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Abstract

Let Zm be the ring of integers modulo m (not necessarily prime), Z∗m its multiplicative group,
and let x mod m be the least nonnegative residue of x modulo m. The Nathanson height

of a point r = 〈r1, . . . , rd〉 ∈ (Z∗m)d is hm(r) = min
{∑d

i=1(kri mod m) : k = 1, . . . , p− 1
}

.

For d = 2, we give an explicit formula in terms of the convergents to the continued fraction
expansion of r̄1r2/m. Further, we show that the multiset {m−1hm((r1, r2)) : m ∈ N, ri ∈ Z∗m},
which is trivially a subset of [0, 2], has only the numbers 1/k (k ∈ Z+) and 0 as accumulation
points.

1. Introduction

In [3], Nathanson and Sullivan raised the problem of bounding the height of points in (Z∗p)d,
where p is a prime. After proving some general bounds for d > 2, they move to identifying
those primes p and residues r with hp(〈1, r〉) > (p − 1)/2. In particular, they prove that if
hp(〈1, r〉) < p, then it is in fact at most (p + 1)/2. Nathanson has further proven [2] that if
p is a sufficiently large prime and hp(〈1, r〉) < (p + 1)/2, then it is in fact at most (p + 4)/3.
In other words, p−1hp(〈1, r〉) is either near 1, near 1/2, or at most 1/3.

In this paper we show that these gaps in the values of p−1hp(〈1, r〉) continue all the way
to 0, even if p is not restricted to be prime. The main tool is the simple continued fraction
of r/p.

To avoid confusion, as we do not use primeness here, and since the numerators of con-
tinued fractions are traditionally denoted by p, we denote our modulus by m. We denote
a−1 mod m by ā. We use the traditional notation for the floor function (%x& is the largest
integer that isn’t larger than x) and the fractional part ({x} = x− %x&).

1Supported by PSC-CUNY grant 60070-36 37
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Figure 1: The points ( r
m , H( r

m)), for all 0 < r < m ≤ 200.

If gcd(r1,m) = 1, then hm(〈r1, r2〉) = hm(〈1, r̄1 r2〉), and so we may assume without
loss of generality that r1 = 1. We are thus justified in making the following definition for
relatively prime positive integers r,m:

H(r/m) := m−1 · hm(〈1, r〉)
= m−1 · min{k + (kr mod m) : 1 ≤ k < m}

= min

{
k

m
+

{
kr

m

}
: 1 ≤ k < m

}
.

Figure 1 shows the points ( r
m , H( r

m)) for all r,m ≤ 200.

The spectrum of a set M ⊆ N, written Spec(M), is the set of real numbers ß with the
property that there are mi ∈ M , mi → ∞, and a sequence ri with gcd(ri,mi) = 1, and
H(ri/mi) → ß. Nathanson [2] and Nathanson and Sullivan [3] proved that

Spec(primes) ∩ [
1

3
,∞) =

{
1

3
,
1

2
, 1

}
.

Our main theorem concerns the spectrum of Nathanson heights, and applies to both N
and to the set of primes.

Theorem 1.1. Let M ⊆ Z+. If {m ∈ M : gcd(m,n) = 1} is infinite for every positive
integer n, then

Spec(M) = {0} ∪
{

1

k
: k ∈ Z+

}
.
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2. Continued Fractions

For a rational number 0 < r/m < 1, let [0; a1, a2, . . . , an] be (either one of) its simple
continued fraction expansion, and let pk/qk be the k-th convergent. In particular

p0

q0
=

0

1
p2

q2
=

a2

1 + a1a2

p4

q4
=

a2 + a4 + a2a3a4

1 + a1a2 + a1a4 + a3a4 + a1a2a3a4

The qi satisfy the recurrence q−2 = 1, q−1 = 0, qn = anqn−1 + qn−2 (with a0 = 0), and are
called the continuants. The intermediants are the numbers αqn−1 + qn−2, where α is an
integer with 1 ≤ α ≤ an.

Let E[a0, a1, . . . , an] be the denominator [a0; a1, . . . , an], considered as a polynomial in
a0, . . . , an, and set E[ ] = 1. Then pk = E[a0, . . . , ak] and qk = E[a1, . . . , ak]. We will make
use of the following combinatorial identities, which are in [4, Chapter 13], with 0 < s < t < n:

q! = qkE[ak+1, . . . , a!] + qk−1E[ak+2, . . . , a!],

pnE[as, . . . , at]− ptE[as, . . . , an] = (−1)t−s+1E[a0, . . . as−2]E[at+2, . . . , an].

The following lemmas are well known. The first is a special case of the “best approxima-
tions theorem” [1, Theorems 154 and 182], and the second is an application of [1, Theorem
150], the identity pnqn−1 − pn−1qn = (−1)n−1. The third and fourth lemmas follow from the
identities for E given above.

Lemma 2.1. Fix a real number x = [0; a1, a2, . . . ], and suppose that the positive integer "
has the property that {"x} ≤ {kx} for all positive integers k ≤ ". Then there are nonnegative
integers n,α ≤ an such that " = αq2n−1 + q2n−2.

Lemma 2.2. Let
p2k

q2k
= [0; a1, a2 . . . , a2k], and let x = [0; a1, a2 . . . , a2k−1, a2k + 1]. Then

q2k · x− p2k =
1

2q2k + q2k−1
.

We will use Fibonacci numbers, although the only property we will make use of is that
they tend to infinity: F1 = 1, F2 = 2, and Fn = Fn−1 + Fn−2.

Lemma 2.3. For all k ≥ 1, we have qk ≥ Fk. Further, for " > k, we have

q! > qkF!−k, and q! > a!qk.
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Lemma 2.4. For 0 < 2k + 2 ≤ n, we have

q2kpn − p2kqn = E[a2k+2, . . . , an].

Moreover, if 2k + 2 = n + 1, then q2kpn − p2kqn = 1.

We now state and prove our formula for heights.

Theorem 2.5. Let
r

m
= [0; a1, a2, . . . , an] (with gcd(r,m) = 1). Then

H(
r

m
) = min

0≤k<n/2

{
q2k

r + 1

m
− p2k

}
.

Proof. First, recall that

H(r/m) = min {k/m + {kr/m} : 1 ≤ k < m} .

Set
I := {αq2i−1 + q2i−2 : 0 ≤ α ≤ a2i, 0 ≤ i ≤ n/2}.

We call " a best multiplier if

"/m + {"r/m} < k/m + {kr/m}

for all positive integers k < ". We begin by proving by induction that the set of best
multipliers is contained in the set I. Certainly 1 is a best multiplier and also 1 = 0·q−1+q−2 ∈
I. Our induction hypothesis is that the best multipliers that are less than " are all contained
in I.

Suppose that " is a best multiplier: we know that

k

m
+

{
k

r

m

}
>

"

m
+

{
"

r

m

}

for all 1 ≤ k < ". Since k < ", we then know that {kr/m} > ("− k)/m+ {"r/m} > {"r/m}.
Lemma 2.1 now tells us that " ∈ I. This confirms the induction hypothesis, and establishes
that

H(r/m) = min{k/m + {kr/m} : k ∈ I}. (1)

Now, note that the function fi defined by

fi(x) :=
xq2i−1 + q2i−2

m
+

{
(xq2i−1 + q2i−2)

r

m

}

is monotone on the domain 0 ≤ x ≤ a2i. As 0q2i−1 + q2i−2 = q2i−2 and a2iq2i−1 + q2i−2 = q2i,
this means that the minimum in Eq. (1) can only occur at q2i, with 0 ≤ 2i ≤ n.

As a final observation, we note that q0/m + {q0r/m} = (r + 1)/m is at most as large as
qn/m + {qnr/m} = 1 (as qn = m). Thus, the minimum in Eq. (1) cannot occur exclusively
at k = qn = m. !
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Corollary 2.6. Let 0 < r < m, with gcd(r,m) = 1, and let r
m = [0; a1, . . . , an], with an ≥ 2.

For all k ∈ (0, n/2),

H(
r

m
) ≤ q2k

m
+

1

2q2k
.

Proof. First, note that r
m < [0; a1, a2, . . . , a2k−1, a2k + 1]. Now, as a matter of algebra (using

Lemma 2.2),

q2k
r + 1

m
− p2k ≤ q2k

(
[0; a1, a2, . . . , a2k + 1] +

1

m

)
− p2k =

q2k

m
+

1

2q2k + q2k−1

≤ q2k

m
+

1

2q2k
.

!

3. Proof of Theorem 1.1

First, we note that H(a2/(1 + a1a2)) = (1 + a2)/(1 + a1a2) → 1/a1, where a1 is fixed and
a2 → ∞. Thus, 1/k ∈ Spec(N) for every k. Also, H(1/a1) = 2/a1 → 0 as a1 → ∞,
so 0 ∈ Spec(N). The remainder of this section is devoted to proving that if ß > 0 is in
Spec(N), then ß is rational with numerator 1.

Fix a large integer s. Let r/m be a sequence (we will suppress the index) with gcd(r,m) =
1 and with H(r/m) → ß > 1

F2s
, where F2s is the 2s-th Fibonacci number.

Define a1, a2, . . . by
r

m
= [0; a1, a2, . . . , an],

and we again remind the reader that r/m is a sequence, so that each of a1, a2, . . . , is a
sequence, and n is also a sequence. To ease the psychological burden of considering sequences
that might not even be defined for every index, we take this occasion to pass to a subsequence
of r/m that has n nondecreasing. Further, we also pass to a subsequence on which each of
the sequences ai is either constant or monotone increasing.

First, we show that n is bounded. Note that q2s/m (fixed s) is the same as q2s/qn, and by
Lemma 2.3 this is at most 1/(2F2s), provided that n is large enough so that Fn−2s > 2F2s.
Take such an n. We have from Corollary 2.6 that

H(
r

m
) ≤ q2s

m
+

1

2q2s
<

1

2F2s
+

1

2F2s
<

1

F2s
< ß.

This contradicts the hypothesis that H(r/m) → ß > 0, and proves that n must be small
enough so that Fn−2s > 2F2s.
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Since m →∞ but n is bounded, some ai must be unbounded. Let i be the least natural
number such that ai is unbounded.

First, we show that i is not odd. If i = 2k + 1, then

H(
r

m
) ≤ q2k

r + 1

m
− p2k

and p2k and q2k are constant. Since a2k+1 →∞, the ratio

r

m
→ [0; a1, a2, . . . , a2k] =

p2k

q2k
.

Thus, since q2k/m ≤ 1/a2k+1 → 0,

H(
r

m
) ≤ q2k

r + 1

m
− p2k = q2k

r

m
+

q2k

m
− p2k → q2k

p2k

q2k
+ 0− p2k = 0,

contradicting the hypothesis that ß > 0.

Now we show that there are not two ai’s that are unbounded. Suppose that a2k and aj

are both unbounded, with j > 2k. Then

H(
r

m
) ≤ q2k

m
+

1

2q2k
.

Since a2k is unbounded, 1
2q2k

→ 0. And since aj is also unbounded,

q2k

m
≤ q2k

qj
<

q2k

qj−1
· qj−1

qj
<

1

Fj−1−2k
· 1

aj
→ 0.

Thus
q2k

m
+

1

2q2k
→ 0.

We have shown that there is exactly one ai that is unbounded, and that i is even.

We have r
m = [0; a1, . . . , a2k, . . . , an], with all of the ai fixed except a2k, and a2k → ∞.

Now

limH(r/m) = lim
a2k→∞

min
0≤j<n/2

q2j
r + 1

m
− p2j

= lim
a2k→∞

min
0≤j<n/2

(
q2jpn − p2jqn + q2j

qn

)

= min
0≤j<n/2

lim
a2k→∞

(
E[a2j+2, . . . , an] + E[a1, . . . , a2j]

E[a1, . . . , an]

)

Using the general identity (for s ≤ " ≤ t)

E[as, . . . , at] = a!E[as, . . . , a!−1]E[a!+1, . . . , at]+

E[as, . . . , a!−2]E[a! + 1, . . . , at] + E[as, . . . , a!−1]E[a!+2, . . . , at]
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with " = 2k, we can evaluate the limit as a2k →∞. We arrive at

ß = limH(
r

m
) = min

{
min

0≤j<k

E[a2j+2, . . . , a2k−1]E[a2k+1, . . . , an]

E[a1, . . . , a2k−1]E[a2k+1, . . . , an]
,

min
k≤j<n/2

E[a1, . . . , a2k−1]E[a2k+1, . . . , a2j

E[a1, . . . , a2k−1]E[a2k+1, . . . , an]

}

= min

{
min

0≤j<k

E[a2j+2, . . . , a2k−1]

E[a1, . . . , a2k−1]
, min
k≤j<n/2

E[a2k+1, . . . , a2j

E[a2k+1, . . . , an]

}

= min

{
1

E[a1, . . . , a2k−1]
,

1

E[a2k+1, . . . , an]

}
.

In either case, the numerator of ß is 1, and the proof of Theorem 1.1 is concluded.

We note that we have actually proved (with a small bit of additional algebra) a quanti-
tative version of the Theorem.

Theorem 3.1. Let (ri,mi) be a sequence of pairs of positive integers with gcd(ri,mi) = 1,
mi →∞ and lim supH(ri/mi) > 0. Then there is a pair of relatively prime positive integers
a, b, with a ≤ b, a positive integer c, and an increasing sequence i1, i2, . . . with

rij =
amij − c

b
and H(

rij

mij

) → 1

max{c, b} .

Conversely, if mi →∞, and a ≤ b are two relatively prime positive integers, c is a positive
integer, and ri = ami−c

b is an integer relatively prime to mi, then limH(ri/mi) → 1
max{c,b} .

In particular, if for every n there are arbitrarily large m ∈ M with gcd(m,n) = 1, then
Spec(M) = Spec(N).
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