote FS(〈xn〉∞n=1) = {

∑
n∈F xn :

F ∈ Pf(N)}, where for any set X, Pf(X) is the set of finite nonempty subsets of X, and
FP (〈xn〉∞n=1) is the product analogue of the above. Given a sequence 〈xn〉∞n=1 in N, we say
that 〈yn〉∞n=1 is a sum subsystem of 〈xn〉∞n=1 provided there is a sequence 〈Hn〉∞n=1 of nonempty
finite subsets of N such that maxHn < minHn+1 and yn =

∑
t∈Hn

xt for each n ∈ N.

Theorem 1.2. Let 〈xn〉∞n=1 be a sequence and A be an IP* set in (N, +). Then there exists
a sum subsystem 〈yn〉∞n=1 of 〈xn〉∞n=1 such that FS(〈yn〉∞n=1) ∪ FP (〈yn〉∞n=1) ⊆ A

A strongly negative answer to the partition analogue of the above result is presented in
[4]. Given a sequence 〈xn〉∞n=1 in N, PS(〈xn〉∞n=1) = {xm + xn : m,n ∈ N and m (= n} and
PP (〈xn〉∞n=1) = {xm · xn : m,n ∈ N and m (= n}.

Theorem 1.3. There exists a finite partition R of N with no one-to-one sequence 〈xn〉∞n=1

in N such that PS(〈xn〉∞n=1) ∪ PP (〈xn〉∞n=1) is contained in one cell of the partition R.

The main aim of this article is to show that central* sets also possess some IP* set-like
properties for some specified sequences.

2. The Proof of the Main Theorem

We first introduce the following notion for our purpose.

Definition 2.1. Let (S, ·) be a commutative semigroup. A sequence 〈xn〉∞n=1 in S is said to
be a minimal sequence if

⋂∞
m=1 FP (〈xn〉∞n=m)

⋂
K(βS) (= ∅.

It is already known that 〈2n〉∞n=1 is a minimal sequence while the sequence 〈22n〉∞n=1 is not
a minimal sequence. In [1] it is proved that in the semigroup (N, +) minimal sequences are
nothing but those for which the set FS〈xn〉∞n=1 is large enough, i.e., it meets the smallest
ideal K(βN) of (βN, +).
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Lemma 2.2. If A is a central set in (N, +) then nA is also central for any n ∈ N.

Proof. [3], Lemma 3.8.

Given A ⊆ N and n ∈ N, n−1A = {m ∈ N : nm ∈ A} and−n+A = {m ∈ N : n+m ∈ A}.

Lemma 2.3. If A is a central* set in (N, +) then n−1A is also central* for any n ∈ N.

Proof. Let A be a central* set and t ∈ N. To prove that t−1A is a central* set it is sufficient
to show that for any central set C, C ∩ t−1A (= ∅. Since C is central tC is also central so
that A∩ tC (= ∅. Choose n ∈ tC ∩A and k ∈ C such that n = tk. Therefore k = n/t ∈ t−1A
so that C ∩ t−1A (= ∅.

We now show that all central* sets have a substantial multiplicative property.

Theorem 2.4. Let 〈xn〉∞n=1 be a minimal sequence and A be a central∗ set in (N, +). Then
there exists a sum subsystem 〈yn〉∞n=1 of 〈xn〉∞n=1 such that FS(〈yn〉∞n=1) ∪ FP (〈yn〉∞n=1) ⊆ A.

Proof. Since 〈xn〉∞n=1 is a minimal sequence in N we can find some minimal idempotent p ∈ N
for which FS(〈xn〉∞n=1) ∈ p. Again, since A is a central* subset of N, by the previous lemma
for every n ∈ N, n−1A ∈ p. Let A∗ = {n ∈ A : −n + A ∈ p}. Then by ([5], Lemma 4.14)

A∗ ∈ p. We can choose y1 ∈ A∗ ∩ FS(〈xn〉∞n=1). Inductively let m ∈ N and 〈yi〉mi=1, 〈Hi〉mi=1

in Pf(N) be chosen with the following properties:

1. i ∈ {1, 2, · · · ,m− 1} maxHi < minHi+1;

2. If yi = Σt∈Hixt then Σt∈Hm+1xt ∈ A∗ and FP (〈yi〉mi=1) ⊆ A.

We observe that {Σt∈Hxt : H ∈ Pf(N), minH > maxHm} ∈ p. It follows that we can choose
Hm+1 ∈ Pf(N) such that minHm+1 > maxHm, Σt∈Hm+1xt ∈ A∗, Σt∈Hm+1xt ∈ −n + A∗

for every n ∈ FS(〈yi〉mi=1) and Σt∈Hm+1xt ∈ n−1A∗ for every n ∈ FP (〈yi〉mi=1). Putting
ym+1 = Σt∈Hm+1xt shows that the induction can be continued and proves the theorem.

Notice that if A is not an IP*-set, then there is a sequence 〈xn〉∞n=1 such that FS(〈xn〉∞n=1)∩
A = ∅ so Theorem 1.2 in fact characterizes IP* sets. We do not know whether Theorem 2.6
similarly characterizes central* sets.

Question 2.5. Given a non-central* set A in (N, +), can we find a minimal sequence 〈yn〉∞n=1

such that for no sum subsystem 〈xn〉∞n=1 does one have FS(〈xn〉∞n=1) ∪ FP (〈xn〉∞n=1) ⊆ A.
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In [1] a notion of sequence named nice sequence has been introduced. A sequence 〈xn〉∞n=1

in (N, +) is called a nice sequence if it satisfies the uniqueness of finite products and for all
m ∈ N \ FS(〈xn〉∞n=1) there is some k ∈ N such that FS(〈xn〉∞n=1)∩ (m + FS(〈xn〉∞n=k)) = ∅,
where 〈xn〉∞n=1 is said to satisfy uniqueness of finite products provided that if F,G ∈ Pf(N)
and

∑
k∈F xk =

∑
k∈G xk, one must have F = G. The following theorem follows from

Corollary 4.2 of [1].

Theorem 2.6. If 〈xn〉∞n=1 is a nice minimal sequence in (N, +) then we have that FS(〈xn〉∞n=m)
is syndetic for each m ∈ N.

In the following theorem we provide a partial answer to the above question by producing
a non-central* set for which every nice minimal sequence satisfies the conclusion of Theorem
2.4. The author thanks Prof. Neil Hindman for providing the proof of this theorem.

Theorem 2.7. Let A =
⋃∞

n=1{22n, 22n + 1, . . . , 22n+1 − 1} and 〈xn〉∞n=1 be a nice minimal
sequence in N. Then there is a sum subsystem 〈yn〉∞n=1 of 〈xn〉∞n=1 such that FS(〈yn〉∞n=1) ∪
FP (〈yn〉∞n=1) ⊂ A.

Proof. By Theorem 2.6, we have FS(〈xn〉∞n=m) is syndetic for each m ∈ N. We inductively
construct sequences 〈Hn〉∞n=1 in Pf(N) and 〈kn〉∞n=1 of integers such that for each n ∈ N,

(a) maxHn < minHn+1,

(b) 22kn+1+1 − 22kn+1+1/2 >
∑

r=1

∑
t∈Hr

xt,

(c) 22kn <
∑

t∈Hn
xt < 22kn+1/2n

.

Having chosen these terms through n, let m = maxHn + 1 and pick b such that the gaps
of FS(〈xn〉∞n=m) are bounded by b. Then pick kn+1 satisfying (b) such that 22kn+1+1/2n+1 −
22kn+1 > b. Then pick Hn+1 in Pf(N) with minHn+1 ≥ m such that 22kn+1 <

∑
t∈Hn+1

xt <

22kn+1+1/2n
+ b. Thus the induction is complete.

Now we take yn =
∑

t∈Hn
. Then 〈yn〉∞n=1 becomes a sum subsystem of 〈xn〉∞n=1. Now if

F ∈ Pf(N) and m = maxF then clearly 22kn ≤
∑

t∈F yt ≤
∑m

t=1 ym ≤ 22kn+1+1 − 1, so that
FS(〈yn〉∞n=1) ⊂ A. Again if G ∈ Pf(N) from (c) it follows easily that 22 t∈G km ≤

∏
t∈G yt <

22 t∈G kt+1 and hence FP (〈yn〉∞n=1) ⊂ A.
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