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Abstract

Let Z,, be the ring of integers modulo m (not necessarily prime), Z* its multiplicative group,
and let x mod m be the least nonnegative residue of x modulo m. The Nathanson height
of a point r = (ry,...,ry) € (Z*)% is hy(r) = min {Zle(kri modm): k=1,...,p— 1}.
For d = 2, we give an explicit formula in terms of the convergents to the continued fraction
expansion of 717 /m. Further, we show that the multiset {mh,,((r1,72)) : m € N,r; € Z%,},

which is trivially a subset of [0, 2], has only the numbers 1/k (k € Z") and 0 as accumulation
points.

1. Introduction

In [3], Nathanson and Sullivan raised the problem of bounding the height of points in (Z;)d,
where p is a prime. After proving some general bounds for d > 2, they move to identifying
those primes p and residues r with h,((1,7)) > (p — 1)/2. In particular, they prove that if
h,({1,7)) < p, then it is in fact at most (p + 1)/2. Nathanson has further proven [2] that if
p is a sufficiently large prime and h,((1,r)) < (p+1)/2, then it is in fact at most (p +4)/3.
In other words, p~'h,((1,r)) is either near 1, near 1/2, or at most 1/3.

In this paper we show that these gaps in the values of p~'h,((1,7)) continue all the way
to 0, even if p is not restricted to be prime. The main tool is the simple continued fraction

of r/p.

To avoid confusion, as we do not use primeness here, and since the numerators of con-
tinued fractions are traditionally denoted by p, we denote our modulus by m. We denote
a~! mod m by a. We use the traditional notation for the floor function (|x] is the largest
integer that isn’t larger than z) and the fractional part ({z} =z — |z]).
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Figure 1: The points (=, H()), for all 0 < r < m < 200.

If ged(ry,m) = 1, then h,,((r1,72)) = hy,((1,7172)), and so we may assume without
loss of generality that r; = 1. We are thus justified in making the following definition for
relatively prime positive integers r, m:

H(r/m) :=m™" - hy,((1,7))
=m~ ' min{k + (kr mod m): 1 <k < m}

:min{ﬁ—l—{@} : 1§k<m}.
m m
Figure 1 shows the points (X, H(-)) for all r,m < 200.

The spectrum of a set M C N, written SPEC(M ), is the set of real numbers § with the
property that there are m; € M, m; — oo, and a sequence r; with ged(r;, m;) = 1, and
H(r;/m;) — 8. Nathanson [2] and Nathanson and Sullivan [3] proved that

1 11
SPEC(PRIMES) N [g,oo) = {g, 3 1} .

Our main theorem concerns the spectrum of Nathanson heights, and applies to both N
and to the set of primes.

Theorem 1.1. Let M C Z*. If {m € M: ged(m,n) = 1} is infinite for every positive
integer n, then

SpEC(M) = {0} U {% ke z+}.
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2. Continued Fractions

For a rational number 0 < r/m < 1, let [0;a4,as,...,a,] be (either one of) its simple
continued fraction expansion, and let py/qx be the k-th convergent. In particular

po_ 0

@ 1

p__ o

@ 14+ aas

P4 Az + a4 + G2a304

44 1 + a1a9 + a10a4 + a3y + a1a2a304

The ¢; satisfy the recurrence ¢ 5 = 1,¢_1 = 0,¢, = anGn_1 + Gn_2 (With ay = 0), and are
called the continuants. The intermediants are the numbers ag,_1 + ¢,_2, where « is an
integer with 1 < a < a,,.

Let Elag,ay,...,a,] be the denominator [ag;ay, ..., a,], considered as a polynomial in
ag, .. .,an, and set B[] = 1. Then p, = Elao,...,ax) and g = Elay, ..., ax]. We will make
use of the following combinatorial identities, which are in [4, Chapter 13], with 0 < s < t < n:

@ = @Elagsa, ..., ad + gp—1Elakto, - . ., ),

puElas, ... a;) — pElas, ... a,]) = (=1 Elag, ... as_o|Elai, . .., an).

The following lemmas are well known. The first is a special case of the “best approxima-
tions theorem” [1, Theorems 154 and 182], and the second is an application of [1, Theorem
150], the identity ppgn_1 — Pn_1¢n = (=1)""1. The third and fourth lemmas follow from the
identities for E given above.

Lemma 2.1. Fiz a real number x = [0; a1, as, ...], and suppose that the positive integer ¢
has the property that {¢x} < {kx} for all positive integers k < £. Then there are nonnegative
integers n,a < a, such that { = aqon_1 + Gon_o.

Lemma 2.2. Let Pk _ [0;a1,as...,a], and let x = [0;a1,as ..., a1, a9 + 1|. Then

q2k

1

Qok " T — Pofy = ————.
2qor, + Gar—1

We will use Fibonacci numbers, although the only property we will make use of is that
they tend to infinity: F} =1, Fy, =2, and F,, = F,,_1 + F,_».
Lemma 2.3. For all k > 1, we have q, > F}.. Further, for { > k, we have

@ > GFi—k, and Qv > Q.
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Lemma 2.4. For 0 < 2k 4+ 2 <n, we have

q2kPrn — P2kdn = E[a2k+27 ey Q.

Moreover, if 2k +2 =n+ 1, then qupn, — P2rgn = 1.

We now state and prove our formula for heights.
Theorem 2.5. Let — = 0;a1,az, ... a4, (with ged(r,m) =1). Then
m

r+1

H(—)= min {Q2k _p2k}-

m 0<k<n/2

Proof. First, recall that
H(r/m)=min{k/m + {kr/m} : 1 <k <m}.

Set
I'={0gai1+ @qoi—2: 0 < <ay,0<i<n/2}

We call ¢ a best multiplier if
C/m+ {lr/m} < k/m + {kr/m}

for all positive integers k < ¢. We begin by proving by induction that the set of best
multipliers is contained in the set /. Certainly 1 is a best multiplier and also 1 = 0-q_1+¢q_5 €
I. Our induction hypothesis is that the best multipliers that are less than ¢ are all contained
in /.

Suppose that £ is a best multiplier: we know that

k r l r
i o) il Gl
for all 1 <k < {. Since k < ¢, we then know that {kr/m} > (¢ —k)/m+ {lr/m} > {lr/m}.
Lemma 2.1 now tells us that ¢ € I. This confirms the induction hypothesis, and establishes
that
H(r/m) = min{k/m + {kr/m} : k € I}. (1)

Now, note that the function f; defined by

r

Tq2i—1 + q2i—
fix) = el R {(Z’QQzel +Q2i72>5}

m
is monotone on the domain 0 < z < ag;. As 0g2i—1 + Goi—2 = G2i—2 and a9;qoi—1 + G2i—2 = G2,
this means that the minimum in Eq. (1) can only occur at g, with 0 < 2i <n.

As a final observation, we note that go/m + {qor/m} = (r + 1)/m is at most as large as
qn/m + {q,r/m} =1 (as ¢, = m). Thus, the minimum in Eq. (1) cannot occur exclusively
at k =q, = m. O
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Corollary 2.6. Let 0 < r < m, with ged(r,m) =1, and let - = [0;a4,. .., a,], with a, > 2.
For all k € (0,n/2),

r G2k 1
H Ly <® &
Proof. First, note that =~ < [0;ay, ag, ..., a1, az + 1]. Now, as a matter of algebra (using
Lemma 2.2),
r+1 1 k 1
Q2k —kaSC]Qk([0;a1,G2,---,a2k+1]+—)—p2k=qi+7
m m 2qok + Gok—1
Cam, L
mo 2qy

3. Proof of Theorem 1.1

First, we note that H(az/(1 4+ ajaz)) = (1 + a2)/(1 + a1a2) — 1/ay, where a; is fixed and
ag — oo. Thus, 1/k € SPEC(N) for every k. Also, H(1/a;) = 2/a; — 0 as a; — o0,
so 0 € SPEC(N). The remainder of this section is devoted to proving that if 8 > 0 is in
SPEC(N), then 8 is rational with numerator 1.

Fix a large integer s. Let r/m be a sequence (we will suppress the index) with ged(r, m) =
1 and with H(r/m) — 8 > F%s’ where Fy, is the 2s-th Fibonacci number.

Define aq,as,... by
r
— = [O;alacL?a s 7an]7
m

and we again remind the reader that r/m is a sequence, so that each of aj,as,..., is a
sequence, and n is also a sequence. To ease the psychological burden of considering sequences
that might not even be defined for every index, we take this occasion to pass to a subsequence
of r/m that has n nondecreasing. Further, we also pass to a subsequence on which each of
the sequences a; is either constant or monotone increasing.

First, we show that n is bounded. Note that gos/m (fixed s) is the same as ¢25/¢,, and by
Lemma 2.3 this is at most 1/(2Fys), provided that n is large enough so that F,_o5 > 2F5,.
Take such an n. We have from Corollary 2.6 that

< 8.

r Q2s 1 1 1 1
H—) <= < <
(m) m * 2(125 2F25 * 2F25 F2s

This contradicts the hypothesis that H(r/m) — 8 > 0, and proves that n must be small
enough so that F,,_o5 > 2F5,.
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Since m — oo but n is bounded, some a; must be unbounded. Let 7 be the least natural
number such that a; is unbounded.

First, we show that ¢ is not odd. If i = 2k + 1, then

r r+1
H(—) < qu
m

— P2k

and pos and gop are constant. Since asp1 — 00, the ratio
T . D2k
—_— — [0,@1,@2,...,a2k] = —.
m 2k
Thus, since gop/m < 1/agg11 — 0,

r r+1
H(—) < qa
m

r 42k P2k
—Pok = Qo — + — — DPap — Qar— + 0 — pop, = 0,
m m q2k

contradicting the hypothesis that > 0.

Now we show that there are not two a;’s that are unbounded. Suppose that ag, and a;
are both unbounded, with j > 2k. Then

1
H(=) <25+

m m 2¢ok

Since aoy, is unbounded, 21% — 0. And since a; is also unbounded,

%§%<QW£‘(]J—1< 1 i—>0
m qj dji-1  4qj Fj 1 0r a;
Thus
Gk 1
2 - )
mo 2qo

We have shown that there is exactly one a; that is unbounded, and that 7 is even.

We have = = [0;a1,...,a%,...,a,], with all of the a; fixed except ag, and ag, — oo.
Now

r+1

lim H(r/m) = azlklr_r}oo 0§r§1<12/2 Q2

— Lm  min <C]2jpn — P2jQn + C]2j>

— D2y

agp—00 0<j<n/2 Gn,
— min lim [a2]+27 ) an} + [(11, ) a'QJ]
0<j<n/2 ag—00 Elay,. .., a,)
Using the general identity (for s < ¢ <t)
Elas,...,a;] = a¢Elas, ..., ar1|Elagiq, ..., a+

Elas,...,ar2Elag+ 1,...,a)] + Elag, ..., ap1|Elagsa, . .., a]
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with ¢ = 2k, we can evaluate the limit as ag, — 0o. We arrive at

B = lim H(L) = min{ min (0242, -, aop—1] Elagk, ’a”],
m 0<j<k  Elay, ..., a0—1]Elag41, - .., an)
nin Elay, ..., ap-1)Elagki1, . .., az; }
k<j<n/2 E[al, RN ,agk_l]E[ang, A ,CLn]
— min { min E[a2j+2, Ce 7a2k_1] 7 . E[a/2k;+17 sy A4 }
0<j<k E[al, .. ,agk_l] k<j<n/2 E[ang, R ,an]

. 1 1
= min , .
{E[a17---7a2k—1] E[a2k+la~--7an]}
In either case, the numerator of 83 is 1, and the proof of Theorem 1.1 is concluded.

We note that we have actually proved (with a small bit of additional algebra) a quanti-
tative version of the Theorem.

Theorem 3.1. Let (r;,m;) be a sequence of pairs of positive integers with ged(r;,m;) = 1,
m; — oo and limsup H(r;/m;) > 0. Then there is a pair of relatively prime positive integers

a,b, with a < b, a positive integer c, and an increasing sequence i1, 1s, ... with
am;; —c Ti; 1
Ty, = ———— and H(—) — ———
b m;. max{c, b}
J

Conversely, if m; — oo, and a < b are two relatively prime positive integers, ¢ is a positive

integer, and r; = “==< is an integer relatively prime to m;, then lim H (r;/m;) — YSIEE

In particular, if for every n there are arbitrarily large m € M with ged(m,n) = 1, then

SPEC(M) = SPEC(N).
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