GAPS IN THE SPECTRUM OF NATHANSON HEIGHTS OF PROJECTIVE POINTS

Kevin O'Bryant ${ }^{1}$
Department of Mathematics, City University of New York, College of Staten Island, New York, NY

kevin@member.ams.org

Received: 6/28/07, Revised: 8/20/07, Accepted: 8/22/07, Published: 8/28/07

Abstract

Let \mathbb{Z}_{m} be the ring of integers modulo m (not necessarily prime), \mathbb{Z}_{m}^{*} its multiplicative group, and let $x \bmod m$ be the least nonnegative residue of x modulo m. The Nathanson height of a point $r=\left\langle r_{1}, \ldots, r_{d}\right\rangle \in\left(\mathbb{Z}_{m}^{*}\right)^{d}$ is $h_{m}(r)=\min \left\{\sum_{i=1}^{d}\left(k r_{i} \bmod m\right): k=1, \ldots, p-1\right\}$. For $d=2$, we give an explicit formula in terms of the convergents to the continued fraction expansion of $\bar{r}_{1} r_{2} / m$. Further, we show that the multiset $\left\{m^{-1} h_{m}\left(\left(r_{1}, r_{2}\right)\right): m \in \mathbb{N}, r_{i} \in \mathbb{Z}_{m}^{*}\right\}$, which is trivially a subset of $[0,2]$, has only the numbers $1 / k\left(k \in \mathbb{Z}^{+}\right)$and 0 as accumulation points.

1. Introduction

In [3], Nathanson and Sullivan raised the problem of bounding the height of points in $\left(\mathbb{Z}_{p}^{*}\right)^{d}$, where p is a prime. After proving some general bounds for $d>2$, they move to identifying those primes p and residues r with $h_{p}(\langle 1, r\rangle)>(p-1) / 2$. In particular, they prove that if $h_{p}(\langle 1, r\rangle)<p$, then it is in fact at most $(p+1) / 2$. Nathanson has further proven [2] that if p is a sufficiently large prime and $h_{p}(\langle 1, r\rangle)<(p+1) / 2$, then it is in fact at most $(p+4) / 3$. In other words, $p^{-1} h_{p}(\langle 1, r\rangle)$ is either near 1 , near $1 / 2$, or at most $1 / 3$.

In this paper we show that these gaps in the values of $p^{-1} h_{p}(\langle 1, r\rangle)$ continue all the way to 0 , even if p is not restricted to be prime. The main tool is the simple continued fraction of r / p.

To avoid confusion, as we do not use primeness here, and since the numerators of continued fractions are traditionally denoted by p, we denote our modulus by m. We denote $a^{-1} \bmod m$ by \bar{a}. We use the traditional notation for the floor function $(\lfloor x\rfloor$ is the largest integer that isn't larger than $x)$ and the fractional part $(\{x\}=x-\lfloor x\rfloor)$.

[^0]

Figure 1: The points $\left(\frac{r}{m}, H\left(\frac{r}{m}\right)\right)$, for all $0<r<m \leq 200$.

If $\operatorname{gcd}\left(r_{1}, m\right)=1$, then $h_{m}\left(\left\langle r_{1}, r_{2}\right\rangle\right)=h_{m}\left(\left\langle 1, \bar{r}_{1} r_{2}\right\rangle\right)$, and so we may assume without loss of generality that $r_{1}=1$. We are thus justified in making the following definition for relatively prime positive integers r, m :

$$
\begin{aligned}
H(r / m) & :=m^{-1} \cdot h_{m}(\langle 1, r\rangle) \\
& =m^{-1} \cdot \min \{k+(k r \bmod m): 1 \leq k<m\} \\
& =\min \left\{\frac{k}{m}+\left\{\frac{k r}{m}\right\}: 1 \leq k<m\right\}
\end{aligned}
$$

Figure 1 shows the points $\left(\frac{r}{m}, H\left(\frac{r}{m}\right)\right)$ for all $r, m \leq 200$.
The spectrum of a set $M \subseteq \mathbb{N}$, written $\operatorname{Spec}(M)$, is the set of real numbers β with the property that there are $m_{i} \in M, m_{i} \rightarrow \infty$, and a sequence r_{i} with $\operatorname{gcd}\left(r_{i}, m_{i}\right)=1$, and $H\left(r_{i} / m_{i}\right) \rightarrow ß$. Nathanson [2] and Nathanson and Sullivan [3] proved that

$$
\operatorname{SPEC}(\text { PRIMES }) \cap\left[\frac{1}{3}, \infty\right)=\left\{\frac{1}{3}, \frac{1}{2}, 1\right\}
$$

Our main theorem concerns the spectrum of Nathanson heights, and applies to both \mathbb{N} and to the set of primes.

Theorem 1.1. Let $M \subseteq \mathbb{Z}^{+}$. If $\{m \in M: \operatorname{gcd}(m, n)=1\}$ is infinite for every positive integer n, then

$$
\operatorname{SPEC}(M)=\{0\} \cup\left\{\frac{1}{k}: k \in \mathbb{Z}^{+}\right\} .
$$

2. Continued Fractions

For a rational number $0<r / m<1$, let $\left[0 ; a_{1}, a_{2}, \ldots, a_{n}\right]$ be (either one of) its simple continued fraction expansion, and let p_{k} / q_{k} be the k-th convergent. In particular

$$
\begin{aligned}
& \frac{p_{0}}{q_{0}}=\frac{0}{1} \\
& \frac{p_{2}}{q_{2}}=\frac{a_{2}}{1+a_{1} a_{2}} \\
& \frac{p_{4}}{q_{4}}=\frac{a_{2}+a_{4}+a_{2} a_{3} a_{4}}{1+a_{1} a_{2}+a_{1} a_{4}+a_{3} a_{4}+a_{1} a_{2} a_{3} a_{4}}
\end{aligned}
$$

The q_{i} satisfy the recurrence $q_{-2}=1, q_{-1}=0, q_{n}=a_{n} q_{n-1}+q_{n-2}$ (with $a_{0}=0$), and are called the continuants. The intermediants are the numbers $\alpha q_{n-1}+q_{n-2}$, where α is an integer with $1 \leq \alpha \leq a_{n}$.

Let $E\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ be the denominator $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$, considered as a polynomial in a_{0}, \ldots, a_{n}, and set $E[]=1$. Then $p_{k}=E\left[a_{0}, \ldots, a_{k}\right]$ and $q_{k}=E\left[a_{1}, \ldots, a_{k}\right]$. We will make use of the following combinatorial identities, which are in [4, Chapter 13], with $0<s<t<n$:

$$
\begin{gathered}
q_{\ell}=q_{k} E\left[a_{k+1}, \ldots, a_{\ell}\right]+q_{k-1} E\left[a_{k+2}, \ldots, a_{\ell}\right] \\
p_{n} E\left[a_{s}, \ldots, a_{t}\right]-p_{t} E\left[a_{s}, \ldots, a_{n}\right]=(-1)^{t-s+1} E\left[a_{0}, \ldots a_{s-2}\right] E\left[a_{t+2}, \ldots, a_{n}\right] .
\end{gathered}
$$

The following lemmas are well known. The first is a special case of the "best approximations theorem" [1, Theorems 154 and 182], and the second is an application of [1, Theorem 150], the identity $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}$. The third and fourth lemmas follow from the identities for E given above.

Lemma 2.1. Fix a real number $x=\left[0 ; a_{1}, a_{2}, \ldots\right]$, and suppose that the positive integer ℓ has the property that $\{\ell x\} \leq\{k x\}$ for all positive integers $k \leq \ell$. Then there are nonnegative integers $n, \alpha \leq a_{n}$ such that $\ell=\alpha q_{2 n-1}+q_{2 n-2}$.

Lemma 2.2. Let $\frac{p_{2 k}}{q_{2 k}}=\left[0 ; a_{1}, a_{2} \ldots, a_{2 k}\right]$, and let $x=\left[0 ; a_{1}, a_{2} \ldots, a_{2 k-1}, a_{2 k}+1\right]$. Then

$$
q_{2 k} \cdot x-p_{2 k}=\frac{1}{2 q_{2 k}+q_{2 k-1}} .
$$

We will use Fibonacci numbers, although the only property we will make use of is that they tend to infinity: $F_{1}=1, F_{2}=2$, and $F_{n}=F_{n-1}+F_{n-2}$.

Lemma 2.3. For all $k \geq 1$, we have $q_{k} \geq F_{k}$. Further, for $\ell>k$, we have

$$
q_{\ell}>q_{k} F_{\ell-k}, \quad \text { and } \quad q_{\ell}>a_{\ell} q_{k} .
$$

Lemma 2.4. For $0<2 k+2 \leq n$, we have

$$
q_{2 k} p_{n}-p_{2 k} q_{n}=E\left[a_{2 k+2}, \ldots, a_{n}\right]
$$

Moreover, if $2 k+2=n+1$, then $q_{2 k} p_{n}-p_{2 k} q_{n}=1$.
We now state and prove our formula for heights.
Theorem 2.5. Let $\frac{r}{m}=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}\right]$ (with $\operatorname{gcd}(r, m)=1$). Then

$$
H\left(\frac{r}{m}\right)=\min _{0 \leq k<n / 2}\left\{q_{2 k} \frac{r+1}{m}-p_{2 k}\right\} .
$$

Proof. First, recall that

$$
H(r / m)=\min \{k / m+\{k r / m\}: 1 \leq k<m\} .
$$

Set

$$
I:=\left\{\alpha q_{2 i-1}+q_{2 i-2}: 0 \leq \alpha \leq a_{2 i}, 0 \leq i \leq n / 2\right\}
$$

We call ℓ a best multiplier if

$$
\ell / m+\{\ell r / m\}<k / m+\{k r / m\}
$$

for all positive integers $k<\ell$. We begin by proving by induction that the set of best multipliers is contained in the set I. Certainly 1 is a best multiplier and also $1=0 \cdot q_{-1}+q_{-2} \in$ I. Our induction hypothesis is that the best multipliers that are less than ℓ are all contained in I.

Suppose that ℓ is a best multiplier: we know that

$$
\frac{k}{m}+\left\{k \frac{r}{m}\right\}>\frac{\ell}{m}+\left\{\ell \frac{r}{m}\right\}
$$

for all $1 \leq k<\ell$. Since $k<\ell$, we then know that $\{k r / m\}>(\ell-k) / m+\{\ell r / m\}>\{\ell r / m\}$. Lemma 2.1 now tells us that $\ell \in I$. This confirms the induction hypothesis, and establishes that

$$
\begin{equation*}
H(r / m)=\min \{k / m+\{k r / m\}: k \in I\} . \tag{1}
\end{equation*}
$$

Now, note that the function f_{i} defined by

$$
f_{i}(x):=\frac{x q_{2 i-1}+q_{2 i-2}}{m}+\left\{\left(x q_{2 i-1}+q_{2 i-2}\right) \frac{r}{m}\right\}
$$

is monotone on the domain $0 \leq x \leq a_{2 i}$. As $0 q_{2 i-1}+q_{2 i-2}=q_{2 i-2}$ and $a_{2 i} q_{2 i-1}+q_{2 i-2}=q_{2 i}$, this means that the minimum in Eq. (1) can only occur at $q_{2 i}$, with $0 \leq 2 i \leq n$.

As a final observation, we note that $q_{0} / m+\left\{q_{0} r / m\right\}=(r+1) / m$ is at most as large as $q_{n} / m+\left\{q_{n} r / m\right\}=1$ (as $\left.q_{n}=m\right)$. Thus, the minimum in Eq. (1) cannot occur exclusively at $k=q_{n}=m$.

Corollary 2.6. Let $0<r<m$, with $\operatorname{gcd}(r, m)=1$, and let $\frac{r}{m}=\left[0 ; a_{1}, \ldots, a_{n}\right]$, with $a_{n} \geq 2$. For all $k \in(0, n / 2)$,

$$
H\left(\frac{r}{m}\right) \leq \frac{q_{2 k}}{m}+\frac{1}{2 q_{2 k}}
$$

Proof. First, note that $\frac{r}{m}<\left[0 ; a_{1}, a_{2}, \ldots, a_{2 k-1}, a_{2 k}+1\right]$. Now, as a matter of algebra (using Lemma 2.2),

$$
\begin{aligned}
& q_{2 k} \frac{r+1}{m}-p_{2 k} \leq q_{2 k}\left(\left[0 ; a_{1}, a_{2}, \ldots, a_{2 k}+1\right]+\frac{1}{m}\right)-p_{2 k}=\frac{q_{2 k}}{m}+\frac{1}{2 q_{2 k}+q_{2 k-1}} \\
& \leq \frac{q_{2 k}}{m}+\frac{1}{2 q_{2 k}}
\end{aligned}
$$

3. Proof of Theorem 1.1

First, we note that $H\left(a_{2} /\left(1+a_{1} a_{2}\right)\right)=\left(1+a_{2}\right) /\left(1+a_{1} a_{2}\right) \rightarrow 1 / a_{1}$, where a_{1} is fixed and $a_{2} \rightarrow \infty$. Thus, $1 / k \in \operatorname{SpEC}(\mathbb{N})$ for every k. Also, $H\left(1 / a_{1}\right)=2 / a_{1} \rightarrow 0$ as $a_{1} \rightarrow \infty$, so $0 \in \operatorname{SpEC}(\mathbb{N})$. The remainder of this section is devoted to proving that if $\beta>0$ is in $\operatorname{Spec}(\mathbb{N})$, then β is rational with numerator 1 .

Fix a large integer s. Let r / m be a sequence (we will suppress the index) with $\operatorname{gcd}(r, m)=$ 1 and with $H(r / m) \rightarrow \beta>\frac{1}{F_{2 s}}$, where $F_{2 s}$ is the $2 s$-th Fibonacci number.

Define a_{1}, a_{2}, \ldots by

$$
\frac{r}{m}=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}\right],
$$

and we again remind the reader that r / m is a sequence, so that each of a_{1}, a_{2}, \ldots, is a sequence, and n is also a sequence. To ease the psychological burden of considering sequences that might not even be defined for every index, we take this occasion to pass to a subsequence of r / m that has n nondecreasing. Further, we also pass to a subsequence on which each of the sequences a_{i} is either constant or monotone increasing.

First, we show that n is bounded. Note that $q_{2 s} / m$ (fixed $\left.s\right)$ is the same as $q_{2 s} / q_{n}$, and by Lemma 2.3 this is at most $1 /\left(2 F_{2 s}\right)$, provided that n is large enough so that $F_{n-2 s}>2 F_{2 s}$. Take such an n. We have from Corollary 2.6 that

$$
H\left(\frac{r}{m}\right) \leq \frac{q_{2 s}}{m}+\frac{1}{2 q_{2 s}}<\frac{1}{2 F_{2 s}}+\frac{1}{2 F_{2 s}}<\frac{1}{F_{2 s}}<\beta .
$$

This contradicts the hypothesis that $H(r / m) \rightarrow \beta>0$, and proves that n must be small enough so that $F_{n-2 s}>2 F_{2 s}$.

Since $m \rightarrow \infty$ but n is bounded, some a_{i} must be unbounded. Let i be the least natural number such that a_{i} is unbounded.

First, we show that i is not odd. If $i=2 k+1$, then

$$
H\left(\frac{r}{m}\right) \leq q_{2 k} \frac{r+1}{m}-p_{2 k}
$$

and $p_{2 k}$ and $q_{2 k}$ are constant. Since $a_{2 k+1} \rightarrow \infty$, the ratio

$$
\frac{r}{m} \rightarrow\left[0 ; a_{1}, a_{2}, \ldots, a_{2 k}\right]=\frac{p_{2 k}}{q_{2 k}} .
$$

Thus, since $q_{2 k} / m \leq 1 / a_{2 k+1} \rightarrow 0$,

$$
H\left(\frac{r}{m}\right) \leq q_{2 k} \frac{r+1}{m}-p_{2 k}=q_{2 k} \frac{r}{m}+\frac{q_{2 k}}{m}-p_{2 k} \rightarrow q_{2 k} \frac{p_{2 k}}{q_{2 k}}+0-p_{2 k}=0,
$$

contradicting the hypothesis that $\beta>0$.
Now we show that there are not two a_{i} 's that are unbounded. Suppose that $a_{2 k}$ and a_{j} are both unbounded, with $j>2 k$. Then

$$
H\left(\frac{r}{m}\right) \leq \frac{q_{2 k}}{m}+\frac{1}{2 q_{2 k}}
$$

Since $a_{2 k}$ is unbounded, $\frac{1}{2 q_{2 k}} \rightarrow 0$. And since a_{j} is also unbounded,

$$
\frac{q_{2 k}}{m} \leq \frac{q_{2 k}}{q_{j}}<\frac{q_{2 k}}{q_{j-1}} \cdot \frac{q_{j-1}}{q_{j}}<\frac{1}{F_{j-1-2 k}} \cdot \frac{1}{a_{j}} \rightarrow 0 .
$$

Thus

$$
\frac{q_{2 k}}{m}+\frac{1}{2 q_{2 k}} \rightarrow 0
$$

We have shown that there is exactly one a_{i} that is unbounded, and that i is even.
We have $\frac{r}{m}=\left[0 ; a_{1}, \ldots, a_{2 k}, \ldots, a_{n}\right]$, with all of the a_{i} fixed except $a_{2 k}$, and $a_{2 k} \rightarrow \infty$. Now

$$
\begin{aligned}
\lim H(r / m) & =\lim _{a_{2 k} \rightarrow \infty} \min _{0 \leq j<n / 2} q_{2 j} \frac{r+1}{m}-p_{2 j} \\
& =\lim _{a_{2 k} \rightarrow \infty} \min _{0 \leq j<n / 2}\left(\frac{q_{2 j} p_{n}-p_{2 j} q_{n}+q_{2 j}}{q_{n}}\right) \\
& =\min _{0 \leq j<n / 2} \lim _{a_{2 k} \rightarrow \infty}\left(\frac{E\left[a_{2 j+2}, \ldots, a_{n}\right]+E\left[a_{1}, \ldots, a_{2 j}\right]}{E\left[a_{1}, \ldots, a_{n}\right]}\right)
\end{aligned}
$$

Using the general identity (for $s \leq \ell \leq t$)

$$
\begin{aligned}
& E\left[a_{s}, \ldots, a_{t}\right]=a_{\ell} E\left[a_{s}, \ldots, a_{\ell-1}\right] E\left[a_{\ell+1}, \ldots, a_{t}\right]+ \\
& \\
& E\left[a_{s}, \ldots, a_{\ell-2}\right] E\left[a_{\ell}+1, \ldots, a_{t}\right]+E\left[a_{s}, \ldots, a_{\ell-1}\right] E\left[a_{\ell+2}, \ldots, a_{t}\right]
\end{aligned}
$$

with $\ell=2 k$, we can evaluate the limit as $a_{2 k} \rightarrow \infty$. We arrive at

$$
\begin{aligned}
& \mathcal{B}=\lim H\left(\frac{r}{m}\right)=\min \left\{\min _{0 \leq j<k} \frac{E\left[a_{2 j+2}, \ldots, a_{2 k-1}\right] E\left[a_{2 k+1}, \ldots, a_{n}\right]}{E\left[a_{1}, \ldots, a_{2 k-1}\right] E\left[a_{2 k+1}, \ldots, a_{n}\right]},\right. \\
& \left.\min _{k \leq j<n / 2} \frac{E\left[a_{1}, \ldots, a_{2 k-1}\right] E\left[a_{2 k+1}, \ldots, a_{2 j}\right.}{E\left[a_{1}, \ldots, a_{2 k-1}\right] E\left[a_{2 k+1}, \ldots, a_{n}\right]}\right\} \\
& =\min \left\{\min _{0 \leq j<k} \frac{E\left[a_{2 j+2}, \ldots, a_{2 k-1}\right]}{E\left[a_{1}, \ldots, a_{2 k-1}\right]}, \min _{k \leq j<n / 2} \frac{E\left[a_{2 k+1}, \ldots, a_{2 j}\right.}{E\left[a_{2 k+1}, \ldots, a_{n}\right]}\right\} \\
& =\min \left\{\frac{1}{E\left[a_{1}, \ldots, a_{2 k-1}\right]}, \frac{1}{E\left[a_{2 k+1}, \ldots, a_{n}\right]}\right\} .
\end{aligned}
$$

In either case, the numerator of β is 1 , and the proof of Theorem 1.1 is concluded.
We note that we have actually proved (with a small bit of additional algebra) a quantitative version of the Theorem.

Theorem 3.1. Let $\left(r_{i}, m_{i}\right)$ be a sequence of pairs of positive integers with $\operatorname{gcd}\left(r_{i}, m_{i}\right)=1$, $m_{i} \rightarrow \infty$ and $\lim \sup H\left(r_{i} / m_{i}\right)>0$. Then there is a pair of relatively prime positive integers a, b, with $a \leq b$, a positive integer c, and an increasing sequence i_{1}, i_{2}, \ldots with

$$
r_{i_{j}}=\frac{a m_{i_{j}}-c}{b} \quad \text { and } \quad H\left(\frac{r_{i_{j}}}{m_{i_{j}}}\right) \rightarrow \frac{1}{\max \{c, b\}} .
$$

Conversely, if $m_{i} \rightarrow \infty$, and $a \leq b$ are two relatively prime positive integers, c is a positive integer, and $r_{i}=\frac{a m_{i}-c}{b}$ is an integer relatively prime to m_{i}, then $\lim H\left(r_{i} / m_{i}\right) \rightarrow \frac{1}{\max \{c, b\}}$.

In particular, if for every n there are arbitrarily large $m \in M$ with $\operatorname{gcd}(m, n)=1$, then $\operatorname{Spec}(M)=\operatorname{Spec}(\mathbb{N})$.

References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press Oxford University Press, New York, 1979.
[2] Melvyn B. Nathanson, Heights on the finite projective line (2007), available at http://arxiv.org/math. NT/0703646.
[3] Melvyn Nathanson and Blair Sullivan, Heights in finite projective space, and a problem on directed graphs (2007), available at http://arxiv.org/math.NT/0703418.
[4] Joe Roberts, Elementary number theory - a problem oriented approach, MIT Press, Cambridge, Mass., 1977.

[^0]: ${ }^{1}$ Supported by PSC-CUNY grant 60070-36 37

